
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 13 Issue 1 Article 32 

6-2018 

The Finite Spectrum of Sturm-Liouville Operator With δ-The Finite Spectrum of Sturm-Liouville Operator With -

Interactions Interactions 

Abdullah Kablan 
Gaziantep University 

Mehmet A. Çetin 
Gaziantep University 

Manaf D. Manafov 
Adıyaman University 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

Recommended Citation Recommended Citation 
Kablan, Abdullah; Çetin, Mehmet A.; and Manafov, Manaf D. (2018). The Finite Spectrum of Sturm-Liouville 
Operator With δ-Interactions, Applications and Applied Mathematics: An International Journal (AAM), Vol. 
13, Iss. 1, Article 32. 
Available at: https://digitalcommons.pvamu.edu/aam/vol13/iss1/32 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol13
https://digitalcommons.pvamu.edu/aam/vol13/iss1
https://digitalcommons.pvamu.edu/aam/vol13/iss1/32
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss1%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol13/iss1/32?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol13%2Fiss1%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 13, Issue 1 (June 2018), pp. 496 – 507

The Finite Spectrum of Sturm-Liouville Operator
With δ-Interactions

1Abdullah Kablan, 2Mehmet Akif Çetin, & 3Manaf Dzh. Manafov

1,2Department of Mathematics
Faculty of Arts and Sciences

Gaziantep University
Gaziantep, Turkey

1kablan@gantep.edu.tr, 2makifcetin@gantep.edu.tr

3Department of Mathematics
Faculty of Arts and Sciences

Adıyaman University
Adıyaman, Turkey

3mmanafov@adiyaman.edu.tr

∗Corresponding Author: Abdullah Kablan

Received: September 20, 2017; Accepted: April 20, 2018

Abstract

The goal of this paper is to study the finite spectrum of Sturm-Liouville operator with δ-
interactions. Such an equation gives us a Sturm-Liouville boundary value problem which has n
transmission conditions. We show that for any positive numbers mj (j = 0, 1, ..., n) that are related
to number of partition of the intervals between two successive interaction points, we can construct
a Sturm-Liouville equations with δ-interactions, which have exactly d eigenvalues. Where d is the
sum of mj’s.
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1. Introduction

In their article, Kong at al. have been constructed a self-adjoint and non self-adjoint Sturm-
Liouville problems with exactly n eigenvalues, Kong et al. (2001). According to this paper, for
every given positive integer n we can construct a Sturm-Liouville problem (SLP) which has ex-
actly n eigenvalues. Then, this problem has been expanded to various Sturm-Liouville problems
such as in Ao et al. (2011) and Ao et al. (2013). In recent decades, fourth order boundary value
problems with finite spectrum has been studied in Ao et al. (2014) and Bo et al. (2014). Then,
the first equivalence relation between boundary value problems with finite spectrum and matrix
eigenvalue problems was found in Kong et al. (2009). For the studies about this relations please
see Ao et al. (2012)-Kablan et al. (2016). The purpose of this paper is to study the Sturm-Liouville
equation with δ-interaction which is formally defined by

−(py′)′ +

n∑
j=1

αjδ(x− xj)y + qy = λwy, on J, (1)

where J = (a, x1) ∪ (x1, x2) ∪ ... ∪ (xn, b), x1, ..., xn ∈ (a, b), with −∞ < a < b < ∞, αj’s are real
numbers, δ(x) is the Dirac delta function and λ ∈ C is a spectral parameter. And we shall con-
struct some special type Sturm-Liouville problems with δ-interactions, which have finitely many
eigenvalues. Equation (1) comes from the time-independent one-dimensional Schrödinger equa-
tion. Schrödinger operators with point interactions in one or more dimensions are widely used in
applications to quantum and atomic physics because they can be used as exactly solvable models
in many situations Albeverio et al. (1988)-Manafov et al. (2013).

This paper consists, besides this introductory section, of three sections. Section 2 is auxiliary and
presents the statement of problem and some known results. In Section 3, we construct a Sturm-
Liouville equations with δ-interaction which has finitely many eigenvalues and finaly, Section 4 is
devoted to some examples.

