Applications and Applied Mathematics: An International Journal (AAM)

12-2015

F-Geometric Mean Graphs

A. D. Baskar
Mepco Engineering College (PO)
S. Arockiaraj
Mepco Engineering College (PO)

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam
Part of the Discrete Mathematics and Combinatorics Commons

Recommended Citation

Baskar, A. D. and Arockiaraj, S. (2015). F-Geometric Mean Graphs, Applications and Applied Mathematics: An International Journal (AAM), Vol. 10, Iss. 2, Article 20.
Available at: https://digitalcommons.pvamu.edu/aam/vol10/iss2/20

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu.

F-Geometric Mean Graphs

A. Durai Baskar and S. Arockiaraj

Department of Mathematics
Mepco Schlenk Engineering College
Mepco Engineering College (PO)
Sivakasi - 626005
Tamil Nadu, India
Email: $\underline{\text { a.duraibaskar@gmail.com; psarockiaraj@gmail.com }}$

Received: November 1, 2014; Accepted: June 26, 2015

Abstract

:

In a study of traffic, the labelling problems in graph theory can be used by considering the crowd at every junction as the weights of a vertex and expected average traffic in each street as the weight of the corresponding edge. If we assume the expected traffic at each street as the arithmetic mean of the weight of the end vertices, that causes mean labelling of the graph. When we consider a geometric mean instead of arithmetic mean in a large population of a city, the rate of growth of traffic in each street will be more accurate. The geometric mean labelling of graphs have been defined in which the edge labels may be assigned by either flooring function or ceiling function. In this, the readers will get some confusion in finding the edge labels which edge is assigned by flooring function and which edge is assigned by ceiling function. To avoid this confusion, we establish the F-geometric mean labelling on graphs by considering the edge labels obtained only from the flooring function. An F-Geometric mean labelling of a graph G with q edges, is an injective function from the vertex set of G to $\{1,2$, $3, \ldots, q+1\}$ such that the edge labels obtained from the flooring function of geometric mean of the vertex labels of the end vertices of each edge, are all distinct and the set of edge labels is $\{1,2,3, \ldots$, $q\}$. A graph is said to be an F-Geometric mean graph if it admits an F-Geometric mean labelling. In this paper, we study the F-geometric meanness of the graphs such as cycle, star graph, complete graph, comb, ladder, triangular ladder, middle graph of path, the graphs obtained from duplicating arbitrary vertex by a vertex as well as arbitrary edge by an edge in the cycle and subdivision of comb and star graph.

Keywords: Labelling, F-Geometric mean labelling, F-Geometric mean graph
MSC 2010 No.: 05C78

I. I. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology, the readers are referred to the book of Harary (1972). For a detailed survey on graph labelling we refer the reader to the book of Gallian (2014).

A path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, n}$ is called a star graph and it is denoted by $S_{n} . G o K_{1}$ is the graph obtained from G by attaching a new pendant vertex to each vertex of G. Let G_{1} and G_{2} be any two graphs with p_{1} and p_{2} vertices respectively. Then the Cartesian product $G_{1} \times G_{2}$ has $p_{1} p_{2}$ vertices which are $\left\{(u, v): u \in G_{1}, v \in G_{2}\right\}$. The edges are obtained as follows: $\left(u_{1}, v_{1}\right)$ and $\left(u_{2}, v_{2}\right)$ are adjacent in $G_{1} \times G_{2}$ if either $u_{1}=u_{2}$ and v_{1} and v_{2} are adjacent in G_{2} or u_{1} and u_{2} are adjacent in G_{1} and $v_{1}=v_{2}$. The middle graph $M(G)$ of a graph G is the graph whose vertex set is $\{v: v \in V(G)\} \cup\{e: e \in E(G)\}$ and the edge set is

$$
\begin{aligned}
\left\{e_{1} e_{2}: e_{1}, e_{2}\right. & \left.\in E(G) \text { and } e_{1} \text { and } e_{2} \text { are adjacent edges of } G\right\} \\
& \cup\{v e: v \in V(G), e \in E(G) \text { and } \mathrm{e} \text { is incident with } v\} .
\end{aligned}
$$

