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Abstract: 

 

In a study of traffic, the labelling problems in graph theory can be used by considering the crowd at 

every junction as the weights of a vertex and expected average traffic in each street as the weight of 

the corresponding edge. If we assume the expected traffic at each street as the arithmetic mean of the 

weight of the end vertices, that causes mean labelling of the graph. When we consider a geometric 

mean instead of arithmetic mean in a large population of a city, the rate of growth of traffic in each 

street will be more accurate. The geometric mean labelling of graphs have been defined in which the 

edge labels may be assigned by either flooring function or ceiling function. In this, the readers will get 

some confusion in finding the edge labels which edge is assigned by flooring function and which edge 

is assigned by ceiling function. To avoid this confusion, we establish the F-geometric mean labelling 

on graphs by considering the edge labels obtained only from the flooring function. An F-Geometric 

mean labelling of a graph G with q edges, is an injective function from the vertex set of G to {1, 2, 

3,..., q +1} such that the edge labels obtained from the flooring function of geometric mean of the 

vertex labels of the end vertices of each edge, are all distinct and the set of edge labels is {1, 2, 3,..., 

q}. A graph is said to be an F–Geometric mean graph if it admits an F–Geometric mean labelling. In 

this paper, we study the F-geometric meanness of the graphs such as cycle, star graph, complete 

graph, comb, ladder, triangular ladder, middle graph of path, the graphs obtained from duplicating 

arbitrary vertex by a vertex as well as arbitrary edge by an edge in the cycle and subdivision of comb 

and star graph. 
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I.  I.   Introduction 

 

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E) 

be a graph with p vertices and q edges. For notations and terminology, the readers are 

referred to the book of Harary (1972). For a detailed survey on graph labelling we refer the 

reader to the book of Gallian (2014). 

A path on n vertices is denoted by nP  and a cycle on n vertices is denoted by nC . 1,nK  is 

called a star graph and it is denoted by nS .  is the graph obtained from G by attaching a 

new pendant vertex to each vertex of G. Let 1G  and 2G  be any two graphs with 1p  and 2p  

vertices respectively. Then the Cartesian product 1 2G G  has 1 2p p  vertices which are 

  1 2, : ,u v u G v G  . The edges are obtained as follows:  1 1,u v  and  2 2,u v  are 

adjacent in 1 2G G  if either 1 2u u  and 1v  and 2v are adjacent in 2G  or 1u  and 2u are 

adjacent in 1G  and 1 2v v . The middle graph M(G) of a graph G is the graph whose vertex 

set is    : ( ) : ( )v v V G e e E G    and the edge set is  

 

             
 : , ( ) and and1 2 1 2 1 2e e e e E G e e are adjacent edges of G

 
                        : ( ), ( ) and e is incident with .ve v V G e E G v     

 

Let G be a graph and let v  be a vertex of G. The duplicate graph  , 'D G v  of G is the graph 

whose vertex set is  ( ) 'V G v and edge set is 

 

( ) ' : is the vertex adjacent toE G v x x v in G . 

 

Let G be a graph and let e uv  be an edge of G. The duplicate graph  , ' ' 'D G e u v  of G is 

the graph whose vertex set is  ( ) ', 'V G u v and edge set is ( ) ' , ' : andE G u x v y x  

arethevertices adjacent with and in respectivelyy u v G . The triangular ladder ,nTL n 2  

is a graph obtained by completing the ladder 2 nP P  by adding the edges 

fori i 1u v  1 1.i n    For a graph G the graph S(G) is obtained by subdividing each edge of 

G by a vertex. An arbitrary subdivision of a graph G is a graph obtained from G by a 

sequence of elementary subdivisions forming edges into paths through new vertices of  

degree 2. 

 

The study of graceful graphs and graceful labelling methods was first introduced by Rosa 

(1967). The concept of mean labelling was first introduced and developed by Somasundaram 

and Ponraj (2003). Further, it was studied by Vasuki et al. (2009, 2010, 2011). Vaidya and 

Lekha Bijukumar (2010) discussed the mean labelling of some graph operations. 