2. Statement of Problem and Notations

The equation (1) is equivalent to the following many-point boundary value problem, Albeverio et
al. (1988). So we can understand problem (1) as studying the equation

−(py′)′ + qy = λwy, on J, (2)

and n transmission conditions

CjY (xj−) = Y (xj+), Y =

[
y

py′

]
, j = 1, 2, ..., n, (3)

where xj’s are inner discontinuity points and

Cj =

[
1 0

αj 1

]
.

Additionally, let’s consider the boundary condition of the form

AY (a) +BY (b) = 0, A,B ∈M2(C), (4)

2
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where A = (aij)2×2, B = (bij)2×2 are complex valued 2× 2 matrices and M2(C) denotes the set of
square matrices of order 2 over C. Here, the coefficients satisfy the minimal conditions

r =
1

p
, q, w ∈ L(J, C), (5)

where L(J, C) denotes the complex valued functions which are Lebesgue integrable on J . (5) is
necessary and sufficiently condition for the uniqueness of the solution of the initial value problem,
(see Zettl (2005)).

Let u1 = y, u2 = py′. Then, we have the system representation of Eq. (2)

u′1 = ru2, u′2 = (q − λw)u1, on J. (6)

Definition 2.1.

By a trivial solution of Eq. (2) on some interval we mean a solution y which is identically zero and
whose quasi-derivative u2 = py′ is also identically zero on this interval.

Lemma 2.2.

Let (5) holds and let Φ(x, λ) = [φij(x, λ)] be the fundamental matrix solution of the system (6)
determined by the initial condition Φ(a, λ) = I. Then, λ ∈ C is an eigenvalue of the Sturm-Liouville
problem with δ-interactions (1), (4) or equivalently the Sturm-Liouville problem with transmission
conditions (2)-(4) if and only if

∆(λ) = det [A+BΦ(b, λ)] = 0. (7)

Then, ∆(λ) can be written as

∆(λ) = det(A) + det(B) + h11φ11(b, λ) + h12φ12(b, λ) (8)
+h21φ21(b, λ) + h22φ22(b, λ),

where

H =

[
h11 h12
h21 h22

]
=

[
a22b11 − a12b21 a11b21 − a21b11
a22b12 − a12b22 a11b22 − a21b12

]
.

Proof:

Let’s consider the linear algebra system

[A+BΦ(b, λ)]C = 0 (9)

and assume that ∆(λ) = 0. Then, the system (9) has a nontrivial vector solution. If we solve the
following initial value problem

Y ′ =

[
0 1

p

q − λw 0

]
, Y =

[
y

py′

]
on J, Y (a) = C, (10)

we obtain Y (b) = Φ(b, λ)Y (a) and [A+BΦ(b, λ)]Y (a) = 0. So we conclude that y which is the top
component of Y is an eigenfunction of the problem (2)-(3) and λ is an eigenvalue of this problem.
Conversely, if λ is an eigenvalue corresponding to eigenfunction y, then Y defined in (10) satisfies

3

Kablan et al.: Spectrum of Sturm-Liouville Operator With ?-Interactions

Published by Digital Commons @PVAMU, 2018



AAM: Intern. J., Vol. 13, Issue 1 (June 2018) 499

Y (b) = Φ(b, λ)Y (a) and consequently [A+BΦ(b, λ)]Y (a) = 0. Since Y (a) is an eigenfunction, it
can never be zero so we have that det [A+BΦ(b, λ)] = 0.

On the other hand, for any A = (aij), B = (bij) ∈M2(C), we know that

det(A+B) = det(A) + det(B) + P (A,B),

where P (A,B) denotes the sum of the possible products of the elements belonging to different
rows and different columns in matrices A and B. So we have

∆(λ) = det [A+BΦ(b, λ)]

= det(A) + det(BΦ(b, λ)) + P (A,BΦ(b, λ)).

Since Φ(a, λ) = I, then det(Φ(b, λ)) = 1, and P (A,BΦ(b, λ)) can be written in the form

P (A,BΦ(b, λ)) = h11φ11(b, λ) + h12φ12(b, λ) + h21φ21(b, λ) + h22φ22(b, λ),

where h11, h12, h21 and h22 are constants which depend only on the matrices A and B. Then, we
can conclude that (8) is followed. �

Definition 2.3.

