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Abstract  
 
This paper outlines a detailed study of some latest trends and developments in nonlinear 

sciences. The major focus of our study will be variational iteration (VIM) and its modifications, 

homotopy perturbation (HPM), parameter expansion and exp-function methods. The above 

mentioned schemes are highly accurate, extraordinary efficient, capable to cope with the 

versatility of the physical problems and are being used to solve a wide class of nonlinear 

problems. Several examples are given which reveal the justification of our claim.  
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1. Introduction 
 

The nonlinear problems (see Abbasbandy (2007), Abdou and Soliman (2005), Abassy et al. 

(2007), Batiha et al. (2007), Biazar and Ghazvini (2007), Adomian (1998), Chan and Hon 

(1987), Ganji et al. (2007), El-Wakil et al. (2007), Ghorbani and Nadjfi (2007), Golbabai and 

Javidi (2007), He (2003, 2004, 2006, 2007, 2008), Inokuti et al. (1978), Kaya (1999, 2003), Ma 

(2004), Momani and Odibat (2006), Mohyud-Din et al. (2007, 2008, 2009, 2010), Sweilam 

(2007), Tatari and Dehghan (2007), Wazwaz (1999), Wu and He (2007), Yusufoglu (2008), 

Zhou et al. (2008), Zhang (2007), Zhu (2007)) arise very frequently in the mathematical 

modeling of diversified physical problems related to engineering and applied sciences. The 

applications of these problems involve physics, astrophysics, astronomy, experimental and 

mathematical physics, nuclear charge in heavy atoms, thermal behavior of a spherical cloud of 

gas, thermodynamics, population models, chemical kinetics and fluid mechanics.  

 

Several techniques including decomposition, modified decomposition, variational iteration, finite 

element, finite difference, polynomial and non-polynomial splines, differential transform, 

homotopy analysis, exp-function, variation of parameters, Sink-Glariken, parameter expansion, 

homotopy analysis, Runge-Kutta, and homotopy perturbation have been developed to tackle the 

nonlinearity of such problems. Most of these developed techniques have their inbuilt deficiencies 

like limited convergence, divergent results, linearization, discretization, unrealistic assumptions, 

absence of a small parameter and non-compatibility with the physical nature of nonlinear 

problems. He (2003, 2004, 2006, 2007, 2008) developed a number of efficient and reliable 

techniques to solve a wide class of nonlinear problems. These relatively new methods proved to 

be fully synchronized with the complexities of the physical problems, (see Abbasbandy (2007), 

Abdou and Soliman (2005), Abassy et al. (2007), Batiha et al. (2007), Biazar and Ghazvini 

(2007), Ganji et al. (2007), El-Wakil et al. (2007), Ghorbani and Nadjfi (2007), Golbabai and 

Javidi (2007), He (2003, 2004, 2006, 2007, 2008), Inokuti et al.  (1978), Kaya (1999, 2003), 

Momani and Odibat (2006), Mohyud-Din et al. (2007, 2008, 2009, 2010), Sweilam (2007), 

Tatari and Dehghan (2007), Wu and He (2007), Yusufoglu (2008), Zhou et al. (2008), Zhang 

(2007), Zhu (2007) and the references therein.  

 

In the present study, we will focus our attention on He’s variational iteration (VIM), homotopy 

perturbation (HPM), modified variational iteration (MVIMS), parameter expansion and exp-

function methods. The VIM (He (2003, 2004, 2006, 2007, 2008) was developed by He in its 

present iterative form though its origin may be traced back to Inokuti, Sekine and Mura but the 

real potential of the method was realized and exploited by He. Moreover, He (2003, 2004, 2006, 

2007, 2008) introduced another wonderful technique namely homotopy perturbation (HPM) by 

merging the standard homotopy and perturbation. The HPM is independent of the drawbacks of 

the coupled techniques and absorbs all their positive features. Recently, He and Wu (2008) 

formulated the exp-function method to solve nonlinear problems of versatile nature. It is to be 

highlighted that the present study would also outline the implementation of He’s parameter-

expansion techniques which comprise the book keeping parameter and modified Lindstedt-

Pioncare methods using parameter-expansion for finding the frequency of nonlinear oscillators. 