Mohanaselvi and Hemalatha (2014) discussed the super geometric mean labelling of various 

classes of some graphs. 
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A function f is called an F-Geometric mean labelling of a graph G(V,E) if 

: ( )f V G   1,2,3,..., +1q
 

is injective and the induced function  : ( ) 1,2,3,...,f E G q 
 

defined as 

 

  ( ) ( ) , for all ( ),f uv f u f v uv E G   
 

 

 

is bijective. A graph that admits an F–Geometric mean labelling is called an F–Geometric 

mean graph. 

 

Somasundaram et al. (2011) defined the geometric mean labelling as follows: A graph 

( , )G V E with p vertices and q edges is said to be a geometric mean graph if it possible to 

label the vertices x V with distinct labels ( )f x  from 1,2,..., +1q in such a way that when 

each edge e uv  is labelled with   ( ) ( ) orf uv f u f v 
 

 ( ) ( ) ,f u f v 
 

 then the edge 

labels are distinct. 

 

Somasundaram et al. (2012) have given the geometric mean labelling of the graph 5 7C C  

as in the Figure 1. 

 

 
      

     Figure 1. A Geometric mean labelling of 5 7C C  

 

From the above figure, for the edge uv , they have used flooring function ( ) ( )f u f v 
 

and 

for the edge vw , they have used ceiling function ( ) ( )f v f w 
 

for fulfilling their 

requirement. To avoid the confusion of assigning the edge labels in their definition, we just 

consider the flooring function ( ) ( )f u f v 
 

for our discussion. Based on our definition, the 

F-Geometric mean labelling of the same graph 5 7C C  is given in Figure 2. 

 
Figure 2. An F-Geometric mean labelling of  5 7C C and its edge labelling 
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In this paper, we study the F-Geometric meanness of the graphs, namely, cycle nC  for 

3,n   the star graph nS  for 3n  , the complete graph nK  for 3n  , the comb  for 

any positive integer n, the ladder 2 nP P  for any positive integer n, the middle graph 

( )nM P , the graphs obtained by duplicating an arbitrary vertex as well as arbitrary edge in 

the cycle nC , the triangular ladder for 2nTL n  , the graph  and the arbitrary 

subdivision of 3S . 

 

2. Main Results 
 

To study the F-geometric meanness, some of the standard graphs, and graphs obtained from 

some graph operations are taken for discussion. 

 

Lemma 2.1.  

 

Let G be a graph. If ( ) ( ) 1V G E G  , then G does not admit an F-Geometric mean 

labelling. 

 

Proof:  

 

If ( ) ( ) 1V G E G  , then the vertex labelling will not be injective and hence the result 

follows. 

 

Theorem 2.2.  
 

The union of any two trees is not an F-Geometric mean graph. 

 

Proof:  

 

Let G be the union of two trees S and T. Then If ( ) ( ) ( )V G V S V T   and 

( ) ( ) ( )E G E S E T   ( ) ( ) 2V S V T    then by Lemma 2.1, the result follows. 

 

Corollary 2.3.  
 

Any forest is not an F-Geometric mean graph. 

 

Theorem 2.4.  
 

Every cycle is an F-Geometric mean graph. 

 

Proof:  
 

Let 1 2, ,..., nv v v  be the vertices of the cycle nC .  

 

We define  
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 : ( ) 1,2,3,..., 1nf V C n 
 

as follows: 

 

, 1 +1 1,
( )

1, +1 .
i

i i n
f v

i n i n

    
  

 
       

 

The induced edges labelling is as follows: 

 

1

, 1 +1 1,
( )

1, +1 1,
i i

i i n
f v v

i n i n




    
  

 
      

    

and  

 

1( ) +1nf v v n  
 

. 

 

Hence, f is an F-Geometric mean labelling of the cycle nC . Thus the cycle nC  is an                    

F-Geometric mean graph. 