The SLP with transmission conditions (2)-(4), or equivalently (6), (3), (4) is said to be degenerate
if in (8) either ∆(λ) ≡ 0 for all λ ∈ C or ∆(λ) 6= 0 for any λ ∈ C.

3. The finite spectrum of SLP’s with δ−interactions

Throughout this section we assume (5) holds and there exists a partition of subintervals of J

a = x0 = x00 < x01 < x02 < ... < x0,2m0+1 = x1,

x1 = x10 < x11 < x12 < ... < x1,2m1+1 = x2,
...

xn−1 = xn−1,0 < xn−1,1 < xn−1,2 < ... < xn−1,2mn−1+1 = xn,

xn = xn0 < xn1 < xn2 < ... < xn,2mn+1 = xn+1 = b,

(11)

for some integers mj , j = 0, 1, ..., n. Then, for each j ∈ {0, 1, ..., n} we suppose that

r =
1

p
= 0 on (xj,2k , xj,2k+1),

xj,2k+1∫
xj,2k

w 6= 0, k = 0, 1, ...,mj , (12)

and

q = w = 0 on (xj,2k+1 , xj,2k+2),

xj,2k+2∫
xj,2k+1

r 6= 0, k = 0, 1, ...,mj − 1. (13)

Further, we assign some notations we will use later. For each j ∈ {0, 1, ..., n} and given (11)-(13),

4
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let

rjk =

xj,2k+2∫
xj,2k+1

r, k = 0, 1, ...,mj − 1, (14)

qjk =

xj,2k+1∫
xj,2k

q, wjk =

xj,2k+1∫
xj,2k

w, k = 0, 1, ...,mj .

Before stating the main theorem of this paper, we determine the structure of the principal funda-
mental matrix of the system (6).

Lemma 3.1.

Let (5) and (11)-(13) hold. Let Φ(x, λ) = [φst(x, λ)] be the fundamental matrix solution of the
system (6) determined by the initial condition Φ(x00, λ) = I (here Φ(x00, λ) = Φ(x00+, λ) denote
the right limit at point x00) for each λ ∈ C. Then, we have that

Φ(x01, λ) =

[
1 0

q00 − λw00 1

]
, (15)

Φ(x03, λ) =

[
1 + (q00 − λw00)r00 r00

φ21(x03, λ) 1 + (q01 − λw01)r00

]
, (16)

where

φ21(x03, λ) = (q00 − λw00) + (q01 − λw01) + (q00 − λw00)(q01 − λw01)r00.

Then, in general, for k = 1, 2, ..., m0,

Φ(x0,2k+1, λ) =

[
1 r0,k−1

q0k − λw0k 1 + (q0k − λw0k)r0,k−1

]
Φ(x0,2k−1, λ). (17)

Proof:

Observe from (6) that u1 is constant on each subinterval of (x0, x1) where r is identically zero and
u2 is constant on each subinterval of (x0, x1) where both q and w are identically zero. So we obtain
the result from repeated applications of (6). �

Lemma 3.2.

Let (5) and (11)-(13) hold. Let Ψj(x, λ) =
[
ψj
st(x, λ)

]
be the fundamental matrix solution of the

system (6) determined by the initial condition Ψj(xj , λ) = I for each j ∈ {1, ..., n} (here Ψj(xj , λ) =

Ψj(xj+, λ) denote the right limit at point xj) for each λ ∈ C. Then, for each j ∈ {1, 2, ..., n} we
have that

Ψj(xj1, λ) =

[
1 0

qj0 − λwj0 1

]
, (18)
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Ψj(xj3, λ) =

[
1 + (qj0 − λwj0)rj0 rj0

ψj
21(xj3, λ) 1 + (qj1 − λwj1)rj0

]
, (19)

where

ψj
21(xj3, λ) = (qj0 − λwj0) + (qj1 − λwj1) + (qj0 − λwj0)(qj1 − λwj1)rj0.