These techniques have been applied to a wide class of nonlinear problems and the references 

therein. With the passage of time some modifications in He’s variational iteration method (VIM) 

has been introduced by various authors.  
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Abbasbandy (2007) made the elegant coupling of Adomian’s polynomials with the correction 

functional (VIMAP) of the VIM and applied this reliable version to solve Riccati differential and 

Klein Gordon equations. In a later work, Noor and Mohyud-Din (2007, 2008, 2009, 2010) 

exploited this concept for solving various singular and non singular boundary and initial value 

problems. Recently, Ghorbani et al. (2007) introduced He’s polynomials by splitting the 

nonlinear term and also proved that He’s polynomials are fully compatible with Adomian’s 

polynomials but are easier to calculate and are more user friendly. More recently, Noor and 

Mohyud-Din (2007, 2008, 2009, 2010) combined He’s polynomials and correction functional 

(VIMHP) of the VIM and applied this reliable version to a number of physical problems. It has 

been observed that the modification based on He’s polynomials (VIMHP) is much easier to 

implement as compare to the one (VIMAP) where the so-called Adomian’s polynomials along 

with their complexities are used.  

 

The basic motivation of the present study is the review of these reliable techniques which are 

being used very frequently for the solution of nonlinear initial and boundary value problems of 

diversified physical nature. Several examples are given to reveal the efficiency and reliability of 

these relatively new techniques. 

 

2. Exp-function Method 

 
Consider the general nonlinear partial differential equation of the type  

 

, , , , , , 0.t x tt xx xxxxP u u u u u u  (1) 

 

Using a transformation  

 

,kx t  (2) 

 

where k and are constants, we can rewrite equation (1) in the following nonlinear ODE; 

 
( ), , , , , 0,ivQ u u u u u  (3) 

 

According to the exp-function method, which was developed by He and Wu (2008), we assume 

that the wave solutions can be expressed in the following form  

 

exp[ ]
( ) ,

exp[ ]

d

nn c

q

mm p

a n
u

b m
  (4) 

 

where , ,p q c  and d   are positive integers which are known to be further determined, 
na  and 

mb  

are unknown constants. We can rewrite equation (4) in the following equivalent form.  
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exp[ ] ... exp[ ]
( ) .

exp[ ] ... exp[ ]

c d

p q

a c a d
u

b p b q
 (5) 

 

This equivalent formulation plays an important and fundamental part for finding the analytic 

solution of problems [He and Wu (2008)]. To determine the value of c  and p , we balance the 

linear term of highest order of equation (4) with the highest order nonlinear term. Similarly, to 

determine the value of d and q , we balance the linear term of lowest order of equation (3) with 

lowest order non linear term.  

 

3. Variational Iteration Method (VIM) 

 
To illustrate the basic concept of the He’s VIM, we consider the following general differential 

equation 

 

),(xguNuL  (6) 

 

where L  is a linear operator, N  a nonlinear operator and g(x) is the inhomogeneous term.  

 

According to variational iteration method [He (2003, 2004, 2006, 2007, 2008)], we can construct 

a correction functional as follows 

 

,))()(~)(()()(
0

1 dssgsuNsuLxuxu

x

nnnn
 (7) 

 

where is a Lagrange multiplier [He (2003, 2004, 2006, 2007, 2008)], which can be identified 

optimally via variational iteration method. The subscripts n denote the nth approximation, 
nu~  is 

considered as a restricted variation. i.e., ;0~
nu  (7) is called a correction functional. The 

solution of the linear problems can be solved in a single iteration step due to the exact 

identification of the Lagrange multiplier. The principles of variational iteration method and its 

applicability for various kinds of differential equations are given in [He (2003, 2004, 2006, 2007, 

2008)]. In this method, it is required first to determine the Lagrange multiplier  optimally. The 

successive approximation 0,1 nun  of the solution u will be readily obtained upon using the 

determined Lagrange multiplier and any selective function ,0u consequently, the solution is 

given by .lim n
n

uu  We summarize some useful iteration formulae [He (2003, 2004, 2006, 

2007, 2008)] which would be used in the subsequent section: 

 

/ /

1

0

, 0,

3
( ) ( ) ( ) , .

t

n n n n n

u f u u

a
u t u t u s f u u ds
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/ / / / /

1

0

, , 0,

3
( ) ( ) ( ) , , .

t

n n n n n n

u f u u u

b
u t u t s t u s f u u u ds

 

2 /// / // / / /

1

0

, , , 0,

31
( ) ( ) ( ) , , , .

2!

t

n n n n n n n

u f u u u u

c
u t u t s t u s f u u u u ds

 
( ) ( )

3 ( ) / // / / / ( )

1

0

, , , , 0,

31
( ) ( ) ( ) , , , , .

3!

iv iv

t

iv iv

n n n n n n n n

u f u u u u u

d
u t u t s t u s f u u u u u ds

 

( ) ( ) ( )

1

1 ( ) / / / / / / ( ) ( )

0

, , , , , , 0,

( ) ( ) 3

1
            1 ( ) , , , , , , .

