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Abstract 
  

In this paper, the variational iteration method is applied for finding the solution of an Integro-

differential parabolic problem with integral conditions. Convergence of the proposed method is 

also discussed. Finally, some numerical examples are given to show the effectiveness of the 

proposed method. 

 

Keywords:  Integro-differential equations, non-local condition, variational iteration method, 

convergence. 
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1. Introduction 
 

In modeling of many physical systems in various fields of physics, ecology, biology, etc, an 

integral term over the spatial  domain is  appeared in some part or in the whole boundary see 

Bouziani (2002), Carlson (1972), Cushman et al. (1993, 1995), Day (1983), Kavalloris and  

Tzanetis (2002), Renardy et al. (1987), Samarskii (1980). Such boundary value problems are 

known as non-local problems.  The integral term may appear in the boundary conditions.  Non-

local conditions appear when values of the function on the boundary are connected to values 

inside the domain.  In recent years, several numerical techniques have been presented to solve 
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various types of non-local boundary value problems see Beilin (2001), Cannon and Lin (1990), 

and Dehghan et al. (2003, 2006, 2007, and 2009).  

 

In this paper we consider the following parabolic integro-differential equation with integral 

conditions, 

 
2

2
( , ) ( , ) ( , ) ( ( , )) ( , ),u x t u x t u x t K u x t f x t

t x


 
   

 

                   

( , ) (0, ) (0, ], (1)x t l T   

 

with the initial condition  

                             

)2(,0),()0,( lxxrxu 

 

the Neumann condition  

                              

)3(,0),(),0( Ttttux 

  

and the integral (non-local) condition 

                            

)4(,0),(),(
0 
l

TttEdxtxu

 

 

where ,, rf  and E   are given functions,   is a given real value and K  is the nonlinear 

Volterra operator of the form 

 

 
t

dssxusgstatxuK
0

.)),(,()()),((  

 

The study of some special types of the problem (1)-(4) is motivated by the works of Merazga and 

Bouziani (2003, 2005, and 2007). Recently, the existence and uniqueness of the solution of this 

problem with 0  were discussed in Guezane-Lakouda et al. (2010), and Dabas and  Bahuguna 

(2009). 

 

As we know, the He’s variational iteration method (VIM) see He (1997, 1998, 1999, 2000), 

Mohyud-Din (2009), Abbasbandy (2007) is a powerful device for solving differential equations. 

This method have been applied successfully to solve many problems of various fields of science 

and engineering see Tatari and Dehghan (2007) and references therein. In Dehghan and 

Saadatmandi (2009), authors applied the VIM to solve wave equation with non-local condition. 

Recently, Salkuyeh and Roohani in Salkuyeh and Roohani (2010) used the VIM to solve 

telegraph equation with boundary integral condition.  In this paper, we use the VIM to solve 

problem (1)-(4) and our emphasis is on verifying the convergence of the proposed method. 
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2. A Brief Description of the Variational Iteration Method 
 

Consider the following differential equation 

 

),()()( tgtuNtuL   

 

where L is a linear operator,  N is a nonlinear operator and g(t) is an inhomogeneous term. In the 

variational iteration method, a correctional functional as 

 

 

t

mmmm mdssgsuNsuLtutu
0

1 ,,2,1,0,))()(~)(()()(   

 

is made, where λ is a general Lagrangian multiplier see Inokuti et al.(1978)  which can be 

identified optimally via the variational theory.  Obviously the successive approximations 

,,1,0, ju j  can be computed by determining λ. Here, the function mu~  is a restricted 

variation which means 0~ mu . 

 

 

3. Assumptions and Reformulation of the Problem 
 

In this section we firstly, give some basic definitions and assumptions. Throughout this paper, 

we let )(2 L  be the space of square-integrable real functions defined from Ω into R with the 

corresponding norm. 

 

  ).(, 222
Luduu  

 

And also for analysis, the problem (1)-(4) we assume the following conditions: 

 (C1)  We assume that )(ta  is a real-valued functions defined on ],0[ T  and ).,0()( 2 TLta    

 (C2)  Let ),( txf is sufficiently smooth to produce a smooth classical solutionu . 