Then, in general, for k = 1, 2, ...,mj ,

Ψj(xj,2k+1, λ) =

[
1 rj,k−1

qjk − λwjk 1 + (qjk − λwjk)rj,k−1

]
Ψj(xj,2k−1, λ). (20)

Proof:

For each j ∈ {1, 2, ..., n} on the intervals (xj , xj+1) since the proof is similar to the proof of Lemma
3.1 we ommited it. �

Lemma 3.3.

Let (5) and (11)-(13) hold. Let Φ(x, λ) = [φst(x, λ)] be the fundamental matrix solution of the

system (6) determined by the initial condition Φ(x00, λ) = I, and Ψj(x, λ) =
[
ψj
st(x, λ)

]
be the

fundamental matrix solution of the system (6) determined by the initial condition Ψj(xj , λ) = I,

for each j ∈ {1, ..., n} and λ ∈ C. Then, we have that

Φ(b, λ) =

n∏
j=0

Ψn−j(xn−j+1, λ)Cn−j (21)

where C0 = I and Ψj(xj+1, λ) = Ψj(xj+1−, λ) denotes the left limit at point xj+1 for j = 1, 2, ..., n.

Proof:

In this proof for the sake of simplicity we will show Φ(x, λ) with Ψ0(x, λ). From the transmission
condition (3) for j = 1 and the initial condition we have that

Φ(x1+, λ) = C1Ψ0(x1−, λ).

Additionally, from the definition of the fundamental matrix solution we can write that

Φ(x1+, λ) = (Ψ1(x2, λ))−1 Φ(x2−, λ).

Hence,

Φ(x2−, λ) = Ψ1(x2, λ)C1Ψ0(x1, λ). (22)

Now plugging (22) into the transmission condition (3) for j = 2 and using the initial condition and
definition of the fundamental matrix solution again, we arrive at the following equality

Φ(x3−, λ) = Ψ2(x3, λ)C2Ψ1(x2, λ)C1Ψ0(x1, λ).

After repeating these processes we obtain the result. �

The structure of Φ given in Lemma 3.1 and mathematical induction yield the following.

6
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Corollary 3.4.

For the fundamental matrix Φ we have that

φ11(b, λ) = R11λ
d + φ̃11(λ), (23)

φ12(b, λ) = R12λ
d−1 + φ̃12(λ), (24)

φ21(b, λ) = R21λ
d+1 + φ̃21(λ), (25)

φ22(b, λ) = R22λ
d + φ̃22(λ), (26)

where

d =

n∑
j=0

mj , (27)

and R11, R12, R21 and R22 are related to α, for each j ∈ {0, 1, ..., n} rjk, k = 0, 1, ...,mj − 1; wjk and
qjk, k = 0, 1, ...,mj . φ̃11(λ), φ̃12(λ), φ̃21(λ) and φ̃22(λ) are functions of λ, in which the degrees of λ
are smaller than d, d− 1, d+ 1 and d respectively.

Now we construct Sturm-Liouville problems with δ-interactions which have exactly d eigenvalues
for each d ∈ N.

Theorem 3.5.

For each j = 0, 1, ..., n, let mj ∈ N and let (5) and (11)-(13) hold. Let H = (hij)2×2 be defined as
in Lemma 2.2 and d be defined as in (27), then:

(1) If h21 6= 0, then the SLP with δ-interactions (1) has exactly d+ 1 eigenvalues λk, k = 0, 1, ..., d.

(2) If h21 = 0, h11 6= 0, and h22 6= 0, then the SLP with δ-interactions (1) has exactly d eigenvalues
λk, k = 0, 1, ..., d− 1.

(3) If h21 = h11 = h22 = 0, but h12 6= 0, then the SLP with δ-interactions (1) has exactly d −
1 eigenvalues λk, k = 0, 1, ..., d− 2.

(4) If none of the above conditions holds, then the SLP with δ-interactions (1) either has
l eigenvalues for l ∈ {1, 2, ..., d− 2} or is degenerate.

Proof:

We prove the case (1), and the other cases can be proved in the same way. From (12) that the
degrees of φ11(b, λ), φ12(b, λ), φ21(b, λ), and φ22(b, λ) in λ are d, d − 1, d + 1, and d respectively.
Thus when h21 6= 0, we can conclude from Corollary 3.4 amd Lemma 2.2 that the degree of the
characteristic polynomial function ∆(λ) is d + 1, hence from the fundamental theorem of algebra
we find that ∆(λ) has exactly d+ 1 roots. Then, the case (1) is achieved. �
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4. Examples

We now work out a simple examples to illustrate the above study.

