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Abstract 
 

A Similarity group theoretical technique is used to transform the governing nonlinear partial 

differential equations of two dimensional MHD boundary layer flow of Sisko fluid into 

nonlinear ordinary differential equations. Then the resulting third order nonlinear ordinary 

differential equation with corresponding boundary conditions is linearised by Quasi 

linearization method. Numerical solution of the linearised third order ODE is obtained using 

Finite Difference method (FDM). Graphical presentation of the solution is given.  

  

Keywords: Finite difference method; Group theory; MATLAB; MHD flow; Moving plate; 

Quasi linearization; Sisko fluid model 

MSC 2010 No: 65L12, 76A05, 76D05, 76D10, 76W05 

 

 

 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 
ISSN: 1932-9466 

 
Vol. 14, Issue 1 (June  2019),  pp. 284 - 295 

Applications and Applied 
Mathematics: 

An International Journal 
(AAM) 

1

Patel et al.: On a Moving Surface in MHD Flow of Sisko Fluid

Published by Digital Commons @PVAMU, 2019

mailto:manishapramitpatel@gmail.com
mailto:jvpatel25@gmail.com
mailto:mgtimol@yahoo.com
http://pvamu.edu/aam


 AAM: Intern. J., Vol. 14, Issue 1 (June 2019) 285 

 
 

Nomenclature: 
  

u , v   - Velocity components in X, Y directions respectively 

U - Main stream velocities in X direction 

 - Stress component  

 - Strain rate component 

a, b ,n- Flow behaviour indices 

G -Group notation 

  - Similarity  variable 

, gf -Similarity functions 

1 5, ,...,A   - Real constants/parameters 

 - Electrical conductivity,  

B0 -Imposed magnetic induction. 

N-Number of subintervals 

h- Width of intervals 

 

 

1. Introduction 
 

For the past years, the problem of the classical boundary layer over a surface has been studied 

in two different types. First is a boundary layer flow past a stationary surface, while the other 

type is the problem of a boundary layer flow over a solid surface continuously moving in a 

fluid at rest such as hot rolling, metal forming and continuous casting as discussed by Altan et 

al. (1979), Fisher et al. (1976) and Tadmor et al. (1970). Number of engineering processes 

contains boundary layer conduct on a moving surface is an important type of flow that occurs. 

Boundary layer flows of a viscous incompressible fluid past a surface moving with a constant 

velocity in a Newtonian fluid is analytically studied by Sakiadis (1961) and experimentally 

applied by Tsou et al. (1967). Takhar et al. (1987) have obtained MHD asymmetric flow over 

a semi-infinite moving surface and numerical solution. Erickson et al. (1965) studied the 

cooling of a moving continuous flat sheet. Vajravelu et al. (1997) presented the analysis of heat 

and mass transfer characteristics in an electrically conducting fluid over a linearly stretching 

sheet with variable wall temperature. Acrivos et al. (1960) and Pakdemirli (1994) derived the 

boundary layer equations of power-fluids. Chiam (1993) derived MHD boundary layer flow 

over continuously flat plate. Kumari et al. (2001) presented the problem of MHD boundary 

layer flow of a non-Newtonian fluid over a continuously moving surface with a parallel free 

stream while the non-similar solution is obtained by Jeng et al. (1986).  

 

Jayshri et al. (2016) have presented the similarity solution of Magneto hydro dynamic flow of 

Sisko fluid in semi-infinite flat plate. Akber (2014) elaborated the peristaltic Sisko fluid with 

nano particles over asymmetric channel. She recommended that material parameter inclines 

pressure in peristaltic pumping regions; on the other hand it decays pressure in augmented 

pumping region. Moallemi et al. (2011) explored the physical properties of Sisko fluid through 

pipe and calculated the solution with He’s homotopy perturbation method. Mailk et al. (2015) 

and Munir et al. (2015) discussed the convective heat transfer of Sisko fluid. The influence of 

applied magnetic field on Sisko fluid over stretching cylinder was discussed by Mailk et al. 

(2016). They have examined the flow characteristics of MHD Sisko fluid over stretching 

cylinder under the impact of viscous dissipation. Recently, Manjunatha et al. (2015), Si et al. 

(2016) and Malik et al. (2016) investigated the fluid flows assuming varying thermal 

conductivity. 
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Recently, the numerical analysis of the time dependent free convective flow of Sisko fluid on 

flat plate moving through a binary mixture has been obtained by Olanrewaju et al. (2013). Also, 

Siddiqui et al. (2013) have examined the drainage of Sisko fluid film down a vertical belt. 