1 !

n iv n

n n

t
n n n iv n

n n n n n n n

u f u u u u u u

u t u t e

s t u s f u u u u u u ds
n

 

 

4.   Homotopy Perturbation Method (HPM) and He’s Polynomials 

 
To explain the He’s homotopy perturbation method, we consider a general equation of the type, 

 
,0)(uL  (8) 

 

where L  is any integral or differential operator. We define a convex homotopy puH ,  by 

 

),()()1(),( upLuFppuH  (9) 

 

where uF  is a functional operator with known solutions 0v , which can be obtained easily.  

 

It is clear that, for 

 

,0),( puH  (10) 
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we have 

 

),()0,( uFuH ).()1,( uLuH  

 

This shows that ),( puH continuously traces an implicitly defined curve from a starting point 

0,0vH  to a solution function 1,fH . The embedding parameter monotonically increases from 

zero to unit as the trivial problem ,0)(uF  is continuously deforms the original problem 

.0)(uL  The embedding parameter ]1,0(p  can be considered as an expanding parameter [He 

(2003, 2004, 2006, 2007, 2008), Mohyud-Din et al. (2007, 2008, 2009, 2010)]. The homotopy 

perturbation method uses the homotopy parameter p as an expanding parameter to obtain  

 

,3

32

10

0
2

upupupuupu
i

i

i  (11) 

 

if p  1, then (11) corresponds to (9) and becomes the approximate solution of the form, 

 

.lim
0

1
i

i
p

uuf  (12) 

 

It is well known that series (12) is convergent for most of the cases and also the rate of 

convergence is dependent on L(u). We assume that (12) has a unique solution. The comparisons 

of like powers of p give solutions of various orders. In sum, He’s HPM considers the nonlinear 

term )(uN  as  

 

...)(
2

2

10

0

HpHpHHpuN
i

i

i ,  

      

where nH ’s are the so-called He’s polynomials, which can be calculated by using the formula 

 

00

0 )(
!

1
),,(

p

n

i

i

i

n

n

nn upN
pn

uuH  , ,2,1,0n . 

  

 

5. Adomian’s Decomposition Method (ADM) 

 
Consider the differential equation (Wazwaz (1999)) 

 

,guNuRuL  (13) 

 

where L  is the highest-order derivative which is assumed to be invertible, R  is a linear 

differential operator of order lesser order than L , uN  represents the nonlinear terms and g  is 
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the source term. Applying the inverse operator 1L to both sides of (13) and using the given 

conditions, we obtain 

 

),()( 11 uNLuRLfu  

 

where the function f  represents the terms arising from integrating the source term g and by 

using the given conditions. Adomian’s decomposition method [Wazwaz (1999)] defines the 

solution )(xu  by the series 

 

),()(
0

xuxu
n

n  

 
where the components )(xun

 are usually determined recurrently by using the relation 

 

.0),()(, 11

10 kuNLuRLufu kkk  

 

The nonlinear operator )(uF  can be decomposed into an infinite series of polynomials 

,)(
0n

nAuF  where nA are the so-called Adomian’s polynomials that can be generated for 

various classes of nonlinearities according to the specific algorithm developed in Wazwaz 

(1999), which yields  

 

.,2,1,0,
!

1

00

nuN
d

d

n
A i

i
n

i
n

n

n  

 

 
6. Modified Variational Iteration Methods (MVIMS) 
 

The modified variational iteration techniques (MVIMS) are obtained by the elegant coupling of 

correction functional of VIM with He’s and Adomian’s polynomials. 

 

6.1.   Variational Iteration Method Using He’s Polynomials (VIMHP)  
 

This modified version of variational iteration method [Mohyud-Din et al. (2007, 2008, 2009, 

2010)] is obtained by the elegant coupling of correction functional (7) of variational iteration 

method (VIM) with He’s polynomials and is given by  

 

.)()()~()()()(
00

)(

0

)(

0

0

0

)( dssgsdsuNpuLpspxuup

x

n

n

n

n

n

n

x

n

n

n (14) 

 

Comparisons of like powers of p give solutions of various orders.  
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6.2.  Variational Iteration Method Using Adomian’s Polynomials (VIMAP)  
 

This modified version of VIM is obtained by the coupling of correction functional (3) of VIM 

with Adomian’s polynomials Mohyud-Din et al. (2007, 2008, 2009, 2010) and is given by  

 

,))()(()()(
00

1 dxxgAxuLxuxu
n

n

t

nnn
 (15) 

where 
nA are the so-called Adomian’s polynomials and are calculated for various classes  of 

nonlinearities by using the specific algorithm developed in (Wazwaz (1999). 