Example 4.1.

Consider the SLP with δ-interactions on J = (−6,−3) ∪ (−3, 2) ∪ (2, 5),

−(py′)′ + (2δ(x+ 3) + δ(x− 2))y + qy = λwy. (28)

We know that, this equation is equivalent to the following SLP

−(py′)′ + qy = λwy (29)

with transmission conditions{
y(−3−)− y(−3+) = 0

2y(−3−) + py′(−3−)− py′(−3+) = 0
(30)

and {
y(2−)− y(2+) = 0

y(2−) + py′(2−)− py′(2+) = 0.
(31)

Then, let’s consider the boundary conditions{
y(−6) = 0

y(5) = 0.
(32)

Let choose m0 = 1, m1 = 2 and m2 = 1 and p, q, w are piecewise constant functions defined as
follows:

p(x) =



∞, (−6,−5)
1
2 , (−5,−4)

∞, (−4,−3)

∞, (−3,−2)
1
4 , (−2,−1)

∞, (−1, 0)

1, (0, 1)

∞, (1, 2)

∞, (2, 3)
1
3 , (3, 4)

∞, (4, 5)

q(x) =



4, (−6,−5)

0, (−5,−4)

1, (−4,−3)
1
2 , (−3,−2)

0, (−2,−1)

2, (−1, 0)

0, (0, 1)

1, (1, 2)
1
4 , (2, 3)

0, (3, 4)

3, (4, 5)

w(x) =



1, (−6,−5)

0, (−5,−4)

2, (−4,−3)

1, (−3,−2)

0, (−2,−1)

3, (−1, 0)

0, (0, 1)
1
2 , (1, 2)
1
8 , (2, 3)

0, (3, 4)

1, (4, 5)

From condition (32)

A =

[
1 0

0 0

]
, B =

[
0 0

1 0

]
(33)

and from transmission conditions (30) and (31)

C1 =

[
1 0

2 1

]
, C2 =

[
1 0

1 1

]
.

8
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It follows from (21) that

Φ(5, λ) = Ψ2(5, λ)C2Ψ1(2, λ)C1Ψ0(−3, λ). (34)

By using the matrices (33) in (8) and taking account (34) we arrive at

∆(λ) = φ12(5, λ)

=
{[
ψ2
11 (5, λ) + ψ2

12 (5, λ)
]
ψ1
11 (2, λ) + ψ2

12 (5, λ)ψ1
21 (2, λ)

+2
[
ψ2
11 (5, λ) + ψ2

12 (5, λ)
]
ψ1
12 (2, λ) + 2ψ2

12 (5, λ)ψ1
22 (2, λ)

}
ψ0
12 (−3, λ)

+
{[
ψ2
11 (5, λ) + ψ2

12 (5, λ)
]
ψ1
12 (2, λ) + ψ2

12 (5, λ)ψ1
22 (2, λ)

}
ψ0
22 (−3, λ)

After some long calculations we find that

∆(λ) = −135λ3 +
2223

2
λ2 − 8277

4
λ+

2161

2
= 0.

As a result the SLP with δ-interactions (28) has exactly m0 +m1 +m2− 1 = d− 1 = 3 eigenvalues
which are

λ1 = 0.95658, λ2 = 1.43138, λ3 = 5.84537.

Example 4.2.

Consider the SLP with δ-interactions on J = (−3, 0) ∪ (0, 4) ∪ (4, 9) ∪ (9, 12),

−(py′)′ + (δ(x− 0) + δ(x− 4) + δ(x− 9))y + qy = λwy. (35)

As in the first example, this equation is equivalent to the following SLP

−(py′)′ + qy = λwy (36)

with transmission conditions {
y(0−)− y(0+) = 0

y(0−) + py′(0−)− py′(0+) = 0
, (37)

{
y(4−)− y(4+) = 0

y(4−) + py′(4−)− py′(4+) = 0
(38)

and {
y(9−)− y(9+) = 0

y(9−) + py′(9−)− py′(9+) = 0.
(39)

