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Abstract

The proportional hazard regression models have been used extensively in survival analysis to un-
derstand and exploit the relationship between survival time and covariates. For left censored sur-
vival times, reversed hazard rate functions are more appropriate. In this paper, we discuss a para-
metric proportional reversed hazard rates model using exponential baseline. The estimation for the
parameters are discussed. We also assess the performance of the proposed procedure based on a
large number of Monte Carlo simulations. Finally, we illustrate the proposed method using a real
case example and then we show that it provides a good and better fit than the usual proportional
hazards model.

Keywords: Covariate; Generalized Exponential Distribution; Monte Carlo Simulations;
Weibull Distribution; Proportional Reversed Hazard Regression Models
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1. Introduction

Even through hazard rate and reversed hazard rates share many similar aspects, reversed hazard
rate functions are far less frequently used in applications. The reversed hazard rate function has at-
tracted the attention of researchers only relatively recently (Finkelstein (2002)). Although initially
introduced in actuarial research, the reversed hazard rate has mainly been applied in reliability
engineering (Desai et al. (2011)) until now. Despite being similar to the hazard rate function, its
typical behavior makes it suitable for assessing waiting times, hidden failures, inactivity times and
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the study of systems, including optimizing reliability and the probability of successful functioning
(Block et al. (1998), Chandra and Roy (2001), Xie et al. (2002), and Poursaeed (2010)).

Reliability engineering, however, is not the only field where this tool has proved useful. Re-
versed hazard rate has also been employed for analyzing right-truncated and left-censored data.
Kalbfleisch and Lawless (1991) and Gross and Huber-Carol (1992) used it in the field of medicine,
and Townsend and Wenger (2004) found it helpful in modelling information processing capacity.
Likewise, stochastic comparison of order statistics is another subject where this function has found
a niche (Shaked and Shanthikumar (2006)). In this regard, Cheng and Zhu (1993) characterized the
best strategy for allocating servers in a tandem system, and Finkelstein (2002) discussed possible
applications to the ordering of random variables using the proportional reversed hazard rate. Fi-
nally, Kijima (1998) used the reversed hazard rate in the study of continuous time Markov Chains,
and Gupta et al. (2004) and Razmkhah et al. (2012) showed how the Fisher information and Shan-
non entropy measures could be computed using the reversed hazard rate function. With all these
applications, however, reversed hazard rate remains outside the mainstream of statistical literature.

Recently, Veres-Ferrer and Jose (2014) showed a close relationship that exists between the reversed
hazard rate and elasticity, a concept broadly used in economics and physics, and used an example
to illustrate how elasticity can provide statisticians with a more natural way of incorporating their
knowledge, hypotheses and intuitions into certain inference processes. This will make it possible
to obtain distributions that would be hardly imaginable or justifiable when expressed directly in
terms of either the density or distribution functions.

In survival studies, covariates or explanatory variables are usually employed to represent hetero-
geneity in a population. The main objective in such situations is to understand and exploit the rela-
tionship between lifetime and covariates. Regression models are useful in such contexts to present
the effect of covariates on lifetime. These models can be formulated in many ways and several
types are in common use. Parametric regression models for lifetime involve specification for the
distribution of a lifetime T given a vector of covariates Z. The most commonly used parametric
model is the Weibull regression model, which satisfies the proportional relationship between re-
versed hazard rate functions of the lifetimes of two subjects. The maximum likelihood technique
is usually employed to find estimates of the parameters of the model. For more properties and
applications of parametric regression models, one should refer to Lawless (2003).

In survival studies, there are many occasions where lifetime data are left censored. For example,
suppose T represents the lifetime of a cancer patient after diagnosis of the disease. If the doctor
determine that the patient would not live more than k months, then the lifetime of this patient is
left censored. On such occasions, a reversed hazard rate is more appropriate than a hazard rate to
analyze lifetime data due to the fact that estimators of hazard rates are unstable when data are left
censored. Barlow et al. (1963) introduced the reversed hazard rate of T as follows:

r̃(t) = lim
∆t→0

P (t−∆t ≤ T |T ≤ t)
∆t

.