Asghar et al. (2014) have presented the equations for the peristaltic flow of MHD Sisko fluid 

in a channel. 

 

 Mathematically, Sisko Model can be written as (Jayshri et al. (2016)),    

 

 
 1

1
: ,

2

n

a b

 
 

      
    

 

where,   and    are the stress tensor and the rate of deformation tensor respectively. a, b and 

n are constants defined differently for different fluids. 

 

Ordinary linear differential equations are simple to solve comparing to nonlinear equations. 

The quasi linearization method (QLM) is the best tool to convert nonlinear equations to linear. 

The quasi linearization method (QLM) was first introduced by Bellman et al. (1959, 1965) as 

a generalization of the Newton-Raphson method to solve individual or systems of nonlinear 

ODE and PDE. 

 

One of the approximations of a Taylor series expansion is finite difference method (FDM). A 

finite difference method is applied on ODE and PDE both. In which each derivative is replaced 

with an approximate difference formula. The computational domain is usually divided into 

small sub cells and the solution will be obtained at each nodal point. FDM is easy to understand 

when the physical grid is given in the Cartesian form. Application of FDM on higher order 

ODE is very rare in the literature. Recently, Carlos et al. (2011) has presented a numerical 

solution of the Falkner-Skan equation using high-order and high-order-compact FDM. After 

that an interesting work has been carried out by Noor et al. (2012). They introduced FDM in 

two steps for finding approximate solutions of system of 3rd order boundary value problems 

associated with odd-order obstacle problems. 

 

In the present paper, an effective group theoretical technique is applied to transform the given 

nonlinear partial differential equations of steady two dimensional MHD boundary layer flow 

of non-Newtonian fluid. Sisko fluid model is considered for the stress-strain relationship. The 

obtained third order nonlinear ordinary differential equation with suitable boundary conditions 

is linearised by Quasi linearization method. Finite Difference method with the MATLAB 

coding is then applied for the numerical and graphical presentation of the solution. 

 

2. Fundamental of Finite Difference Method (FDM) 
 

The finite difference method for the solution of a two –point boundary value problem consists 

in replacing the derivatives occurring in the differential equation (and in the boundary condition 

as well) by means of their finite difference approximations and then solving the resulting 

system of equations by standard procedure. 

 

A general form of the third order boundary value problems (BVPs) on the interval I=[x0, xn] 

as follows: 
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'''( ) [ , ( ), '( ), ''( )], I.y x F x y x y x y x x                                                               (2.1)
 

 

 

Subject to the boundary conditions: 

 

0 0( ) , '( ) , '( ) , I.ny x y x y x x     
                                                  (2.2)

 

 

The prime denotes the differentiation with respect to x; α, β and γ are given constants. 

 

To solve boundary value problem, we divide the range [x0, xn] into N equal subintervals of 

width h, so that  

 

 

0 , 1,2,3, , .ix x ih i N  

 The corresponding values of y at each point are obtained by, 

0( ) ( ) , 1,2,3, , .i iy x y y x ih i N   

 
Using Taylor series expansion second order central difference formula 

1 1'( ) ( ).
2

i i
i

y y
y x O h

h

 
                                                                                             (2.3)                                                                                       

21 1

2

2
''( ) ( ).i i i

i

y y y
y x O h

h

  
                                                                               (2.4) 

32 1 1 2

3

2 2
'''( ) ( ), 1,2,3, , N.

2

i i i i
i

y y y y
y x O h i

h

     
                 (2.5)    

Putting the above central difference formulas (equations (2.3) to (2.5)) in equation (2.1), the 

equation (2.1) reduces into the system of linear equations. This is further solved by the method 

of Finite difference along with boundary conditions given by equation (2.2). The increase in 

the number of sub-interval will give the solution of desired accuracy. 