 

 

7. Numerical Applications  

 
In this section, we apply the VIM, HPM, MVIMS, exp-function method and expansion of 

parameter for solving various nonlinear initial and boundary value problems.  

 
Example 7.1. Consider the following “good” Boussinesq equation 
 

2 ,tt xxxx xx xx
u u u u  (6b) 

 

Introducing a transformation as ,kx t we can covert equation (6b) into ordinary 

differential equations 

 

2 4 2 2 2 0
iv

u k u k u k u ,   (7b) 

 

The solution of the equation (7b) can be expressed in the form, equation (6b) as 

 

exp[ ] ... exp[ ]
( ) .

exp[ ] ... exp[ ]

c d

p q

a c a d
u

b p b q
   

   

To determine the value of c  and p , we balance the linear term of highest order of equation (7b) 

with the highest order nonlinear term. Proceeding as before, we obtain 

 

p c and d q . 

 

Case 7.1.  We can freely choose the values of , ,p c d , but we will illustrate that the final solution 

does not strongly depends upon the choice of values of c and d. For simplicity, we set 

1p c and 1q d .  Hence, equation (6b) reduces to the following form: 
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1 0 1

1 0 1

exp exp
.

exp exp

a a a
u

b a b
  

  

Substituting equation (7b), we have 

 

4 3 2 1 0 1

2 3 4

1
[ exp 4 exp 3 exp 2 exp exp

exp 2 exp 3 exp 4 ] 0

c c c c c c
A

c c c

 (8b) 

 

where
5

1 0 1= exp exp ,A b b b and 4, 3,......,3,4ic i are constants obtained by 

Maple 11.  

 

Equating the coefficients of exp n  to be zero, we obtain: 

 

4 3 2 1

0 1 2 3 4

{ 0, 0, 0, 0,

0, 0, 0, 0, 0.}

c c c c

c c c c c
 (9b) 

 

Solution of (9b) will yield 

 
4 2 22

00
1 1 1 0 2

1

2 4 2 2 2 4 2

1 0

1 1 0 02 2

1

51 1
, , , ,

4 2

1 1
, , .

2 8

b k kb
b b b a

b k

b k k b k k
a a b b

k k b

 (10b) 

 

We, therefore, obtained the following generalized solitary solution ,u x t of equation (6b): 

 
2 2 2 4 4 2 2 2 2 4

0 0 12 2

2 2 2

1

2 22

0
0 1

1

51 1 1

8 2 2
( , ) ,

1

4

kx t kx t

kx t
kx t

b k k b k k b k k
e e

k b k k
u x t

b e
b e b

b

 

or simply, we have  

 
2 4 2 2

0

22
2 20

0 1

1

3
, ,

12

4

kx t kx t

k k b k
u x t

bk
e b e b

b

 (11b) 

 

where 
0 1, ,b b  and k are real numbers. 
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                                                                        Figure 3.1 (a) 

 

 

Figure 3.1 (a) depicts the soliton solutions of equation (6b), when 
0 1 1.a a k In case k 

is an imaginary number, the obtained soliton solutions can be converted into periodic or 

compact-like solutions. Therefore, we write ,k iK consequently, equation (11b) becomes 

 
2 4 2 2

0

22

0
0 1

1

3
, ,

12

4

IKx t IKx t

K K b K
u x t

bK
e b b e

b

 (12b) 

        

 

2 4 2

2

2

0

2

0
0 1

1

,
2

3
            

1
cos sin cos sin

4

t t

K K
u x t

K

b K

b
e Kx I Kx b b e Kx I Kx

b

. (13c) 

 

Now, to obtain periodic solutions from soliton solutions, we put imaginary part of equation 

(13b), which is kxsin , equal to zero.  Hence, equation (13b) becomes 

 
2 4 2 2

0

22

0
0 1

1

3
,

12
cos cos

4

t t

K K b K
u x t

bK
e Kx b b e Kx

b

. (14b) 
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Figure 3.1 (b) 

 

 

Figure 3.1 (b) depicts the periodic solutions of equation (6b) drawn on the whole domain 

when .101 kbb  

 

 
 

Figure 3.1 (c) 

 

Figure 3.1 (c) depicts the periodic solutions of equation (6b) drawn on the whole domain when 

.101 kbb  
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Figure 3.1 (d) 

 

 

Figure 3.1 (d) depicts the periodic solutions of equation (6b) when 
1 0 1,b b  and 2K . 