The proportional reversed hazard rates have been used extensively in reliability and survival analy-
sis. For example, it has been used in various contexts such as the estimation of distribution function
under left censoring (Lawless (2003)), stochastic ordering (Keilson and Sumitha (1982)), charac-
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terization of lifetime distributions (Block et al. (1998), Finkelstein (2002), and Nair et al. (2005)),
studying aging behavior (Gupta et al. (1998), and Lai and Xie (2006)), repair and maintenance
strategies (Marshall and Olkin (2007)), the mixed proportional hazards model (Horny (2009)), and
stress hybrid hazards model (Tojeiro and Louzada (2012)). Sengupta and Nanda (2011) introduced
the proportional reversed hazards rate model in a semiparametric setup. In the present work, we
introduce a fully proportional reversed hazard rate models when baseline distribution of reversed
hazard rates is exponential. A simulation study indicates that the proposed approach is performing
well.

The rest of the paper is organized as follows. In Section 2, we introduce a parametric regression
model using the generalized exponential distribution and then present the proposed model has the
property that the reversed hazard rate for the lifetime of pair of subjects is proportional. In this
section, the estimation of the parameters of the model is also discussed. Checking the proposal re-
versed hazard rate assumption is derived in Section 3. We present graphical test for specified model
in Section 4. Simulation studies are conducted in Section 5 to assess the finite sample behavior of
the estimators. The proposed model is applied to real life data in Section 6 to illustrate its utility.
Finally, Section 7 provides the major conclusions of the study.

2. Statistical Model

Introducing covariates into the statistical model should lead to better prediction of lifetimes and
improved understanding of the process that is being studied. In medical applications where the
variable of interest might be the patient’s survival time, obvious covariates to consider would in-
clude age, sex, severity of disease, smoking status, results of blood tests and other laboratory data,
and so on.

There are several ways of introducing covariates into parametric models. We start from the well-
known statistical model that incorporates covariates. This is the linear regression model, in which
the value of a continuous dependent variable Y is related to a set of covariates zi (i = 1, · · · , p) as

y = β0 + β1z1 + · · ·+ βpzp + ε = β′z + ε,

where the constant β0 has been absorbed into the vector of regression coefficients by taking
z0 ≡ 1. The residuals ε corresponding to different observations are assumed to be independent
and identically distributed as N(0, σ2). Assuming that the covariates zi are non-stochastic, we have
Y ∼ N(µ, σ2), where µ = µ(z) = β′z .

Thus, the covariates have entered the model by affecting the value of the parameter µ of the dis-
tribution of Y . This idea can be extended to other situations, involving distributions other than the
normal. The main interest is in the extension to generalized exponential distribution and so we will
develop regression models here for lifetime data. We will show the regression model that coincide
for this distribution, in general lead to one types of models, namely, proportional reversed hazard
rate models.

Generalized exponential distribution is one of the commonly used distributions in reliability, life-
testing and survival analysis. A random variable T is said to have the generalized exponential
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distribution with shape parameter α > 0 and scale parameter λ > 0 (denoted by T ∼ GE(α, λ)) if
its cumulative distribution and probability density functions are given by respectively

F (t) =
(

1− e−λ t
)α

, f(t) = αλ e−λ t
(

1− e−λ t
)α−1

, x > 0.