 

An F-Geometric mean labelling of 6C  is shown in Figure 3. 

 

                          Figure 3. An F-Geometric mean labelling of 6C  and its edge labelling 

 

Theorem 2.5.  

 

The star graph nS  is an F-Geometric mean graph if and only if 3.n   

 

Proof:  

 

The number of vertices and edges of nS  are 1n   and n  respectively. If f is an F-geometric 

mean labelling of nS , then it is a bijective function from  nV S  to  1,2,3,..., 1n . As we 
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have to label 1 for an edge, the vertex labels of its pair of adjacent vertices are either 1 and 2 

or 1 and 3. So, the central vertex of nS  is labelled as either 1 or 2 or 3. 1 cannot be a label for 

the central vertex in the case of 2n  , since two of the pendant vertices of nS  are to be 

labelled as 2 and 3. When 3n  , 2 cannot be the label for the central vertex, since two of its 

pendant vertices having the labels 3 and 4. When 4n  , the pendant vertices are labelled to 

be 4 and 5 if the label of central vertex is 3. 

 

The F-Geometric mean labelling of nS , 3n   are given in Figure 4. 

 
                       Figure 4. The F-Geometric mean labelling of nS , 3n   and its edge labelling 

 

Theorem 2.6.  

 

Every complete graph  is not an F-Geometric mean graph. 

 

Proof:  
 

To get the edge label q, and +1q q  should be the vertex labels for two of the vertices of ,nK  

say x  and y . Also to obtain the edge label 1, 1 is to be a vertex label of a vertex of nK , say 

v . Since 2 in nq nC K  and  21 1q n    for 4n  , the edge labels of the edges vx and 

vy  are one and the same. Hence nK  is not an F-Geometric mean graph. While =2 and 3n , 

the F-geometric mean labelling of nK  are given in Figure 5. 

 
                       Figure 5. The F-Geometric mean labelling of 2 3andK K and its edge labelling 

Theorem 2.7.  
 

Every comb graph is an F-Geometric mean graph. 

6

Applications and Applied Mathematics: An International Journal (AAM), Vol. 10 [2015], Iss. 2, Art. 20

https://digitalcommons.pvamu.edu/aam/vol10/iss2/20



AAM: Intern. J., Vol. 10, Issue 2 (December 2015)                                                                                            943                                                                                                              

 

 

Proof:  
 

Let  be a comb graph for any positive integer n   having 2n  vertices and 2 1n  

edges. Let 1 2, ,..., nu u u  be the vertices of the path nP  and iv  be the pendant vertices 

attached at each iu , for 1 i n  . Then, the edge set of G is  1; 1 1i iu u i n      

 ; 1i iu v i n  . 

 

We define  : ( ) 1,2,3,...,2f V G n as follows:  

 

( ) 2 , for 1 and ( ) 2 1, for 1i if u i i n f v i i n       . 

 

The induced edge labelling is as follows: 

 

1( ) 2 , for 1 1 and ( ) 2 1, for 1i i i if u u i i n f u v i i n 
         . 

 

Hence, f is an F-Geometric mean labelling of the comb . Thus, the comb  is an         

F-Geometric mean graph for any positive integer n. 
 

An F-Geometric mean labelling of  is shown in Figure 6. 

 

 
 

Figure 6. An F-Geometric mean labelling of  and its edge labelling 

 

Theorem 2.8.  
 

Every ladder graph is an F-Geometric mean graph. 
 

Proof:   
 

Let 2 nG P P   be a ladder graph for any positive integer n  having 2n  vertices and 3 2n  

edges. Let 1 2, ,..., nu u u  and 1 2, ,..., nv v v  be the vertices of G . Then the edge set of G is 

 

 1 1, ; 1 1i i i iu u v v i n       ; 1i iu v i n   . 