Let G be a graph and let v be a vertex of G. The duplicate graph $D\left(G, v^{\prime}\right)$ of G is the graph whose vertex set is $V(G) \cup\left\{v^{\prime}\right\}$ and edge set is

$$
E(G) \cup\left\{v^{\prime} x: x \text { is the vertex adjacent to } v \text { in } \mathrm{G}\right\} .
$$

Let G be a graph and let $e=u v$ be an edge of G. The duplicate graph $D\left(G, e^{\prime}=u^{\prime} v^{\prime}\right)$ of G is the graph whose vertex set is $V(G) \cup\left\{u^{\prime}, v^{\prime}\right\}$ and edge set is $E(G) \cup\left\{u^{\prime} x, v^{\prime} y: x\right.$ and y are the vertices adjacent with u and v in G respectively $\}$. The triangular ladder $T L_{n}, n \geq 2$ is a graph obtained by completing the ladder $P_{2} \times P_{n}$ by adding the edges $u_{i} v_{i+1}$ for $1 \leq i \leq n-1$. For a graph G the graph $S(G)$ is obtained by subdividing each edge of G by a vertex. An arbitrary subdivision of a graph G is a graph obtained from G by a sequence of elementary subdivisions forming edges into paths through new vertices of degree 2.

The study of graceful graphs and graceful labelling methods was first introduced by Rosa (1967). The concept of mean labelling was first introduced and developed by Somasundaram and Ponraj (2003). Further, it was studied by Vasuki et al. (2009, 2010, 2011). Vaidya and Lekha Bijukumar (2010) discussed the mean labelling of some graph operations. Mohanaselvi and Hemalatha (2014) discussed the super geometric mean labelling of various classes of some graphs.

A function f is called an F-Geometric mean labelling of a graph $G(V, E)$ if $f: V(G) \rightarrow\{1,2,3, \ldots, q+1\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ defined as

$$
f^{*}(u v)=\lfloor\sqrt{f(u) f(v)}\rfloor, \text { for all } u v \in E(G),
$$

is bijective. A graph that admits an F-Geometric mean labelling is called an F-Geometric mean graph.

Somasundaram et al. (2011) defined the geometric mean labelling as follows: A graph $G=(V, E)$ with p vertices and q edges is said to be a geometric mean graph if it possible to label the vertices $x \in V$ with distinct labels $f(x)$ from $1,2, \ldots, q+1$ in such a way that when each edge $e=u v$ is labelled with $f(u v)=\lfloor\sqrt{f(u) f(v)}\rfloor$ or $\lceil\sqrt{f(u) f(v)}\rceil$, then the edge labels are distinct.

Somasundaram et al. (2012) have given the geometric mean labelling of the graph $C_{5} \cup C_{7}$ as in the Figure 1.

Figure 1. A Geometric mean labelling of $C_{5} \cup C_{7}$
From the above figure, for the edge $u v$, they have used flooring function $\lfloor\sqrt{f(u) f(v)}\rfloor$ and for the edge $v w$, they have used ceiling function $\lceil\sqrt{f(v) f(w)}\rceil$ for fulfilling their requirement. To avoid the confusion of assigning the edge labels in their definition, we just consider the flooring function $\lfloor\sqrt{f(u) f(v)}\rfloor$ for our discussion. Based on our definition, the F-Geometric mean labelling of the same graph $C_{5} \cup C_{7}$ is given in Figure 2.