3.  Governing Equations 
 

The flow considered here is parallel to X-direction and Y-axis is normal to it. The governing 

equations of two dimensional MHD boundary layer flow of Sisko fluid past a semi-infinite 

moving plate are (Jayshri et al. (2016)): 

 

0.
u v

x y

 
 

 
                                                                                                                 (3.1)

1

2

0 (U u).

n

u u dU u u
u v U a b B

x y dx y y y


        
        

         

                                     (3.2) 

Boundary conditions:   

0 ; 1, 1.y u v                                                                                                           (3.3) 

; ( ).y u U x                                                                                                          (3.4)  
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By taking one parameter scaling Group Transformation to transform the co-ordinates 

(x,y,u,v,U) into the co-ordinates ( Uvuyx ,,,, ) as:  

 

1y A y


, 2x A x


, 3u A u


, 4v A v


, 5 .U A U


                                               (3.5) 

 

Introducing equation (3.5) in equations (3.1)-(3.2) and above set of equations remain invariant 

provided we get relation between  ’s Jayshri et al. (2016). 

 

3 2 4 1 .       

3 2 4 3 1 5 2 3 1 5 32 2 ( 1) .n n                    
 

 

Solving above relations for  ’s we get: 

 

1 2 3 4 53 3 3 3 .          

 

2

1

1
Put   .

3





   

3 4 5 .      
 

 

Following Seshadri et al. (1985) one can derive the absolute invariants, so called similarity 

independent variable  and similarity dependent variables ( ) ,f  ( )g   and ( )h  as follows: 

 

 
.3

1

yx
x

y 




                                                                                                             (3.6) 

1

3

' ( ) 
u

f

x

  .                                                                                                                 (3.7)                           

1

3

( )
v

g

x




  .                                                                                                                 (3.8)

11

3

( )
U

h c

x

    .                                                                                                           (3.9)       

 

Using equations (3.6)-(3.9), equation (3.1) and equation (3.2) transformed into the following: 

 

 ' ( ) ( ) 3 '( ) 0.f f g     
                                                                                

(3.10) 

 

 
1

12 2' ( ) ( ) ( ) 3 ( ) ( ) 3 ( ) 3 ( ) ( )
n

f f f g f c af nb f f        


             

                                                                                       
2

0 13 ( ( )).B c f                   (3.11) 

 

Now, integrating ‘g’ from equation (3.10) to obtain g (i.e.,  
1

( ) 2 ( )
3

g f f    )  and 

substituting the value of  g in equation (3.11) so that ordinary differential equation with two 

variables (f and g), will be reduced to single variable f , 
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 
12 2

1' ( ) 2 ( ) ''( ) 3 '''( ) 3 ''( ) '''( )
n

f f f c af nb f f     


   
 

                                                                                         
2

0 13 ( '( )) 0.B c f            (3.12) 

 

With the boundary conditions equation (3.3) and equation (3.4): 

 

      0 1,  0 1,  01 .f f f                                                                                   (3.13) 

  
2

0 0 1Put B M and C 1.  
 

 

 
12' ( ) 2 ( ) ''( ) 3 '''( ) 3 ''( ) '''( )

n
f f f af nb f f     


  

 03 (1 '( )) 1 0.M f    
 
              (3.14) 

 

Equation (3.14) is a nonlinear ordinary differential equation. Applying quasi linearization 

method to convert equation (3.14) into linear equation: 

 

 
12

0' ( ) 2 ( ) ''( ) 3 '''( ) 3 ''( ) '''( ) 3 (1 '( )) 1
n

n n n n n n nf f f af nb f f M f      


     

 

         1 1 0 12 ''( )( ( ) ( )) 2 '( )( '( ) '( )) 3 ( '( ) '( ))n n n n n n n nf f f f f f M f f              

 
                  

 
2

1 12 ( )( ''( ) ''( )) 3 '''( ) 3 '''( ) 3 ( 1) ''( )
n

n n n n n nf f f af af n n b f     


      

 
                           

 
1

1 1 1 1( ''( ) ''( )) '''( ) 3 ''( ) ( '''( ) '''( )) 0.
n

n n n n n nf f f nb f f f     


        

 

Simplifying above equation we have, 
 

2

0 1 1 0 1 1' 3 1 2 ''( ) ( ) 2 '( ) '( ) 3 '( ) 2 ( ) ''( )n n n n n n n nf M f f f f M f f f               

   
                      

 
2

1 12 ( ) ''( ) 3 '''( ) 3 ( 1) ''( ) ''( ) '''( )
n

n n n n n nf f af n n b f f f     


    

                             
   

1 1

13 ( 1) ''( ) '''( ) 3 ''( ) '''( ) 0.
n n

n n n nn n b f f nb f f   
 

   
              (3.15) 

 

To fit the curve, consider the solution  

 

 
,2 CBxAxfn 
                                                                                                    (3.16)  

 

with boundary conditions in equation (3.13). We have constants A = -0.4995, B = 1, C = 1. 

