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Abstract

In this paper, the variational iteration method is applied for finding the solution of an Integro-
differential parabolic problem with integral conditions. Convergence of the proposed method is
also discussed. Finally, some numerical examples are given to show the effectiveness of the
proposed method.
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convergence.
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1. Introduction

In modeling of many physical systems in various fields of physics, ecology, biology, etc, an
integral term over the spatial domain is appeared in some part or in the whole boundary see
Bouziani (2002), Carlson (1972), Cushman et al. (1993, 1995), Day (1983), Kavalloris and
Tzanetis (2002), Renardy et al. (1987), Samarskii (1980). Such boundary value problems are
known as non-local problems. The integral term may appear in the boundary conditions. Non-
local conditions appear when values of the function on the boundary are connected to values
inside the domain. In recent years, several numerical techniques have been presented to solve
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various types of non-local boundary value problems see Beilin (2001), Cannon and Lin (1990),
and Dehghan et al. (2003, 2006, 2007, and 2009).

In this paper we consider the following parabolic integro-differential equation with integral

conditions,
&, o°
—u(x,t) — >u(Xx,t) +yu(x,t) = Ku(x,t)) + f (x,t),
ot O X

xt)eQ=0,Dx(0OT], @O

with the initial condition
u(x,0)=r(x), 0=<x<lI, (2

the Neumann condition
u, (0,t) =ax(t), O<t<T, 3

and the integral (non-local) condition

J:u(x,t)dx:E(t), 0<t<T, (4)

where f,r, o and E are given functions, ¥ is a given real value and K is the nonlinear
Volterra operator of the form

K(u(x,t) = [ a(t-s)g(su(xs)) ds.

The study of some special types of the problem (1)-(4) is motivated by the works of Merazga and
Bouziani (2003, 2005, and 2007). Recently, the existence and uniqueness of the solution of this
problem with » =0 were discussed in Guezane-Lakouda et al. (2010), and Dabas and Bahuguna
(2009).

As we know, the He’s variational iteration method (VIM) see He (1997, 1998, 1999, 2000),
Mohyud-Din (2009), Abbasbandy (2007) is a powerful device for solving differential equations.
This method have been applied successfully to solve many problems of various fields of science
and engineering see Tatari and Dehghan (2007) and references therein. In Dehghan and
Saadatmandi (2009), authors applied the VIM to solve wave equation with non-local condition.
Recently, Salkuyeh and Roohani in Salkuyeh and Roohani (2010) used the VIM to solve
telegraph equation with boundary integral condition. In this paper, we use the VIM to solve
problem (1)-(4) and our emphasis is on verifying the convergence of the proposed method.
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2. A Brief Description of the Variational Iteration Method
Consider the following differential equation
Lu(t) + Nu(t) =g(t),

where L is a linear operator, N is a nonlinear operator and g(t) is an inhomogeneous term. In the
variational iteration method, a correctional functional as

U, () =u,(t) + I;ﬂ(Lum(s) +NU,(s)—g(s))ds, m=012,...,

is made, where A is a general Lagrangian multiplier see Inokuti et al.(1978) which can be
identified optimally via the variational theory. Obviously the successive approximations

uj, j=0,1,..., can be computed by determining A. Here, the function Um is a restricted

variation which means oU,, =0.

3. Assumptions and Reformulation of the Problem

In this section we firstly, give some basic definitions and assumptions. Throughout this paper,

we let L? (€2) be the space of square-integrable real functions defined from Q into R with the
corresponding norm.

| uf = Julda uel?@)

And also for analysis, the problem (1)-(4) we assume the following conditions:

(C1) We assume that a(t) is a real-valued functions defined on [0,T] and a(t) € L*(0,T).

(C2) Let f(x,t)is sufficiently smooth to produce a smooth classical solutionu .

(C3) We mention that the function r(x) satisfy the following compatibility conditions
Guezane-Lakouda et al. (2010)

r'(0) = a(0), I;r(x)dx: E(0).