 

We define  : ( ) 1,2,3,...,3 -1f V G n
 
as follows:  

 

( ) 3 1, for 1 and ( ) 3 2, for 1i if u i i n f v i i n        . 
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The induced edge labelling is as follows:  
 

1( ) 3 , for 1 1, ( ) 3 1, for 1 1,i i i i 1f u u i i n f v v i i n 
           and                 

( ) 3 2, for 1i if u v i i n     . 

 

Hence, f is an F-Geometric mean labelling of the ladder 2 nP P . Thus, the ladder 2 nP P  is 

an F-Geometric mean graph for any positive integer .n  
 

An F-Geometric mean labelling of 2 6P P  is shown in Figure 7. 

 

 
 

Figure 7.  An F-Geometric mean labelling of 2 6P P  and its edge labelling 

 

Theorem 2.9.  
 

The middle graph of a path is an F-Geometric mean graph. 

 

Proof:  
 

Let  1 2( ) , ,...,n nV P v v v and  1( ) ; 1 1n i i iE P e v v i n      be the vertex set and edge 

set of the path nP . Then, 

  

    1 2 1 2 1, ,..., , , ,...,n n nV M P v v v e e e   and 

      1 1, ; 1 n 1 ; 1 2n i i i i i iE M P v e e v i e e i n         . 

 

We define     : 1,2,3,...,3 3nf V M P n  as follows: 

 

( ) 3 2, for 1 1, ( ) 3 3 and ( ) 3 1, for 1 1i n if v i i n f v n f e i i n            . 

 

The induced edge labelling is as follows: 

 

1( ) 3 2, for 1 1, ( ) 3 1, for 1 1i i i if v e i i n f e v i i n 
         

 

1and ( ) 3 , for 1 2.i if e e i i n
    
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Hence, f is an F-Geometric mean labelling of the middle graph  nM P . Thus, the middle 

graph  nM P  is an F-Geometric mean graph. 

 

An F-Geometric mean labelling of  6M P  is shown in Figure 8. 

 
Figure 8. An F-Geometric mean labelling of  6M P and its edge labelling 

 

Theorem 2.10.  

 

For any vertex v  of the cycle nC , the duplicate graph  , 'nD C v  is an F-Geometric mean 

graph, for 3n  . 

 

Proof:   

Let 1 2, ,..., nv v v  be the vertices of the cycle nC  and let 1v v and its duplicated vertex is 
'
1v . 

 

Case (i). n 5  

 

We define     : , ' 1,2,3,..., 3nf V D C v n  as follows: 

 
'

1( ) 1, ( ) 1, ( ) 2, ( ) 3,1 2 3f v n f v n f v n f v n       
 
and 

3, 4 +3 2,
( )

2, +3 3 .
i

i i n
f v

i n i n

     
  

 
      

 

 

The induced edge labelling is as follows: 

 

         ' '
1 2 1 1 2 1 2 3, 2, 1, 1, 2,n nf v v n f v v n f v v n f v v n f v v n            

 3 4 +3f v v n  
 

 and 
1

3, 4 +3 2,
( )

2, +3 3 1.
i i

i i n
f v v

i n i n




     
  

 
         

 

Hence,  f is an F-Geometric mean labelling of the graph  , 'nD C v .  

 

Case (ii). 3,4n   

 

The F-Geometric mean labelling of  '3 1,D C v  and  '4 1,D C v are given in Figure 9. 
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         Figure 9. The F-Geometric mean labelling of  '3 1,D C v  and  '4 1,D C v  and its edge labelling 

 

An F-geometric mean labelling of the graph G obtained by duplicating the vertex 1v  of the 

cycle 8C  is shown in Figure 10. 

 

                    Figure 10. An F-Geometric mean labelling of  '8 1,D C v  and its edge labelling 

 

Theorem 2.11.  

 

For any edge e  of the cycle nC , the duplicate graph  , 'nD C e  is an F-Geometric mean 

graph, for 3n  . 