Figure 2. An F-Geometric mean labelling of $C_{5} \cup C_{7}$ and its edge labelling

In this paper, we study the F-Geometric meanness of the graphs, namely, cycle C_{n} for $n \geq 3$, the star graph S_{n} for $n \leq 3$, the complete graph K_{n} for $n \leq 3$, the comb $P_{n} o K_{1}$ for any positive integer n, the ladder $P_{2} \times P_{n}$ for any positive integer n, the middle graph $M\left(P_{n}\right)$, the graphs obtained by duplicating an arbitrary vertex as well as arbitrary edge in the cycle C_{n}, the triangular ladder $T L_{n}$ for $n \geq 2$, the graph $S\left(P_{n} o K_{1}\right)$ and the arbitrary subdivision of S_{3}.

2. Main Results

To study the F-geometric meanness, some of the standard graphs, and graphs obtained from some graph operations are taken for discussion.

Lemma 2.1.

Let G be a graph. If $|V(G)|>|E(G)|+1$, then G does not admit an F-Geometric mean labelling.

Proof:

If $|V(G)|>|E(G)|+1$, then the vertex labelling will not be injective and hence the result follows.

Theorem 2.2.

The union of any two trees is not an F-Geometric mean graph.

Proof:

Let G be the union of two trees S and T. Then If $|V(G)|=|V(S)|+|V(T)|$ and $|E(G)|=|E(S)|+|E(T)|=|V(S)|+|V(T)|-2$ then by Lemma 2.1, the result follows.

Corollary 2.3.

Any forest is not an F-Geometric mean graph.

Theorem 2.4.

Every cycle is an F-Geometric mean graph.

Proof:

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n}.
We define

$$
f: V\left(C_{n}\right) \rightarrow\{1,2,3, \ldots, n+1\}
$$

as follows:

$$
f\left(v_{i}\right)= \begin{cases}i, & 1 \leq i \leq\lfloor\sqrt{n+1}\rfloor-1, \\ i+1, & \lfloor\sqrt{n+1}\rfloor \leq i \leq n .\end{cases}
$$

The induced edges labelling is as follows:

$$
f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}i, & 1 \leq i \leq\lfloor\sqrt{n+1}\rfloor-1, \\ i+1, & \lfloor\sqrt{n+1}\rfloor \leq i \leq n-1,\end{cases}
$$

and

$$
f^{*}\left(v_{1} v_{n}\right)=\lfloor\sqrt{n+1}\rfloor
$$

Hence, f is an F-Geometric mean labelling of the cycle C_{n}. Thus the cycle C_{n} is an F-Geometric mean graph.

An F-Geometric mean labelling of C_{6} is shown in Figure 3.

Figure 3. An F-Geometric mean labelling of C_{6} and its edge labelling

Theorem 2.5.

The star graph S_{n} is an F-Geometric mean graph if and only if $n \leq 3$.

Proof:

The number of vertices and edges of S_{n} are $n+1$ and n respectively. If f is an F-geometric mean labelling of S_{n}, then it is a bijective function from $V\left(S_{n}\right)$ to $\{1,2,3, \ldots, n+1\}$. As we
have to label 1 for an edge, the vertex labels of its pair of adjacent vertices are either 1 and 2 or 1 and 3. So, the central vertex of S_{n} is labelled as either 1 or 2 or 3 . 1 cannot be a label for the central vertex in the case of $n \geq 2$, since two of the pendant vertices of S_{n} are to be labelled as 2 and 3 . When $n \geq 3,2$ cannot be the label for the central vertex, since two of its pendant vertices having the labels 3 and 4 . When $n \geq 4$, the pendant vertices are labelled to be 4 and 5 if the label of central vertex is 3 .

The F-Geometric mean labelling of $S_{n}, n \leq 3$ are given in Figure 4 .

Figure 4. The F-Geometric mean labelling of $S_{n}, n \leq 3$ and its edge labelling

Theorem 2.6.

Every complete graph $K_{n}, n \geq 4$ is not an F-Geometric mean graph.