So, equation (3.16) can be written as,  

 
20.4995 1.nf x x                                                                                                                    (3.17a)                                                                                                                              

  
Hence,  

 

 
,1999.0'  xfn                                                                                                                            

(3.17b) 

,999.0'' nf                                                                                                                                     (3.17c) 

.0''' nf                                                                                                                                                (3.17d)
 

 

Substitute the values of equation (3.17a)-(3.17d) in equation (3.15) 
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1 ' ' ' 2 ' ' '

1 1 0 1[ 3a 3 ( 0.999) ] [0.999 2 2] (2 3 1.9998 )n

n n nnb f x x f M x f

          

   
                                                                                                     1 01.998 3.998 3 .nf M                (3.18)

 
 

Now, Equation (3.18) is linear ordinary differential Equation.  To find the numerical solution 

of the linear ordinary differential Equation, we will apply the Finite difference method. 

Substituting Equation (2.1)-(2.3) in Equation (3.18) at the ith node we have, 

 

  
]234499.1)99.0(66[])99.0(33[ 2

0

221

2

1 hMhhhxhxnbafnba n

i

n  





 

   
2 2 3 1

11.998 ] ( 3.996 8 8 3.996 ) [ 6 6 ( 0.999)n

i ih x f hx hx h h f a nb 

         
 

  

2

1

1

22

0

22 ])99.0(33[]9.12344998.1 



  i

n

i fnbafxhhMhhhxhx

 

                                                                                                  
3

0(3.998 3 )2 .M h                             (3.19) 

 

This gives the system of linear Equations. To solve the system of Equations using MATLAB 

ODE solver, we have divided the interval [0, 1] into 1000 subinterval having length h = 0.001. 

 

Case I.  Non-MHD Sisko Fluid 

 

If we take M0=0 and a=b=0.5 in Equation (3.19), then it will reduced in the case of Non-MHD 

fluid. Then the system of linear Equations (3.19) will reduced in the following Equation (3.20) 

with the same boundary conditions given in Equation (3.13): 

 
1 1 2 2

2[ 1.5 1.5 ( 0.999) ] [3 3 ( 0.999) 1.998 4 4 2n n

in f n hx hx h h 

             
2 2 3 1 2

11.998 ] [ 3.996 8 8 3.996 ] [ 3 3 ( 0.999) 1.998n

i ih x f hx hx h h f n hx

          
2 2 1 3

1 24 4 2 1.998 ] [1.5 1.5 ( 0.999) ] 7.996 .n

i ihx h h h x f n f h

                    (3.20) 

 

Case II. MHD Power-Law Fluid 

 

If we take a=0, b=1, M0   non zero constant  in Equation (3.19) , then it will reduced in the case 

of  MHD Power-Law  fluid. Then the system of linear Equations (3.19) will reduced in the 

following Equation (3.21) with the same boundary conditions given by Equation (3.13): 
 

1 1 2 2 2 2

2 0 1[ 3 ( 0.999) ] [6 ( 0.999) 1.998 4 4 3 2 1.998 ]n n

i in f n hx hx h h M h h x f 

               
2 3 1 2[ 3.996 8 8 3.996 ] [ 6 ( 0.999) 1.998 4 4n

ihx hx h h f n hx hx h              
2 2 2 1 3

0 1 2 03 2 1.998 ] [3n( 0.999) ] [3.998 3 ]2 .n

i ih M h h x f f M h

                      (3.21) 

 

Case III. Non-MHD Power-Law Fluid 

 

If we take a=0, b=1 and Mo = 0 in Equation (3.19), then it will reduced in the case of non-

MHD Power-Law fluid. Then the system of linear Equations (3.19) will reduced in the 

following Equation (3.22) with the same boundary conditions given in Equation (3.13): 

 
1 1 2 2 2

2 1[ 3 ( 0.999) ] [6 n( 0.999) 1.998 4 4 2 1.998 ]n n

i in f hx hx h h h x f 

         

  

     
2 3 1 2[ 3.996 8 8 3.996 ] [ 6 ( 0.999) 1.998 4n

ihx hx h h f n hx hx         
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2 2 1 3

1 24 2 1.998 ] [3n( 0.999) ] 7.996 .n

i ih h h x f f h

                                      (3.22)
 

 

Case IV. MHD Newtonian Fluid 

 