 

Proof:   

 

Let 1 2, ,..., nv v v  be the vertices of the cycle nC  and let 1 2e v v  and its duplicated edge is 

' '
1 2'e v v . 
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Case (i). 6n   

 

We define     : , ' 1,2,3,..., +4nf V D C e n as follows: 

 
' '

1 1 2 2( ) 1, ( ) 1, ( ) 2, ( ) 3,f v n f v n f v n f v n       
 

3( ) 4f v n   and 
3, 4 +4 2,

( )
2, +4 3 .

i

i i n
f v

i n i n

     
  

 
        

 

The induced edge labelling is as follows: 

 

       ' ' '
1 2 1 1 1 2, 2, 1, 1,n nf v v n f v v n f v v n f v v n         

 

     '
2 3 2 3 3 43, 2, +4f v v n f v v n f v v n        

 
 

and 
1

3, 4 +4 2,
( )

2, +4 3 1.
i i

i i n
f v v

i n i n




     
  

 
         

 

Hence, f is an F-Geometric mean labelling of the graph  , 'nD C e .  

Case (ii). 3,4,5n   

The F-Geometric mean labelling of  ' '
3 1 2,D C v v ,  ' '

4 1 2,D C v v  and  ' '
5 1 2,D C v v are given 

in Figure 11. 

 

 

Figure 11. An F-Geometric mean labelling of  ' '
3 1 2,D C v v ,  ' '

4 1 2,D C v v and 

 ' '
5 1 2,D C v v  and its edge labelling 

 

An F-geometric mean labelling of the graph G obtained by duplicating an edge 1 2v v  of the 

cycle 9C  is shown in Figure 12. 
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                   Figure 12. An F-Geometric mean labelling of  ' '
9 1 2,D C v v  and its edge labelling 

 

Theorem 2.12.  
 

The triangular ladder nTL  is an F-Geometric mean graph, for 2n  . 

 

Proof:   
 

Let  1 2 1 2, ,..., , , ,...,n nu u u v v v be the vertex set of  nTL  and let  1 1 1, , ;i i i i i iu u v v u v    

  1 1 ; 1i ii n u v i n       be the edge set of  nTL . Then nTL  have 2n  vertices and 

4 3n  edges. 

 

We define    : 1,2,3,...,4 2nf V TL n  as follows:  

 

( ) 4 1, for 1 1, ( ) 4 2 and ( ) 4 3, for 1i n if u i i n f u n f v i i n           . 

 

The induced edge labelling is as follows:  

 

1( ) 4 , for 1 1, ( ) 4 3, for 1 ,i i i if u u i i n f u v i i n 
          

1( ) 4 1, for 1 1i if u v i i n
       and 1( ) 4 2, for 1 1i if v v i i n

      . 

 

Hence, f is an F-Geometric mean labelling of the nTL . Thus the triangular ladder nTL  is an       

F-Geometric mean graph, for 2n  . 

 

An F-Geometric mean labelling of 8TL  is shown in Figure 13. 
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Figure 13. An F-Geometric mean labelling of 8TL  and its edge labelling 

 

Theorem 2.13.  

 

 is an F-Geometric mean graph, for 2n  . 

 

Proof:  
 

Let  , ; 1i iu v i n    and    1; 1 1 ; 1 .i i i iu u i n u v i n        

Let ix  be the vertex which divides the edge i iu v , for 1 i n  and iy  be the vertex which 

divides the edge 1i iu u  , for 1 1i n   . Then  , , , ; 1 ,i i i ju v x y i n    

1 1j n   and    1, ; 1 , ; 1 1 .i i i i i i i iu x v x i n u y y u i n        

 

 We define  as follows: 

 

( ) 4 1, for 1 , ( ) 4 1, for 1 1,i if u i i n f y i i n        
 

( ) 4 2, for 1if x i i n      and   
1, 1,

4 4, 2 .
i

i
f v

i i n


 

    
The induced edge labelling is as follows: 

 

   4 1, for 1 1, 4 1, for 1 1,i i i i 1f u y i i n f y u i i n 
         

  4 2, for 1i if u x i i n      and  
1, 1,

4 4, 2 .
i i

i
f v x

i i n

 
 

    
Hence, f is an F-Geometric mean labelling of . Thus, the graph  is an                     

F-Geometric mean graph, for 2n  . 