Proof:

To get the edge label q, q and $q+1$ should be the vertex labels for two of the vertices of K_{n}, say x and y. Also to obtain the edge label 1,1 is to be a vertex label of a vertex of K_{n}, say v. Since $q=n C_{2}$ in K_{n} and $q+1<(n-1)^{2}$ for $n \geq 4$, the edge labels of the edges $v x$ and $v y$ are one and the same. Hence K_{n} is not an F-Geometric mean graph. While $n=2$ and 3, the F-geometric mean labelling of K_{n} are given in Figure 5.

Figure 5. The F-Geometric mean labelling of K_{2} and K_{3} and its edge labelling

Theorem 2.7.

Every comb graph is an F-Geometric mean graph.

Proof:

Let $G=P_{n} o K_{1}$ be a comb graph for any positive integer n having $2 n$ vertices and $2 n-1$ edges. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and v_{i} be the pendant vertices attached at each u_{i}, for $1 \leq i \leq n$. Then, the edge set of G is $\left\{u_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup$ $\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\}$.

We define $f: V(G) \rightarrow\{1,2,3, \ldots, 2 n\}$ as follows:

$$
f\left(u_{i}\right)=2 i \text {, for } 1 \leq i \leq n \text { and } f\left(v_{i}\right)=2 i-1, \text { for } 1 \leq i \leq n .
$$

The induced edge labelling is as follows:

$$
f^{*}\left(u_{i} u_{i+1}\right)=2 i \text {, for } 1 \leq i \leq n-1 \text { and } f^{*}\left(u_{i} v_{i}\right)=2 i-1 \text {, for } 1 \leq i \leq n .
$$

Hence, f is an F-Geometric mean labelling of the $\operatorname{comb} P_{n} o K_{1}$. Thus, the comb $P_{n} o K_{1}$ is an F-Geometric mean graph for any positive integer n.

An F-Geometric mean labelling of $P_{8} o K_{1}$ is shown in Figure 6.

Figure 6. An F-Geometric mean labelling of $P_{8} o K_{1}$ and its edge labelling

Theorem 2.8.

Every ladder graph is an F-Geometric mean graph.

Proof:

Let $G=P_{2} \times P_{n}$ be a ladder graph for any positive integer n having $2 n$ vertices and $3 n-2$ edges. Let $u_{1}, u_{2}, \ldots, u_{n}$ and $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of G. Then the edge set of G is

$$
\left\{u_{i} u_{i+1}, v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\} .
$$

We define $f: V(G) \rightarrow\{1,2,3, \ldots, 3 n-1\}$ as follows:

$$
f\left(u_{i}\right)=3 i-1 \text {, for } 1 \leq i \leq n \text { and } f\left(v_{i}\right)=3 i-2 \text {, for } 1 \leq i \leq n .
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(u_{i} u_{i+1}\right)=3 i \text {, for } 1 \leq i \leq n-1, f^{*}\left(v_{i} v_{i+1}\right)=3 i-1, \text { for } 1 \leq i \leq n-1, \text { and } \\
f^{*}\left(u_{i} v_{i}\right)=3 i-2, \text { for } 1 \leq i \leq n .
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of the ladder $P_{2} \times P_{n}$. Thus, the ladder $P_{2} \times P_{n}$ is an F-Geometric mean graph for any positive integer n.

An F-Geometric mean labelling of $P_{2} \times P_{6}$ is shown in Figure 7 .

Figure 7. An F-Geometric mean labelling of $P_{2} \times P_{6}$ and its edge labelling

Theorem 2.9.

The middle graph of a path is an F-Geometric mean graph.