Gupta and Kundu (1999) showed the GE distribution admits a log-convex density for 0 < α ≤ 1

and a log-concave density for α > 1. Like the gamma and Weibull distributions, the reversed hazard
rate function of the GE distribution is decreasing for 0 < α < 1, constant for α = 1, and increasing
for α > 1. Indeed, the reversed hazard rate function of the Weibull distribution increases from zero
to∞ for α > 1, and decreases from 1 to zero when α < 1; while the reversed hazard rate function
of GE(α, λ) increases from zero to 1/λ when α > 1, and decreases from 1/λ to zero when α < 1.
On the other hand, the GE distribution has a bounded reversed hazard rate function which becomes
it as a suitable model in situations that a regular maintenance program are held on the items in
population; see Gupta and Kundu (1999). Due to nice survival functions, the GE distribution has
also found the significant applications in the analysis of censored life data sets. For comprehensive
discussions on the GE distribution, one may refer to Gupta and Kundu (2003, 2004), and Kundu et
al. (2005). Interested readers may also refer to Gupta and Kundu (2007), and Nadarajah (2011) for
reviews of the recent developments on the GE distribution.

Now, we introduce the effect of covariates z on the parameters of the cumulative distribution func-
tion, resulting in

F (t) =
(

1− e−λ t
)α(z)

,

where the shape parameter α now depends on the covariates z. This is the common form of the
model, although it is possible to allow instead the scale parameter λ to depend on z, or to let
both parameters to depend on z simultaneously. Let α = eβ

′z. Observe, however, that the function
α = eβ

′z is positive, a restriction that is necessary here. The reversed hazard rate function is readily
obtained

r̃(t| z) =
λ e−λ t

1− e−λ t
eβ
′z = r̃0(t) g(β, z),

where r̃0(t) = λ e−λ t

1−e−λ t and g(β, z) = eβ
′z. Expressing the model in this manner allows for the

interpretation of the effect of the covariates in another way. It is as if the hazard function has been
multiplied by the factor eβ′z. For two units with different vectors of covariates z1 and z2, the ratio
of the reversed hazard rate functions is

r̃(t| z1)

r̃(t| z2)
=

λ e−λ t

1−e−λ t e
β′z1

λ e−λ t

1−e−λ t e
β′z2

= eβ
′(Z1−Z2),

which is a constant and independent of t. If, for example, one hazard is 45% of the other at time
zero, then it is always 45% of the other at every time point. When the hazards of any two units
have this property of being in constant ratio to each other, we have the so-called proportional haz-
ards model. This model works with the basic premise that, at different levels of the covariate, the
reversed hazard rates over time always remain proportional and are not function of time. This is a
critical assumption of this case. This results in models that are closed under maxima.
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Remark.

The generalized exponential distribution belongs to the proportional reversed hazard rate model
provided scale parameter λ does not change with covariates but the shape parameter α changes
with the covariates.

Because of the major importance of the generalized exponential distribution in applications, we
describe here in detail the maximum likelihood fit of a generalized exponential regression model.
The situation is to have failure times and left-censored values, with the censoring mechanism being
non-informative. Then, the likelihood function based on a sample of n independent values is obtain

L(β) =

n∏
i=1

(f(ti))
δi (F (ti))

1−δi , (1)

where f(t) is the probability density function of the lifetime variable T , F (t) is the survival func-
tion, and δi is an indicator variable taking on the value 0 when the value ti is censored and 1 when it
is an observed lifetime. Under the generalized exponential distribution assumption, the likelihood
and log-likelihood function given in (1), respectively, is obtain as

L(β, λ) =

n∏
i=1

(
eβ
′ziλe−λ ti

(
1− e−λ ti

)eβ′zi−1
)δi ((

1− e−λ ti
)eβ′zi)1−δi

,

and

l(β, λ) =

n∑
i=1

δi log

(
eβ
′ziλe−λ ti

(
1− e−λ ti

)eβ′zi−1
)

+

n∑
i=1

(1− δi) log

((
1− e−λ ti

)eβ′zi)
(2)

=

n∑
i=1

δi

(
log λ− λti + β′zi − log

(
1− e−λ ti

))
+

n∑
i=1

eβ
′zi log

(
1− e−λ ti

)
.