 

An F-Geometric mean labelling of  is shown in Figure 14. 

 
Figure 14. An F-Geometric mean labelling of  and its edge labelling 
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Theorem 2.14.  

 

Any arbitrary subdivision of 3S  is an F-Geometric mean graph. 

 

Proof:  

 

Let 0 1 2 3, , ,v v v v  be the vertices of 3S  in which 0v  is the central vertex and 1 2 3, andv v v  are 

the pendant vertices of 3S . Let the edges 0 1 0 2 0 3, andv v v v v v  of 3S  be subdivided by 

1 2 3
, andp p p  number of new vertices respectively. Let G be a graph of arbitrary subdivision 

of 3S . 

 

Let    
1 2

(1) (1) (1) (1) (2) (2) (2) (2)
0 1 0 21 2 3 1 2 3

, , , ,..., 1 , , , , ,..., 1 and
p p

v v v v v v v v v v v v     
(3)

0 1
, ,v v  

 
3

(3) (3) (3)
32 3

, ,..., 1
p

v v v v  be the vertices of G and 
( )

0 0
, for 1 3.

i
v v i    

 

Let 
( ) ( ) ( )

1
, 1 1 and 1 3

i

i i i
j jj

e v v j p i


       be the edges of G and G has 
1 2 3

4p p p    

vertices and 
1 2 3

3p p p    edges with 
1 2 3

p p p  . 

 

We define    
1 2 3

: 1,2,3,..., 4f V G p p p    as follows: 

 

 1 1
1

( )
2 2( ) 3, 4 2 , for 1 1,1

0 if v p p f v p p i i p           

  1 2 1

2 1 2 1 2

(2)
3 2 , 1 1,

2 , 2 1 and
i

p p i i p
f v

p i p i p p p

     
 

      

 
1 2 3

(3)and 3 , for 1 1if v p p i i p       . 

 
The induced edge labelling is as follows: 

 

1 2 1

(1) (1)
1( ) 2 2 , for 1 ,i if v v p p i i p
      

  1 2 1

2 1 2 1 2

(2) (2)
1 2 , 1 ,

1 , 1 and ,
i i 1

p p i i p
f v v

p i p i p p p




    
 

     
 

1 2 3 1 2

(3) (3) (1)
01 1( ) 3 , for 1 , ( ) 2,i if v v p p i i p f v v p p 

         
 

1 2

(1)
2( ) 10f v v p p     and

1 2

(1)
0 3( ) 3f v v p p    . 

 

Hence, f is an F-Geometric mean labelling of G. Thus, the arbitrary subdivision of 3S  is an                

F-Geometric mean graph. 

 

An F-Geometric mean labelling of G with 
1 2 3

6, 9 and 10p p p    is as shown in Figure 

15. 
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     Figure 15. An F-Geometric mean labelling of arbitrary subdivision of 3S  and its edge labelling 

 

3. Conclusion 

In this paper, we analysed the F-Geometric meanness of some standard graphs. We propose 

the following open problems to the readers for further research work. 

 

Open Problem 1. 

 

Find a sub graph of a graph in which the graph is not an F-Geometric mean graph.  

 

Open Problem 2. 

 

Find a necessary condition for a graph to be an F-Geometric mean graph. 

 

By Theorem 2.6, we observe that G + e is not necessarily an F-geometric mean graph when 

G is an F-geometric mean graph and e is an additional edge. Also from Theorem 2.2, G - e is 

not necessarily an F-geometric mean graph when e is a cut edge and G is an F-geometric 

mean graph. So it is possible to discuss the remaining case. 
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Open Problem 3. 

 

For a non-cut edge e, characterize the F-geometric mean graph G in which G - e is also an     

F-geometric mean graph. 
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