 (C3)  We mention that the function )(xr  satisfy the following compatibility conditions 

Guezane-Lakouda et al. (2010) 

 

   
 

l

Edxxrr
0

).0()(),0()0(   

 

(C4)   ),0()( 2 TLt   and also ),0()( 2 TLtE  . 

(C5)   Finally, we assume that )),(,( txutg  satisfy a Lipschitz condition uniformly with respect 

to its second argument: 
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)),(),0((),(),,(,),(),( 2

22
 LTvtutvuLvtgutg  

 

where L  is a constant independent of t . 

 

For the sake of simplicity, we transform problem (1)-(4) with inhomogeneous conditions (3) and 

(4) to an equivalent one with homogenous conditions. To do so, we use the transformation of 

Dehghan and Saadatmandi (2009) 

 

],,0(),0(),(),,(),(),( Tltxtxztxutxv   

 

where 

 

.
)(

)
2

)((),(
l

tEl
xttxz   

 

In this case, by a simple manipulation, the problem is transformed to 

 

)5(],,0(),0(),(),,(),(),(),(
2

2

TltxtxFtxvtxv
x

txv
t












 

with the initial condition  

                             

)6(,0),()0,( lxxrxv 

 

 

the Neumann condition  

 

 .0,0),0( Tttvx 
              (7)

 

  

And the integral (non-local) condition 

                            

)8(,0,0),(
0 
l

Ttdxtxv

 

where 

 

).0,()()(

),,(),(),()),)(((),(

xzxrxr

txztxz
t

txftxzvKtxF







 
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As we observe, the Neumann and integral conditions are now homogeneous. Hence, instead of 

looking for ),( txu  we simply look for ),( txv , after computing ),( txv , the solution of problem (1)-

(4) will be directly obtained by the relation ),(),(),( txztxvtxu  . 

 

 

4. Convergence of the VIM for the Equation 
 

In this section, the application of the VIM is discussed for solving problem (5)-(8). According to 

the VIM, we consider the correction functional in t direction for equation (5) in the following 

form: 

 

 





t

mmmmm dssxvFsxvsxv
s

stxvtxv
0

1 ,))),((
~

),(),()((),(),(   

 

where  

 

 












s

m

mm

dxzxvgsa

sxzsxz
s

sxfsxv
x

sxvF

0

2

2

,)]),(),([,()(

),(),(),(),()),((
~




 

 

so, λ(s) being the Lagrange multipliers and )],([
~

sxvF m  being the restricted variation, 

i.e., 0)],([
~

sxvF m . The variation of above equation is then 

 

 





t

mmmmm dssxvFsxvsxv
s

stxvtxv
0

1 .))),((
~

),(),()((),(),(   

 

By using integration by parts and constructing the correction functional 

 

 

1

0

0

( , ) ( , ) ( ) ( , )  

 ( ( ) ( , ) ( ) ( , ) ( ) [ ( , )])

(1 ( ) ) ( , ) ( ( ) ( ) ) ( , )

 + ( ) [ ( , )]

m m m s t

t

m m m

t

s t m m

m

v x t v x t s v x s

s v x s s v x s s F v x s ds

s v x t s s v x s

s F v x s ds

   

    

     



 



 

  

   



  

 

the stationary conditions would be as follows 

 

.0)()(

,0)(1



 

ss

s ts




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Thus, we have 
)()( tses    and the following iteration formula for computing ),( txvm  

may be obtained 

 

 



 



t

mmm

ts

mm dssxvFsxvsxv
s

etxvtxv
0

)(

1 )9(.))),((
~

),(),((),(),( 

 

Now, we show that the sequence ),( txvm  defined by (9) with suitable initial approximation 

converges to the solution of (5). To do this, we state and prove the following theorem. 

 

 

Theorem 1.   

 

Let ],0[],0[ Tl  and )(),( 2 Ctxv be the exact solution of (5) and )(),( 2 Ctxvm  
be the obtained solutions of the sequence defined by (9) with ).(),(0 xrtxv   If 

),(),(),( txvtxvtxE mm   and 222

2

),(),( txEtxE
x

mm 



, then the functional 

sequence defined by (9) converges to ),( txv . 