Now, we maximize (2) to estimate the parameters β, and λ by equating the partial derivatives with
respect to each parameter to zero as

∂l(β, λ)

∂β
=

n∑
i=1

δizi +

n∑
i=1

log
(

1− e−λ ti
)
zie

β′zi = 0,

and
∂l(β, λ)

∂λ
=

n∑
i=1

δi

(
1

λ
− ti −

ti e
−λ ti

1− e−λ ti

)
+

n∑
i=1

eβ
′zi

ti e
−λ ti

1− e−λ ti
= 0.

Since there is no closed form solution available for this system of equations, we use numerical
methods to estimate the parameters. The observed information matrix is given by

J(β, λ) =


−∂2l
∂β ∂β′

−∂2l
∂β ∂λ

−∂2l
∂λ ∂β

−∂2l
∂λ2

 ,

where we have
∂2l

∂β ∂β′
=

n∑
i=1

log
(

1− e−λ ti
)
ziz
′
ie
β′zi ;
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∂2l

∂β ∂λ
=

n∑
i=1

zie
β′zi

ti e
−λ ti

1− e−λ ti
;

∂2l

∂λ2
=

n∑
i=1

δi

(
− 1

λ2
+

ti e
−λ ti

(1− e−λ ti)2

)
−

n∑
i=1

zie
β′zi

ti e
−λ ti

(1− e−λ ti)2
.

Note that the above information matrix is of order (p+ 2)× (p+ 2). Under the standard regularity
conditions, the vector of estimates (β̂, λ̂) is asymptotically (p+2)-variate normal with mean vector
(β,λ) and dispersion matrix I−1, where I is the Fisher information matrix obtained from J by
taking the expected values of each entry.

3. Checking the proportional reversed hazards assumption

If the proportional reversed hazards assumption is not correct for the data, then it will not be
meaningful to fit the regression model based on this assumption. The main question which may
be arise here is how we can check whether this assumption is appropriate for the given data. The
answer of this question is stated in this section.

Let H̃(t) =
∫ b
t r̃(x) dx = − logF (t) where b = sup{x : F (x) < 1)} and t < b. The proportional

reversed hazard rate function r̃(t| z) = r̃0(t) eβ
′z gives the distribution function to be F (t|z) =

exp
{
H̃0(t)eβ

′z
}

. Then,

log(− logF (t|z))− log H̃0(t) = β′z

which means that the curve log(− logF (t|z)), for any z is parallel to log H̃0(t) in time. This obser-
vation suggests a simple way of checking the proportional reversed hazards assumption as follows:

(i) compute Kaplan-Meier estimates of the cumulative function F̂ (t|z) for select z;

(ii) plot log(− log F̂ (t|z)) against log H̃0(t) for those z.

If all the lines for those z are indeed parallel to each other, then we may conclude that the as-
sumption of proportional reversed hazards is reasonable for the data. This idea applies to any
proportional reversed hazards model, but does not show us which distribution is the appropriate
one if we are going to carry out a parametric regression.

4. Graphical test for specified model

Since we don’t assume any particular functional form for the cumulative distribution or reversed
hazard rate functions therefore we use non-parametric estimators. This freedom from assumptions
is often very desirable. The main question which arises here is how we can check that a specific
function F is a reasonable model assumption for the data? One simple way is to obtain the Kaplan-
Meier estimate F̂ (t) and plot it against a suitable function of t, in order to see if it takes nearly the
same shape as the assumed function F (t).
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For the generalized exponential distribution, we know that

F (t|z) =
(

1− e−λ t
)β′z

= exp
{
β′z log

(
1− e−λ t

)}
,

and then,

log(− logF (t|z)) = − log
(

1− e−λ t
)

+ β′z.

This means that a scatter plot of the values of log(− log F̂ (t|z)) against − log
(

1− e−λ̂ t
)

should

give a straight line if the assumption of a generalized exponential distribution is correct where λ̂ is
maximum likelihood estimator of λ. See Figure 2.