(C4) a(t)el?(0,T) andalso E(t) e L>(0,T).
(C5) Finally, we assume that g(t,u(X,t)) satisfy a Lipschitz condition uniformly with respect
to its second argument:

Published by Digital Commons @PVAMU, 2010
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| gtu)y—gt,v) |, <L u=v|,, V(tu),(tv)e(OT)xL(Q),

where L is a constant independent of t.

For the sake of simplicity, we transform problem (1)-(4) with inhomogeneous conditions (3) and
(4) to an equivalent one with homogenous conditions. To do so, we use the transformation of
Dehghan and Saadatmandi (2009)

v(Xx,t) =u(x,t) — z(x,t), (x,t) eQ2=(0,1)x (0, T],
where

zZ(x,t) =a(t)(x — IE) + @

In this case, by a simple manipulation, the problem is transformed to

2
iv(x,t)— 0

V(X )+ yv(x,t) = F(x,1), (x,t) e Q=(0,1)x(0,T], (5)
ot 0 X

with the initial condition

v(x,0)=r(x), 0<x<I, (6)
the Neumann condition

v,(0,t)=0, O<t<T. )
And the integral (non-local) condition

I;v(x,t)dx:o, 0<t<T, ©)
where

_ 0

F(x,t)=K((v+2)(x,t)) + f(x,t) - az(x,t) — 7 Z(x,1),

r(x)=r(x)—z(x,0).

https://digitalcommons.pvamu.edu/aam/vol5/iss3/2
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As we observe, the Neumann and integral conditions are now homogeneous. Hence, instead of
looking foru(x,t) we simply look forv(x,t), after computingv(x,t), the solution of problem (1)-

(4) will be directly obtained by the relationu(x,t) = v(x,t) + z(x,t) .

4. Convergence of the VIM for the Equation

In this section, the application of the VIM is discussed for solving problem (5)-(8). According to
the VIM, we consider the correction functional in t direction for equation (5) in the following
form:

Vit 060) = (X [,V (%5) + 7 (%) = F(U (x D) s

where

2

IE(Vm (x,9)) = %vm (x,8)+ f(x,9) —% z(x,8) —rz(x,S)
+[[a(s = )& Va (6. &) + 2(x, O A&,

so, Ms) being the Lagrange multipliers and IE[Vm (X,8)] being the restricted variation,
ie.,o0 IE[Vm (X,8)]=0. The variation of above equation is then

SVt (X, 1) = 8V, (X, 1) + 8 j;z(s)(%vm (X,8) + 7V, (%,S) — F (v, (X,5))) ds.

By using integration by parts and constructing the correction functional
SV (X, 1) = SV, (X,t) + A(8) 5V, (X,9) |y
=8 [ X5 (6,8) = A(5) 7V (X,5) + A(8) FIvy (s
= (L A(9)]o) 8V (1) = 8] (2(5) = A(8) 1)V, (x,9)
+A(s)F[v_ (x,s)]ds
the stationary conditions would be as follows

1+ A(8)|s4=0,
A'(s) =y A(s)=0.

Published by Digital Commons @PVAMU, 2010
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Thus, we have A(S)=—-e”C™ and the following iteration formula for computing Vv, (X,1)
may be obtained

Vs (3, ) =V (1) = [ 7 (%vm(x, $)+ 7V (X, 8) = F (v, (%, 5))) ds. ©)

Now, we show that the sequence V., (X,t) defined by (9) with suitable initial approximation
converges to the solution of (5). To do this, we state and prove the following theorem.

Theorem 1.

Let Q=[0,1]x[0,TJand v(x,t) € C*(Q2) be the exact solution of (5) and V. (X,t) € C*(Q)

be the obtained solutions of the sequence defined by (9) with V,(X,t)=r(X). If
0 _
En(X1) =V, (X,t) = Vv(x,t) and | WEm(X’t)HZSH E,(Xt)|,, then the functional

sequence defined by (9) converges to v(x,t).