If we take n=1, a=1,b=0 and M0 non zero constant in Equation (3.19) , then it will reduced in 

the case of  MHD Newtonian fluid. Then the system of linear Equations (3.19) will reduced in 

the following Equation (3.23) with the same boundary conditions given in Equation (3.13):  

 
2 2 2 2 2

2 0 13 [6 1.998 4 4 3 2 1.998 ] [ 3.996i if hx hx h h M h h x f hx          

      
                 

3 2 2

0

28 8 3.996 ] [ 6 1.998 4 4 3 2ihx h h f hx hx h hMh                                        

2 3

1 2 01.998 ] 3 [3.998 3 ]2 .i ih x f f M h                                                           (3.23)
 

 

Case V. Non-MHD Newtonian Fluid. 

 

If we take a=1, b=0, n=1and M0=0 in Equation (3.19), then it will reduced in the case of non-

MHD Newtonian fluid. Then the system of linear Equations (3.19) will reduced in the 

following Equation (3.24) with the same boundary conditions given in Equation (3.13): 
 

2 2 2 2

2 13 [6 1.998 4 4 2 1.998 ] [ 3.996 8 8i if hx hx h h h x f hx hx h           

 3 2 2 2 3

1 23.996 ] [ 6 1.998 4 4 2 1.998 ] 3 7.996 .i i ih f hx hx h h h x f f h          
                

                                    

(3.24)

  

4. Results and discussions 
 

Using QLM we obtained the third order linear ODE which is then solved by FDM. If we change 

the values of flow parameter like a, b, Mo, and the flow behaviour index n, the fluid we 

considered is change to Power law and Newtonian. Which is indicated as sub cases from Case 

I to Case V. We solve all sub cases and give graphical presentation of all. Our aim is to apply 

FDM on third-order ODE. Numerical values and graphs can now easily generated.  In Figure 

1, a=b=0.5 and the flow behaviour index n = 0.5 are constants and the magnetic no. Mo is 

varies, 0, 2, 5, 10. In Figure 2, a = b = 0.5 and the magnetic no. Mo=5 are constant and the 

flow behaviour index n is varies, 0.5, 1, 1.5, 2.5. In Figure 3, a=0.5, the magnetic number 

.Mo=10 and the flow behaviour index n=0.5 are constants and constant parameter b varies, 0.5, 

1.5, 2.5, 5. In Figure 4, b = 0.5, the magnetic number. Mo =10 and the flow behaviour index 

n=0.5 are constants and constant parameter a  varies, 0.5, 1.5, 2.5, 5. In Figure 5, a=b=0.5 and 

the magnetic no. Mo = 0 and the flow behaviour index n is varies, 0.1, 0.5, 1, 1.5. In Figure 6, 

a = 0,b = 1 and the magnetic no. Mo=5 is constant and the flow behaviour index n is varies 

n=0.5, 1, 1.5, 2.5. In Figure 7, a = 0, b = 1 and the magnetic no. Mo=0 is constant   and the 

flow behaviour index n is varies n=0.5, 1, 1.5, 2.5. In Figure 8, a = 1, b = 0 and the flow 

behaviour index n is constant n = 1 and the magnetic no. Mo is varies Mo= 2, 5, 10, 15. In 

Figure 9, b=0, the flow behaviour index n is constant n=1 and the magnetic no. Mo =0 the 

constant a is varies a=0.5, 1, 1.5, 2.5. 

 

5. Conclusion 
 

 In the present paper, the governing Equations of motion (partial differential Equations) of the 

laminar MHD boundary layer flow of non-Newtonian fluid are solved numerically using FDM. 

The velocity is decrease uniformly with the increase in η for variable fluid index, Magnetic 
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induction and fluid parameters. Increase in the magnetic number accelerate the fluid. Also for 

the case of Power-law fluid, shear thinning fluid velocity increase more rapidly than that of for 

shear thickening fluids.  
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            Figure 1: Velocity for different M0 

Figure 2: Velocity for different n 

 

 

 

 

 

 

           Figure 3: Velocity for different b 

 

                 Figure 4: Velocity for different a 

 

 

 

         Figure 5: Case-I Velocity for M0=0 

 

Figure 6: Case-II Velocity for MHD Power Law 
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 Figure 7: Case-III Velocity for Power Law (M0=0) 

 

Figure 8: Case-IV Velocity for MHD Newtonian 

   Figure 9: Case-V Velocity for Newtonian (M0=0) 
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