 

Proof:  We first mention that the initial approximation ),(0 txv  satisfies equations (6)-(8). Since 

v(x,t) is the exact solution of (9), it is obvious that 

 

 



 

t
ts dssxvFsxvsxv

s
etxvtxv

0

)( )10(.))),((
~

),(),((),(),(   

 

Now from (9), (10) and after some simplifications, we get 

 

.)]),(),([)],(),([

),(),(),((),(),(
0 2

2
)(

1

dssxzsxvKsxzsxvK

sxE
x

sxEsxE
s

etxEtxE

m

t

mmm

ts

mm











 



 

 

By using integration by parts, we conclude that 

 

].)]),(),([)],(),([

),((),([),(),(
0 2

2
)(

0

)(

1

dssxzsxvKsxzsxvK

sxE
x

esxEetxEtxE

m

t

m

tst

m

ts

mm






 







 

 

Obviously .,1,0,0)0,(  mxEm Hence, 
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.)]),(),([)],(),([),((),(
0 2

2
)(

1 dssxzsxvKsxzsxvKsxE
x

etxE m

t

m
ts

m 



 




  

 

Taking 2-norm of both sides of the latter equation gives 

 

.))],(),([)],(),([

),((),(

2

0
22

2

2
)(

21

dssxzsxvKsxzsxvK

sxE
x

etxE

m

t

m
ts

m






 






 

 

Now from the assumption 222

2

),(),( txEtxE
x

mm 



, we obtain 

 

( )

1 2 2 2 2
0

( , ) [ ( , ) [ ( , ) ( , )] [ ( , ) ( , )] ] .
t

s t

m m mE x t e E x s K v x s z x s K v x s z x s ds 

     
 

It is easy to see that from Tts  , we obtain 

 

 

Tttststs eeeee
 22)(

2
)( 22 


 

 

and, also from assumption we have: 

 

2 2 2
0

2 2
0

[ ( , ) ( , )] [ ( , ) ( , )] ( ) ( , ) ( , )

( ) ( , ) .

s

m m

s

m

K v x s z x s K v x s z x s a s g v z g v z d

a s L E x d
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  

       

 




 

Therefore, it follows from two above relations that 

 

.]),((max))((max),([),( 2
],0[],0[),(

2
),0(0

2

2

21 dsxEtaLTsxEetxE m
slxTt

t

m

T

m 





  

 

So, we have: 

 

 


 
t t

m
slx

mm dsxEMdssxEMtxE
0 0

2
],0[],0[),(

22121 ,),(max),(),( 


 

 

where 
T

eM
2

1   and  
T

Tt

etaTLM
2

2
),0(

2 )))((max(


 . Also, we assume  
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21 MMM  . Now, we proceed as following 
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Now, we have 
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!

)(
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),(
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as m  

 

 

5. Numerical Examples 
 

In this section, we present some examples to show the efficiency  of the proposed method for 

solving problem (1)-(4). All of the computations have done by the Maple software. 

 

Example 1. For the first example we consider 
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t
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where )1,0()1,0(),( tx , and 

.10,
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)(,)(

,10,)cos()(
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2
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)cos()cos()cos(),( 22
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tetEet

xxxxr
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For this problem, we obtain 

 

).cos()(

,),(

xxr

extxz t




 

 

Proceeding as before, we can select )(),(0 xrtxv  . Using this selection into (9) after some 

simplifications and by using the Taylor expansion we obtain the following successive 

approximations. 

 

)).(
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32
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Computing the other terms, for n > 0 we have 

 

)).(
!!3!2

1)(cos(),( 1
32

 n
n

n tO
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Thus, we get 

 

.)cos(),(lim),( t
n

n
extxvtxv 


 

 

Now we have ))(cos(),(),(),( xxetxztxvtxu t    which is the exact solution of the 

problem. 

 

Example 2. For the second example we consider 
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For this problem, we obtain   
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Proceeding as before, we can select )(),(0 xrtxv  .  Using this selection into (9) after some 

simplifications  and by using the Taylor  expansion we obtain the following successive 

approximations.  
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Computing the other terms, for n > 0 we have 
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Thus, we get 
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Now, we have )sin(),(),(),( xetxztxvtxu t   which is tha   exact solution of the 

problem. 
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6. Conclusions 

 

In this paper, we applied the well-know He’s variational  iteration method for solve the integro-

differential  parabolic problem with an integral condition. We also shown that under some 

conditions the VIM is convergent for this problem. Numerical results presented in this paper 

show that the proposed method is very effective. 
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