 

Case 7. 2.  If 2,p c  and 1,q d then equation (6b) reduces to 

 

2 1 0 1

2 1 0 1

exp 2 exp exp
.

exp 2 exp exp

a a a a
u

b b b b
 (15b) 

 

Proceeding as before, we obtain 

 
4 2 22

11
2 1 1 0 0 1 12

0

2 4 2 2 2 4 2

0 1

0 2 0 0 12 2

0

51 1
, , , , , 0,

4 2

1 1
, , , 0.

2 8

b k kb
b b b b b a b

b k

b k k b k k
a a b b a

k k b

  (16b) 

 

Hence, we get the generalized solitary solution ,u x t  of equation (6b) as follows 

 
2 2 2 4 4 2 2 2 2 4

1 1 02 2

2 2 2

0

2 22

1
1 0

0

51 1 1

8 2 2
( , )

1

4

kx t kx t

kx t
kx t

b k k b k k b k k
e e

k b k k
u x t

b e
b e b

b

 

or simply, we have  
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2 4 2 2

1

22
2 21

1 0

0

3
, ,

12

4

kx t kx t

k k b k
u x t

bk
e b e b

b

            (17b) 

   

where 
0 1, ,b b  and k are real numbers.  

 
Example 7.2. Consider the following nonlinear differential equation which governs the unsteady 

flow of gas through a porous medium.  
 

,10,0)(
1

2
)(// xy

y

x
xy  

 

with the following typical boundary conditions imposed by the physical properties  

 

.0)(lim,1)0( xyy
x

 

 
The correction functional is given as  

 

.10,)(
1

2
)()()()(

0

1 dsxy
y

s
xysxyxy

x

nn  

 

Making the correction functional stationary, the Lagrange multipliers can be identifies as 

,xss  we get the following iterative formula 

  

.10,)(
)(1

2
)()()()(

0

1 dssy
sy

s
syxsxyxy n

n

n

x

nn , 

   

where )0(yA . Consequently, following approximants are obtained 

 

1)(0 xy , 

,1)(1 xAxy  

,
13

1)( 3

2 x
A

xAxy  

,
)1(10)1(1213

1)( 54

2/3

2
3

3 x
A

x
A

x
A

xAxy  

.
)1(15)1(80

3

)1(10)1(1213
1)( 6

2

2
5

2/5

32
54

2/3

2
3

4 x
A

x
A

x
A

x
A

x
A

xAxy

 

The series solution is given as 
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2 2 3

3 4 5

3/2 5/2

2 3 4
6 7

2 7/2

3
( ) 1

12(1 ) 10(1 ) 80(1 )3 1

         ( ),
15(1 ) 48(1 )

A A A A
y x Ax x x x

A A
x O x

 

 

The diagonal Pade´ approximants [55] can be applied to analyze the physical behavior. Based on 

this, the [2/2] Pade´ approximants produced the slope A to be 

 

,
3

)1(2 4/1

A   (16) 

 

and using [3/3] Pade´ approximants we find 

 

,
57

1441)86644674(
A  (17) 

where 

 

)121622801309)(1(5 2  . (18) 

 

Using (16-18) gives the values of the initial slope )0(yA  listed in the table 5. The formulas 

(16) and (17) suggest that the initial slope )0(yA  depends mainly on the parameter , 

where 10 .  

 

 

Table 7.2 (a). Table 7.2 (a) exhibits the initial slopes )0(yA  for various values of . 

 )0(]2/2[ yB  )0(]3/3[ yB  

0.1 -3.556558821 -1.957208953 

0.2 -2.441894334 -1.786475516 

0.3 -1.928338405 -1.478270843 

0.4 -1.606856838 -1.231801809 

0.5 -1.373178096 -1.025529704 

0.6 -1.185519607 -0.8400346085 

0.7 -1.021411309 -0.6612047893 

0.8 -0.8633400217 -0.4776697286 

0.9 -0.6844600642 -0.2772628386 
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Table 7.2 (b). Table 7.2 (b) exhibits the values of y(x) for 5.0  for 0.11.0 tox . 

x  y kidder 
]2/2[y  ]3/3[y  

0.1 0.8816588283 0.8633060641 0.8979167028 

0.2 0.7663076781 0.7301262261 0.7985228199 

0.3 0.6565379995 0.6033054140 0.7041129703 

0.4 0.5544024032 0.4848898717 0.6165037901 

0.5 0.4613650295 0.3761603869 0.5370533796 

0.6 0.3783109315 0.2777311628 0.4665625669 

0.7 0.3055976546 0.1896843371 0.4062426033 

0.8 0.2431325473 0.1117105165 0.3560801699 

0.9 0.1904623681 0.04323673236 0.3179966614 

1.0 0.1587689826 

 

0.01646750847 0.2900255005 

 
 

Example 7.3. Consider the following problem formulated in section 2 and is related to the free-

convective boundary layer flow 

 
2

'''( ) ( ) '( ) 0,f f   (19)   

 

''( ) 3 '( ) ( ) 0,f   (20) 

 

subject to the boundary conditions 

 

(0) 0,      '(0) 0,      '( ) 0,f f f   (21) 

 

 (0) 1,     (+ )=0,    (22) 

 

where the primes denote differentiation with respect to η and σ is the Prandtl number.  