Proof:

Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of the path P_{n}. Then,

$$
\begin{gathered}
V\left(M\left(P_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\} \text { and } \\
E\left(M\left(P_{n}\right)\right)=\left\{v_{i} e_{i}, e_{i} v_{i+1} ; 1 \leq i \leq \mathrm{n}-1\right\} \cup\left\{e_{i} e_{i+1} ; 1 \leq i \leq n-2\right\} .
\end{gathered}
$$

We define $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 3 n-3\}$ as follows:

$$
f\left(v_{i}\right)=3 i-2 \text {, for } 1 \leq i \leq n-1, f\left(v_{n}\right)=3 n-3 \text { and } f\left(e_{i}\right)=3 i-1 \text {, for } 1 \leq i \leq n-1 .
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(v_{i} e_{i}\right)=3 i-2, \text { for } 1 \leq i \leq n-1, f^{*}\left(e_{i} v_{i+1}\right)=3 i-1, \text { for } 1 \leq i \leq n-1 \\
\text { and } f^{*}\left(e_{i} e_{i+1}\right)=3 i \text {, for } 1 \leq i \leq n-2 .
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of the middle graph $M\left(P_{n}\right)$. Thus, the middle graph $M\left(P_{n}\right)$ is an F-Geometric mean graph.

An F-Geometric mean labelling of $M\left(P_{6}\right)$ is shown in Figure 8.

Figure 8. An F-Geometric mean labelling of $M\left(P_{6}\right)$ and its edge labelling

Theorem 2.10.

For any vertex v of the cycle C_{n}, the duplicate graph $D\left(C_{n}, v^{\prime}\right)$ is an F-Geometric mean graph, for $n \geq 3$.

Proof:

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and let $v=v_{1}$ and its duplicated vertex is v_{1}.
Case (i). $n \geq 5$
We define $f: V\left(D\left(C_{n}, v^{\prime}\right)\right) \rightarrow\{1,2,3, \ldots, n+3\}$ as follows:

$$
\begin{gathered}
f\left(v_{1}\right)=n-1, f\left(v_{l}^{\prime}\right)=n+1, f\left(v_{2}\right)=n+2, f\left(v_{3}\right)=n+3, \text { and } \\
f\left(v_{i}\right)= \begin{cases}i-3, & 4 \leq i \leq\lfloor\sqrt{n+3}\rfloor+2, \\
i-2, & \lfloor\sqrt{n+3}\rfloor+3 \leq i \leq n .\end{cases}
\end{gathered}
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(v_{1} v_{2}\right)=n, f^{*}\left(v_{1} v_{n}\right)=n-2, f^{*}\left(v_{1}^{\prime} v_{2}\right)=n+1, f^{*}\left(v_{1}^{\prime} v_{n}\right)=n-1, f^{*}\left(v_{2} v_{3}\right)=n+2, \\
f^{*}\left(v_{3} v_{4}\right)=\lfloor\sqrt{n+3}\rfloor \text { and } f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}i-3, & 4 \leq i \leq\lfloor\sqrt{n+3}\rfloor+2, \\
i-2, & \lfloor\sqrt{n+3}\rfloor+3 \leq i \leq n-1 .\end{cases}
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of the graph $D\left(C_{n}, v^{\prime}\right)$.
Case (ii). $n=3,4$
The F-Geometric mean labelling of $D\left(C_{3}, v_{1}^{\prime}\right)$ and $D\left(C_{4}, v_{1}^{\prime}\right)$ are given in Figure 9.

Figure 9. The F-Geometric mean labelling of $D\left(C_{3}, v_{1}^{\prime}\right)$ and $D\left(C_{4}, v_{1}^{\prime}\right)$ and its edge labelling

An F-geometric mean labelling of the graph G obtained by duplicating the vertex v_{1} of the cycle C_{8} is shown in Figure 10.

Figure 10. An F-Geometric mean labelling of $D\left(C_{8}, v_{1}^{\prime}\right)$ and its edge labelling

Theorem 2.11.

For any edge e of the cycle C_{n}, the duplicate graph $D\left(C_{n}, e^{\prime}\right)$ is an F-Geometric mean graph, for $n \geq 3$.

Proof:

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the cycle C_{n} and let $e=v_{1} v_{2}$ and its duplicated edge is $e^{\prime}=v_{1} v_{2}$.