5. Simulation Study

In this section, we carried out an extensive Monte Carlo simulation study for evaluating the per-
formance of the proposed estimation method. We considered four sample sizes: n = 50, n = 100

and n = 250. To introduce the covariate effect, we divided the total sample size into four groups,
where group j were assigned a covariate value of j for j = 1, 2, 3, 4. The comparison is based on
mean square error (MSE) for each parameter. The following steps has to be followed:

1. Specify the sample size n and the values of the parameters β and λ.
2. Generate random samples with size n1, · · · , n4, respectively, from GE(exp(βzi), λ), i = 1, 2, 3, 4,

such that n1 + · · ·+ n4 = n.
3. Randomly, twenty percent of the total sample are left censored.
4. Calculate the MLE of the two parameters.
5. Repeat steps 2− 3, for N iterations.
6. Calculate the mean square error (MSE) for each parameter.

In this simulation, the MSEs were computed by generating N = 250 replications of samples of size
n = 50, 100, 250 from the GE distribution with various choices of the parameters values (β, λ) (see
Table 1). The assessment based on simulation study is that the MSEs for each parameter decreases
with increasing the sample size.

In many applications there is qualitative information about the reversed hazard rate shape, which
can help with selecting a particular model. In this context, a device called the total time on test
(TTT) plot (Aarset, 1987) is useful. The TTT plot is obtained by plotting

Tn(
r

n
) =

∑r
i=1 ti:n + (n− r)tr:n∑n

i=1 ti:n
, (3)

against r = 1, ..., n where ti:n, (i = 1, ..., n) are the order statistics of the sample. It is a straight
diagonal for constant reversed hazard rates, it is convex for decreasing reversed hazard rates and
concave for increasing reversed hazard rates. It is first convex and then concave if the reversed
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Table 1. Maximum likelihood estimate and MSE (in parentheses) of parameter.

n = 50 n = 100 n = 250

β λ β̂ λ̂ β̂ λ̂ β̂ λ̂

0.5 0.5 0.5070 0.5276 0.4969 0.5133 0.5156 0.5181
(0.0257) (0.0080) (0.0134) (0.0036) (0.0046) (0.0013)

0.5 1.5 0.5180 1.5869 0.4981 1.5313 0.5034 1.5239
(0.0239) (0.0576) (0.0112) (0.0230) (0.0040) (0.0116)

1 0.5 1.0406 0.5616 1.0253 0.5162 1.0008 0.5008
(0.2831) (0.2760) (0.0172) (0.0026) (0.0047) (0.0007)

1 1.5 1.0021 0.1544 1.0114 1.5214 1.0022 1.5113
(0.0308) (0.0374) (0.01562) (0.01922) (0.0071) (0.0088)

1.5 0.5 6.0599 1.1377 1.7114 0.5595 1.5049 0.5028
(347.4700) (4.8254) (4.4645) (0.3127) (0.0090) (0.0007)

1.5 1.5 1.5078 1.5736 1.5325 1.5239 1.5092 1.5195
(0.0698) (0.0614) (0.0300) (0.0230) (0.0119) (0.0089)

hazard rate is bathtub-shaped. It is first concave and then convex if the reversed hazard rate is
upside-down bathtub.

In Figure 1, the right plot is the TTT-scaled plot of the generated sample from GE(exp(βzi), λ), i =

1, 2, 3, 4, which shows that the reversed hazard rates of data is increasing. The left plot is the Kaplan-
Meier estimate of empirical CDF of the sample data.

In Figure 2, since all the lines for those zi are indeed parallel to each other, then we may conclude
that the assumption of proportional reversed hazards is reasonable for the data, because the curve
log(− logF (t|zi)), for any zi, i = 1, 2, 3, 4 is parallel to log H̃0(t) in time.