 

The correction functional is given by 

 

.
~

~

3)()()(
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)(
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2

2

21
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d
s
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d

fd
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sff

n

n
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nn

n

n

x

n

nn

 

 

Making the correction functional stationary, the Lagrange multipliers can easily be identified as 

).()(,
!2

1
)( 2

2

1 ssss  Consequently, 
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Applying the modified variational iteration method (MVIM), we get 

 

.3)(

)(

.
!2

1

)(
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2

1

2

0

2

0

2

010

2

10

10

0
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3

3
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3
2

010

dsp
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d
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sd

fd
p

sd
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





 

Comparing the coefficients of like powers of p, we get  

,
2

)(: 21
0

0 fp   (23) 

,
60246

1

2
)(: 5

2

142321
1

1 fp   (24)                                                                                     

2
2 2 3 4 51 2 1

2

3
6 7 81 1 1 2 1 2 1

1
: ( )

2 6 24 60

                  ,
240 120 630 120 2016

p f

 (25) 

  

2
3 2 3 4 5 61 2 1 1 1

3

3
7 81 2 1 2 1 2 2

2 2 2

1 1

1
: ( )

2 6 24 60 240 120

1
                 

630 120 1680 840 2016 3360 2016

                 
10080 864

p f

2 2 2
92 1 2

2 2 2 2 24
10 111 2 1 2 1 2 1

11

0 30240 30240 18144

19
 ,

14400 604800 40320 66528

                     .

 (26) 
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and 

 

,1)(: 20

0p   (27) 

,
42

1)(: 421321
21

1p  (28) 

2 3 4 51 2 1 2 1 2
2 2

2 2 2 2 2 2 2
6 71 1 2 1 2 1 2

: ( ) 1
2 4 8 10

                  ,
20 120 60 168 56

p

 (29) 

3 3 41 2 1 2
3 2

2 2 2 2
5 61 2 1 1 2

2 2 2 2
71 2 1 2 1 1

2

1 2 1 2

: ( ) 1
2 4 8

                   -
10 20 120 60

  
168 56 280 35

11 41
                 

3360 2240

p

8

2 2 3 3 2 2 3 3
91 2 1 1 1 2 1

3 2 3 2 3 3
101 2 2 1 2 1 2

,

      
360 6048 480 2160 480

      ,
7560 1120 1680

                  .

 (30) 

 

The series solution is given by 

 
2

2 3 4 5 61 2 1 1 1

3
7 81 2 1 2 1 2 2

2 2 2 2

1 1 2 1

1
( )

2 6 24 60 240 120

1
           

630 120 1680 840 2016 3360 2016

11
           

10080 8640 30240

f

2 2
92

2 2 2 2 24
10 111 2 1 2 1 2 1

30240 18144

19
.

14400 604800 40320 66528
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3 4 51 2 1 2 1 2
2

2 2 2 2 2 2 2 2
6 71 1 2 1 2 1 2 1 1

2 2 2
81 2 1 2 1 2

( ) 1
2 4 8 10

           +
20 120 60 168 56 280 35

11 41
          ,

3360 2240 360

3 3 2 2 3 3
91 1 1 2 1

3 2 3 2 3 3
101 2 2 1 2 1 2

6048 480 2160 480

.
7560 1120 1680

 

 
Table 7.3 (a). Numerical values of 

1 ''(0)f   

 [4,4] [5,5] [6,6] 
1
  

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10000 

1.1135529418 

1.0631737963 

0.9128082210 

0.6941230861 

0.4511240728 

0.2679197151 

0.2204061432 

0.0858587180 
 

1.1272760416 

1.0741895683 

0.9238226280 

0.6929598014 

0.4502429544 

0.2681474363 

0.1524783266 

0.0858519249 

 

1.1252849854 

1.0638385351 

0.9242158493 

0.6932195158 

0.4476712316 

0.2641295627 

0.1500456755 

0.0844775473 

 