Case (i). $n \geq 6$
We define $f: V\left(D\left(C_{n}, e^{\prime}\right)\right) \rightarrow\{1,2,3, \ldots, n+4\}$ as follows:

$$
\begin{gathered}
f\left(v_{1}\right)=n-1, f\left(v_{1}^{\prime}\right)=n+1, f\left(v_{2}\right)=n+2, f\left(v_{2}^{\prime}\right)=n+3, \\
f\left(v_{3}\right)=n+4 \text { and } f\left(v_{i}\right)= \begin{cases}i-3, & 4 \leq i \leq\lfloor\sqrt{n+4}\rfloor+2, \\
i-2, & \lfloor\sqrt{n+4}\rfloor+3 \leq i \leq n .\end{cases}
\end{gathered}
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(v_{1} v_{2}\right)=n, f^{*}\left(v_{1} v_{n}\right)=n-2, f^{*}\left(v_{1}^{\prime} v_{n}\right)=n-1, f^{*}\left(v_{1}^{\prime} v_{2}^{\prime}\right)=n+1, \\
f^{*}\left(v_{2}^{\prime} v_{3}\right)=n+3, f^{*}\left(v_{2} v_{3}\right)=n+2, f^{*}\left(v_{3} v_{4}\right)=\lfloor\sqrt{n+4}\rfloor \\
\text { and } f^{*}\left(v_{i} v_{i+1}\right)= \begin{cases}i-3, & 4 \leq i \leq\lfloor\sqrt{n+4}\rfloor+2, \\
i-2, & \lfloor\sqrt{n+4}\rfloor+3 \leq i \leq n-1 .\end{cases}
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of the graph $D\left(C_{n}, e^{\prime}\right)$.
Case (ii). $n=3,4,5$
The F-Geometric mean labelling of $D\left(C_{3}, v_{1}^{\prime} v_{2}^{\prime}\right), D\left(C_{4}, v_{1}^{\prime} v_{2}^{\prime}\right)$ and $D\left(C_{5}, v_{1}^{\prime} v_{2}^{\prime}\right)$ are given in Figure 11.

Figure 11. An F-Geometric mean labelling of $D\left(C_{3}, v_{1}^{\prime} v_{2}^{\prime}\right), D\left(C_{4}, v_{1}^{\prime} v_{2}^{\prime}\right)$ and $D\left(C_{5}, v_{1}^{\prime} v_{2}^{\prime}\right)$ and its edge labelling

An F-geometric mean labelling of the graph G obtained by duplicating an edge $v_{1} v_{2}$ of the cycle C_{9} is shown in Figure 12.

Figure 12. An F-Geometric mean labelling of $D\left(C_{9}, v_{1}^{\prime} v_{2}^{\prime}\right)$ and its edge labelling

Theorem 2.12.

The triangular ladder $T L_{n}$ is an F-Geometric mean graph, for $n \geq 2$.

Proof:

Let $\left\{u_{1}, u_{2}, \ldots, u_{n}, v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of $T L_{n}$ and let $\left\{u_{i} u_{i+1}, v_{i} v_{i+1}, u_{i} v_{i+1}\right.$; $1 \leq i \leq n-1\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\}$ be the edge set of $T L_{n}$. Then $T L_{n}$ have 2 n vertices and $4 n-3$ edges.

We define $f: V\left(T L_{n}\right) \rightarrow\{1,2,3, \ldots, 4 n-2\}$ as follows:

$$
f\left(u_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1, f\left(u_{n}\right)=4 n-2 \text { and } f\left(v_{i}\right)=4 i-3 \text {, for } 1 \leq i \leq n .
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(u_{i} u_{i+1}\right)=4 i \text {, for } 1 \leq i \leq n-1, f^{*}\left(u_{i} v_{i}\right)=4 i-3, \text { for } 1 \leq i \leq n, \\
f^{*}\left(u_{i} v_{i+1}\right)=4 i-1, \text { for } 1 \leq i \leq n-1 \text { and } f^{*}\left(v_{i} v_{i+1}\right)=4 i-2, \text { for } 1 \leq i \leq n-1 .
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of the $T L_{n}$. Thus the triangular ladder $T L_{n}$ is an F-Geometric mean graph, for $n \geq 2$.