Proof: We first mention that the initial approximation V,(X,t) satisfies equations (6)-(8). Since
v(x,t) is the exact solution of (9), it is obvious that

v(x,t) = v(x,t) — J';e”s’” (% V(X,S) + 7 V(X, S) — F(V(X, 5))) ds. (10)

Now from (9), (10) and after some simplifications, we get

2

E s (X0 = B ()= [1€7 (B (0 9) 7 B (1)

— K[v(x,s) + z(x,s)] + K[v,, (X, s) + z(X,s)]) ds.

E,(x,5)

By using integration by parts, we conclude that

2
Em+1(X't) = Em (x,t) - [ey(&t) Em (X, S)‘E) + J'IEV(S*Y) (_8_2 Em (X,8)
0 oX

— K[v(x,s) + z(x,8)] + K[v,, (X,S) + z(x,s)]) ds].

Obviously E,(x,0)=0, m=0,1,.... Hence,

https://digitalcommons.pvamu.edu/aam/vol5/iss3/2
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t ~ 82
Ena(Xt)=[ &7 (5 Em(x:8) + KIV(x,8) + 2x,5)] = KV, (%.8) + 2(x,5)]) s
Taking 2-norm of both sides of the latter equation gives
Y ar(s-d 0°
| a0z <[] €€ 5 Entx9)],

+[ K[v(x,8)+2(x,8)]- K[V, (x,8) + 2(x,5)],) ds.

2
Now from the assumption | ;—2 E. (X,t)H <[ En(X,1)||, , we obtain
X

|E, . (D), < j ;Heﬂw |, [E. (%, )], + [ KIV(X,S) + (%, $)] - K[V, (X, 5) + 2(X,5)]| ,]ds.

It is easy to see that from S <t <T , we obtain

[ &6, <l 7oVlz gl 7115l <ol At g2 1T

and, also from assumption we have:

[KIv(x,8) + 2(x,8)] = Kv (%,8) + 2(x,)]; < [ la(s = )| 9(&,v + 2) - 9(£.v,, + )], 0

S
<[ las= 9|, LIE, (x|, d&
Therefore, it follows from two above relations that

t
| EnaCxtlo <e® 7T [l Enx,s)] +LT el al) T o EnxS)1ds

So, we have:

t t
| Epai(X,t)]5 < Ml_[OH En(X,8)[,ds+M, O(X,rf)g[-loa,.l)](x[o,s]H E.(x,&)|,ds,

where M, —e2 717 and M, =(LT max(| a(t)Hz))ez‘ /1T Also, we assume
te(0,T)

Published by Digital Commons @PVAMU, 2010
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M =M, + M,. Now, we proceed as following

t t
| Ex(x,1)[, < M1IO|| Eo(X,9)[, ds+ M, J'O(le)gggﬁ](x[oﬁ]|| Eo(x,&)|, ds

t t
<M, (Xm5?6><§|| Eo(x,s)||2_[0 ds+ M, (ﬂc’;\é(ﬁ” Eo(x,s)||2J'0 ds

=M max | E(xs)t,

| £, <M, [ Exx,5)], ds+ M, [ max | E,(x,&)], ds

0 (x,£)€[0,114{0.5]

t
<M;M| max:
0(x,5)eQ

Eo(x,5)|, sds+ sz't max (M max|| E,(x,9)|, &) ds

0 (x,&)e[0,11x[0,s] (x,5)eQ)

t2
=M? (n1a>g|| Eo(x,s)||25,

X,5)eQ)

: t t
| En(x O]z <My Ena(xs)ods+ M, [ max || By y(8)], ds

S m-1

(m-21)! °

< MM max | Eq(x,5)]

0(x,5)eQ

t

m-1
+sz max  (M™* max | Ey(x,9)|, ¢ )ds

0 (x,&)e[0, 0,5] (,5)eQ (m-1)!
(Mt)"
:(ﬂ%” Eo (o)== —
Now, we have
(Mt)" (MT)™
(52"3‘2‘5” Bo(x:9)]2 m! S(L“‘S%H Eo(x:9)2 m! —0

as M —» 00, and this completes the proof.