1.1231381347 

1.0633808585 

0.9240830397 

0.6932116298 

0.4471165250 

0.2645235434 

0.1512901971 

0.0855408524 

 

 
Table 7.3 (b).  Numerical values of 

2 '(0)   

 [4,4] [5,5] [6,6] 
2
  

0.001 

0.01 

0.1 

1 

10 

100 

1000 

10000 

−0.0371141028 

−0.1274922800 

−0.3621215470 

−0.7694165843 

−1.5028543431 

−2.7627624234 

−5.7787858408 

−8.8057265644 

−0.0415417739 

−0.1221616907 

−0.3505589981 

−0.7695971295 

−1.5007437650 

−2.7637067330 

−4.9468469883 

−8.8032691004 

−0.0436188230 

−0.1351353865 

−0.3499273453 

−0.7698955992 

−1.4985484075 

−2.7445541894 

−4.9104728566 

−8.7384279086 

−0.0468074648 

−0.1357607439 

−0.3500596733 

−0.7698611967 

−1.4970992078 

−2.7468855016 

−4.9349476252 

−8.8044492660 
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Figure 7.3 (a). Variation of ( )f using 

6[6,6]  for 0.1 , 6[5,5]  for 1  and 
6[4,4]  for 10 .  

 

 

 

 
Figure 7.3 (b). Variation of '( )f using 

6[6,6]'  for 0.1 , 6[5,5]'  for 1 and 

6[4,4]'  for 10 . 

 

It is observed in Figs.7.3 (a) -7.3 (b) that the flow has a boundary layer structure and the 

thickness of this boundary layer decreases with increase in the Prandtl number,  as expected. 

This is due to the inhibiting influence of the viscous forces. 
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Figure 7.3 (c). Variation of ( ) using 

7[6,6]  for 0.1 , 7[5,5]  for 1  and 

7[4,4]  for 10 .  

 

 

Figure 7.3 (c) shows that the increase of the Prandtl number, σ, and results in the decrease, as 

expected, of temperature distribution at a particular point of the flow region, i.e. there would be a 

decrease of the thermal boundary layer thickness with the increase of values of σ implying a slow 

rate of thermal diffusion. Thus higher Prandtl number σ leads to faster cooling of the plane sheet. 

 

 
Example 7.4 .  Consider the following nonlinear inhomogeneous Goursat problem 

 

.2)0,0(,1),0(,1)0,(

,2222

uetuexu

eteeuu

tx

txtx

xt
 

 

The correction functional for the above problem is given by 

 

.0,2~,, 222
2

0

1 ndseseeu
sx

u
stxutxu sxsx

n
n

t

nn  

 

Making the correction functional stationary, the Lagrange multiplier can be identified as 

.1)(s  Consequently, 

 

.0,2,, 222

2

0

1 ndseseeu
sx

u
txutxu sxsx

n

n

t

nn  

 

Applying the modified variational iteration method 
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,0,2,, 22

0

2

0

1 ndseseeA
sx

u
txutxu sxsx

n

n

n

t

nn  

 

where 
nA are the so-called Adomian’s polynomials and can be generated for all type of 

nonlinearities according to the specific algorithm defined in Mohyud-Din and Noor (2009),  

Mohyud-Din et al. (2009).  Choosing ,),(0

tx BeAetxu as the initial value, the following 

approximants are obtained 

 

,),(0

tx BeAetxu  

.

),1(
2

1
22

2
2

1

2

1
2),(

2

222222

1



BeABe

eteeteAeBABeBeAetxu

xx

txxtxttxtx

 

 

The series solution is given by 

 

).1(
2

1
222

2

1

2

1
2),( 2222222 BeABeeteeteAeBABeBeAetxu xxtxxtxttxtx  

 

Imposing the boundary conditions ,10,,20,0 xexuu  to find the constants A and B will 

yield ,1A and ,1B consequently 

 

.),( tx eetxu  

 

 

 
Figure 7.4. Figure 7.4 depicts closed form solution. 
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Example 7.5. Consider the Thomas-Fermi equation 

 

,)(
2/1

2/3

x

y
xy  

 (31) 

with boundary conditions 

 

.0)(lim,1)0( xyy
x

 

 (32) 

Applying the homotopy perturbation method 

.)( 2
3

2

2

10
2

1

0 0

0210 dxdxypypyxpxyyyy

x x

  (33) 

The given initial values admits the use of  ,1)(0 xBxy  where ),0(yB  but we use the 

modified approach and take .1)(0 xy Comparing the co-efficient of like powers of p 

 