Then, we can consider the following boundary conditions{
py′(−3) + py′(12) = 0

py′(−3) = 0.
(40)

9
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By selecting m0 = 1, m1 = 1, m2 = 2 and m3 = 1; let’s define the piecewise constant functions p,
q, w are as follows:

p(x) =



∞, (−3,−2)

1, (−2,−1)

∞, (−1, 0)

∞, (0, 2)

2, (2, 3)

∞, (3, 4)

∞, (4, 5)
1
2 , (5, 6)

∞, (6, 7)

3, (7, 8)

∞, (8, 9)

∞ (9, 10)
1
3 (10, 11)

∞ (11, 12)

q(x) =



1, (−3,−2)

0, (−2,−1)

2, (−1, 0)
1
4 , (0, 2)

0, (2, 3)

4, (3, 4)

1, (4, 5)

0, (5, 6)

3, (6, 7)

0, (7, 8)

0, (8, 9)
1
2 , (9, 10)

0, (10, 11)

1, (11, 12)

w(x) =



1
2 , (−3,−2)

0, (−2,−1)

1, (−1, 0)
1
2 , (0, 2)

0, (2, 3)

2, (3, 4)

2, (4, 5)

0, (5, 6)

5, (6, 7)

0, (7, 8)

1, (8, 9)

3, (9, 10)

0, (10, 11)
1
5 , (11, 12)

From the boundary condition (40)

A =

[
0 1

0 1

]
, B =

[
0 1

0 0

]
(41)

and from the transmission conditions (37), (38) and (39)

C1 = C2 = C3 =

[
1 0

1 1

]
.

It follows from (21) that

Φ(12, λ) = Ψ3(12, λ)C3Ψ2(9, λ)C2Ψ1(4, λ)C1Ψ0(0, λ). (42)

By using the matrices (41) in (8) and taking account (42) we arrive at

∆(λ) = φ21(12, λ)

= (E + F )ψ0
11(0, λ) + Fψ0

21(0, λ).

Here,

E =
{[
ψ3
21(12, λ) + ψ3

22(12, λ)
] [
ψ2
11(9, λ) + ψ2

12(9, λ)
]

+ψ3
22(12, λ)ψ2

21(9, λ) + ψ3
22(12, λ)ψ2

22(9, λ)
}
ψ1
11(4, λ)

+
{[
ψ3
21(12, λ) + ψ3

22(12, λ)
]
ψ2
12(9, λ) + ψ3

22(12, λ)ψ2
22(9, λ)

}
ψ1
21(4, λ)

and

F =
{[
ψ3
21(12, λ) + ψ3

22(12, λ)
] [
ψ2
11(9, λ) + ψ2

12(9, λ)
]

+ψ3
22(12, λ)ψ2

21(9, λ) + ψ3
22(12, λ)ψ2

22(9, λ)
}
ψ1
12(4, λ)

+
{[
ψ3
21(12, λ) + ψ3

22(12, λ)
]
ψ2
12(9, λ) + ψ3

22(12, λ)ψ2
22(9, λ)

}
ψ1
22(4, λ).

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 13 [2018], Iss. 1, Art. 32

https://digitalcommons.pvamu.edu/aam/vol13/iss1/32



506 A. Kablan et al.

After the end of lengthy calculations we find that

∆(λ) = 16λ6 − 1484

5
λ5 +

125389

60
λ4 − 340565

48
λ3 +

291595

24
λ2 − 195309

20
λ+

8168

3
= 0.

Consequently the SLP with δ-interactions (35) has exactly m0 + m1 + m2 + m3 + 1 = d + 1 = 6

eigenvalues which are

λ1 = 0.56528, λ2 = 1.66858, λ3 = 1.93014,

λ4 = 2.93511, λ5 = 4.75851, λ6 = 6.69238.

5. Conclusion

In this paper we have enlarged the scope of the Sturm-Liouville problems with finite spectrum
which was devised initially for second and fourth order problems. We have extended the concept “
finite spectrum” to the Sturm-Liouville operator with δ-interactions. We have presented an example
to illustrate the discussion above.
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