6. Real Data

In this section, we consider an extract of left censored data from an Australian twin study (Duffy
et al. (1990)). The data consist of information on the age of appendectomy of monozygotic and
dizygotic twins. There are observations with missing age at onset and therefore the data are left
censored. The covariate, namely, Zygocity, has values from 1 to 6. This data set consists of 7616
observations of which 1718 are left censored. We use this data for generalized exponential dis-
tribution to illustrate the utility of the parametric reverse hazard rate model. We use the simplex
method to estimate the parameters. Since the parameter values are unknown and to avoid the effect
of inappropriate initial values, we consider different initial values and choose the estimates which
have maximum likelihood. Estimates of the parameters are β̂ = 0.2052 and λ̂ = 0.0523. From
empirical Fisher information matrix the standard error of parameters β and λ are, respectively,
6.0231e− 05 and 7.6977e− 06. The 95 percent confidence interval for β is (0.2050, 0.2053) indicates
that the regression coefficient corresponding to Zygocity is significantly different than zero; that
is, the effect of Zygocity is not negligible. This conclusion is also verified through the likelihood
ratio test statistic value 2430.548 having a P -Value of 0.
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Figure 1. Left plot is the Kaplan-Meier estimation of CDF and right plot is the TTT-Scaled plot for simulation data.

Figure 2. Checking the proportional reversed hazards assumption for simulation data.

The empirical Fisher information matrix of real data is:

J(β, λ) =

(
79013.09 −422516.2

−422516.2 4904695.2

)
.

In the Figure 3 the left plot is the Box Plot of age on onset in six group of covariate variable
(zygocity) and the right plot is the Kaplan-Meier estimation of CDF for real data. Figure 4 presents
the TTT-scaled plot of real data that is shown the reversed hazard rates of real data is increasing.
Also, Figure 5 is shown in the levels 2 and 6 of covariates, data can be applied in the proportional
reversed hazards assumption, and the other level of data are not applied to this assumption.

Next, we use a Cox-Snell residual plot to assess the goodness of fit. The Cox-Snell residual is

9
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Figure 3. Left plot is the Box Plot of six group of covariate and right plot is the Kaplan-Meier estimation of CDF for
real data.

Figure 4. The TTT-Sacled plot for real data.

defined by

ri = − log(F (ti)) = exp(βzi) ∗ log(1− e−λ ti). (4)

If the model fits the data, then the residuals should have a standard exponential distribution, so
that a hazard plot of residuals versus the Nelson-Aalen estimator of the cumulative hazard of the
residuals will be a straight line with slope one. A plot of Cox-Snell residuals against the Nelson-
Aalen estimates of the cumulative hazard rate of residuals is given in Figure 6, which shows that
the fit is reasonably good.

In the following table, for the above real data, we have compared generalized exponential distri-
bution (as a proportional reversed hazard rate model) with Weibull distribution (as a proportional
reversed hazard rate model) and by using Akaike information criterion (AIC) and Bayesian in-
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Figure 5. Checking the proportional reversed hazards assumption for real data.
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Figure 6. Plot of cumulative reversed hazard rates of Cox-Snell residuals versus residuals.

formation criterion (BIC), we show that generalized exponential distribution provides a good and
better fit than the Weibull distribution.

7. Conclusion and Remarks

In this paper, we discuss a parametric proportional reversed hazard rates model using exponential
baseline. The estimation and construction of confidence intervals for the parameters are discussed.
We also assess the performance of the proposed procedure based on a large number of Monte Carlo
simulations. Finally, we illustrate the proposed method using a real case example and then we show
that it provides a good and better fit than the usual proportional hazards model.
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Table 2. Maximum likelihood estimate, MSE (in parentheses) of parameters, −2`, AIC and BIC for generalized expo-
nential and Weibull distribution.

Model λ̂ β̂ η̂ −2` AIC BIC
GE 0.0523 0.2052 - 54464.48 54468.48 54482.36

(7.70e-06) (6.02e-05) - - - -
Weibull - 1.2145 0.4269 71086.96 71090.96 71104.84

(0.0001) (1.42e-05) - - -
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