,1)(: 0

)0( xyp  

,
3

4
)(: 2/3

1

)1( xxBxyp  

,
3

1

5

2
)(: 32/5

2

)2( xxBxyp  

,
3

1

27

2

15

2

70

3
)(: 32/942/72

3

)3( xxxBxBxyp  

,
70

3

27

2

175

1

252

1
)(: 2/722/9522/93

4

)4( xBxxBxBxyp  

,
52650

101

693

4

100100

557

1575

4

1056

1
)(: 2/1572/132632/114

5

)5( xxBxBxBxBxyp  

(6) 5 13/2 4 7 3 15/2

6

2 8 17/2 9

3 29 512
: ( )

9152 24255 351000

46 113 23
                     ,

45045 1178100 473850

                     

p y x B x B x B x

B x B x x  

 

The series solution is given as 
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3/2 5/2 3 2 7/2 4 9/2 2 7/2

3 9/2 2 5 9/2 2 7/2 4 11/2 3 6

2 13/2 7 15/2 5 13/

4 2 1 3 2 2 3
( ) 1

3 5 3 70 15 27 70

1 1 2 3 1 4
           

252 175 27 70 1056 1575

557 4 101 3
          

100100 693 52650 9152

y x B x Bx x Bx x B x Bx x B x

B x B x x B x B x B x

B x Bx x B x 2 4 7

3 15/2 2 8 17/2 9

29

24255

512 46 113 23
          ,

351000 45045 1178100 473850

          .

B x

B x B x Bx x

 

 

Setting ,2
1

tx  the series solution is obtained as 

 

2 3 5 6 2 7 8 3 9 2 10

4 11 3 12 5 2 13

4 14 6

4 2 1 3 2 1 2 1
( ) 1

3 5 3 70 15 252 27 175

1 31 4 4 3 557
         

1056 1485 1575 405 9152 100100

29 4 7
         

24255 693 499

y t Bt t Bt t B t Bt B t B t

B B t B t B B t

B B t B 3 15

4 2 16 7 4 17

6 3 18 5

623 101

351000 52650

68 46 3 153173 113
         

105105 45045 43520 116424000 1178100

4 1046 23 1232941 799399
         

10395 675675 473850 1278076800 69837

B t

B B t B B B t

B b t B 2 19

4 20

7680

99856 51356
         .

70945875 103378275

B t

B B t

 

Table 7.5.  Pade´ approximants and initial slopes )0(y . 

Pade approximants Initial slope )0(y  Error (%) 

[2/2] -1.211413729 23.71 

[4/4] -1.550525919 2.36 

[7/7] -1.586021037 12.9 x 10
-2 

[8/8] -1.588076820 3.66 x 10
-4 

[10/10] -1.588076779 3.64 x 10
-4 

 
 

Example 7.6.  Consider the following nonlinear oscillator with discontinuous term  

 

, 0 , 0 0.tt tu u u u A u              (34) 
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We  rewrite (37) in the form 

. 1. 0ttu o u u u .  (35) 

Applying the parameter expansion technique, we get 

2

0 0 0, 0 , 0 0.tu u u A u   (36) 

2

1 1 1 0 1 0 0 0, 0 0, 0 0tu u a u b u u u u .  (37) 

Using the Fourier series expansion 2

2

2 4
cos cos 2 cos 2

3
k

k

A t A t a k t  would 

yield 

2 2

1 1 1 1 1

2

1

2

8 2
cos cos3

3 3

cos cos 2 0
k

u u A t a b A b A t

A b t k t

. (38) 

Elimination of the secular term requires 
1 1

8
.

3
a b A  If only the first-order approximation is 

searched for, then 2

1 1,a b which leads to the result 2 8

3

A
. 

6. Conclusion 

 
In this paper, we made a detailed study of some relatively new techniques along with some of 

their modifications. In particular, we focused on He’s VIM, HPM, MVIMS, exp-function and 

expansion of parameters methods and discussed in length their respective applications to solve 

various diversified initial and boundary value problems. These proposed methods and their 

modifications are employed without using linearization, discretization, transformation or 

restrictive assumptions, absorb the positive features of the coupled techniques and hence are very 

much compatible with the diversified and versatile nature of the physical problems. Moreover, 

the modification of VIM based upon He’s polynomials (VIMHP) is easier to implement and is 

more user friendly as compare to the one where Adomian’s polynomials (VIMAP) along with 

their complexities are used. It is also observed that the coupling of He’s or Adomian’s 

polynomials with the correction functional of VIM makes the solution procedure simpler and 

hence the evaluation of nonlinear term becomes easier. It may be concluded that theses relatively 

new techniques can be treated as alternatives for solving a wide class of nonlinear problems. 
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