5. Numerical Examples

19

In this section, we present some examples to show the efficiency of the proposed method for

solving problem (1)-(4). All of the computations have done by the Maple software.

Example 1. For the first example we consider

https://digitalcommons.pvamu.edu/aam/vol5/iss3/2
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2

aatu(x,t)—;xzu(x,t)—z u(x,t) =J';(t—s) u(x,s) =3 ds+ f(xt),

where (x,t) e 2=(0,1) x (0,1), and
f(x,t) = e' cos(z X)7? —tcos(z X) — X —t X —cos(z X) —ztz,
r(x) = cos(z Xx) + X, 0<x<],

alt)=e', E(t):ie‘, 0<t<l,
For this problem, we obtain

z(x,t) = xe',
r(x) = cos(z X).

Proceeding as before, we can select V,(X,t) =T(X). Using this selection into (9) after some

simplifications and by using the Taylor expansion we obtain the following successive
approximations.

v, (X,t) = cos(z X)(L+t +O(t?)),

v, (x,t) = cos(z x)(L+t + t2—2| +0(t%)),

2 3
v, (%,t) = Cos(z X)(L+t +t2—|+;—l+0(t4)).

Computing the other terms, for n > 0 we have

t2 t3 tn
vV, (X,t) =cos(Z X)L+t + — + — +---+— + O(t"™)).
21 3 n!

Thus, we get

v(x,t) = rI]iLnoovn (x,t) =cos(z x)e'.

Now we have u(x,t) =Vv(x,t) + z(x,t) =e' (cos(x X) + X) which is the exact solution of the
problem.

Example 2. For the second example we consider

Published by Digital Commons @PVAMU, 2010
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2

aatu(x,t)—aaxzu(x,t)—;r2 u(x,t) =J1§(t—s) u(x,s) -4 ds+ f(x,t),

where (x,t) e 2=(0,1) x (0,1), and
f (x,t) = tsin(z x) —sin( 7 x) — 2t?,
r(x) =sin(z x), 0<x<1],

at)=re™, E(t)=ge_t, O<t<l
V4

For this problem, we obtain

z(x,t) =e' (7 (x — l) + g),
A

r(x) =sin(z x) — z(x —E) —E.
2

Proceeding as before, we can selectV, (X,t) =F(X). Using this selection into (9) after some

simplifications and by using the Taylor expansion we obtain the following successive
approximations.

v, (X, t) = (sin(z x) — (X —1) —E)(l—t +0(t?)),
2"

V, (X,t) = (sin(z Xx) —ﬂ(X—l) —3)(1—t +E+ o(t?)),
2" 2!

Vy(x,t) = (sin(;rx)—ﬂ(x—%)—%)(1—t+%—;—j+0(t2)).

Computing the other terms, for n > 0 we have

V, (X,t) = (sin( 7 X) —ﬂ(X—%) —E)(l—t +ﬁ_ﬁ+...+ (-)"t"
T

n+1
21 3 n! +OUT):

Thus, we get

v(x,t) = lim v, (x,t) = (sin( 7 X) — 7 (X — %) - E)e‘t.
n—o T

Now, we have u(x,t)=Vv(X,t)+z(x,t) =e "sin(z X) which is tha exact solution of the
problem.

https://digitalcommons.pvamu.edu/aam/vol5/iss3/2
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6. Conclusions

In this paper, we applied the well-know He’s variational iteration method for solve the integro-
differential parabolic problem with an integral condition. We also shown that under some
conditions the VIM is convergent for this problem. Numerical results presented in this paper
show that the proposed method is very effective.
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