An F-Geometric mean labelling of $T L_{8}$ is shown in Figure 13.

Figure 13. An F-Geometric mean labelling of $T L_{8}$ and its edge labelling

Theorem 2.13.

$S\left(P_{n} o K_{1}\right)$ is an F-Geometric mean graph, for $n \geq 2$.

Proof:

Let $V\left(P_{n} o K_{1}\right)=\left\{u_{i}, v_{i} ; 1 \leq i \leq n\right\}$ and $E\left(P_{n} o K_{1}\right)=\left\{u_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{u_{i} v_{i} ; 1 \leq i \leq n\right\}$. Let x_{i} be the vertex which divides the edge $u_{i} v_{i}$, for $1 \leq i \leq n$ and y_{i} be the vertex which divides the edge $u_{i} u_{i+1}$, for $1 \leq i \leq n-1$. Then $V\left(S\left(P_{n} o K_{1}\right)\right)=\left\{u_{i}, v_{i}, x_{i}, y_{j} ; 1 \leq i \leq n\right.$, $1 \leq j \leq n-1\}$ and $E\left(S\left(P_{n} o K_{1}\right)\right)=\left\{u_{i} x_{i}, v_{i} x_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} y_{i}, y_{i} u_{i+1} ; 1 \leq i \leq n-1\right\}$.

We define $f: V\left(S\left(P_{n} o K_{1}\right)\right) \rightarrow\{1,2,3 \ldots, 4 n-1\}$ as follows:

$$
\begin{gathered}
f\left(u_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n, f\left(y_{i}\right)=4 i+1, \text { for } 1 \leq i \leq n-1, \\
f\left(x_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n \text { and } f\left(v_{i}\right)= \begin{cases}1, & i=1, \\
4 i-4, & 2 \leq i \leq n .\end{cases}
\end{gathered}
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(u_{i} y_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1, f^{*}\left(y_{i} u_{i+1}\right)=4 i+1, \text { for } 1 \leq i \leq n-1, \\
f^{*}\left(u_{i} x_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n \text { and } f^{*}\left(v_{i} x_{i}\right)=\left\{\begin{array}{lc}
1, & i=1, \\
4 i-4, & 2 \leq i \leq n .
\end{array}\right.
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of $S\left(P_{n} o K_{1}\right)$. Thus, the graph $S\left(P_{n} o K_{1}\right)$ is an F-Geometric mean graph, for $n \geq 2$.

An F-Geometric mean labelling of $S\left(P_{5} o K_{1}\right)$ is shown in Figure 14.

Figure 14. An F-Geometric mean labelling of $S\left(P_{5} o K_{1}\right)$ and its edge labelling

Theorem 2.14.

Any arbitrary subdivision of S_{3} is an F-Geometric mean graph.

Proof:

Let $v_{0}, v_{1}, v_{2}, v_{3}$ be the vertices of S_{3} in which v_{0} is the central vertex and v_{1}, v_{2} and v_{3} are the pendant vertices of S_{3}. Let the edges $v_{0} v_{1}, v_{0} v_{2}$ and $v_{0} v_{3}$ of S_{3} be subdivided by p_{1}, p_{2} and p_{3} number of new vertices respectively. Let G be a graph of arbitrary subdivision of S_{3}.

Let $v_{0}, v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}, \ldots, v_{p_{1}}^{(1)}+1\left(=v_{1}\right), v_{0}, v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}, \ldots, v_{p_{2}}^{(2)}+1\left(=v_{2}\right)$ and $v_{0}, v_{1}^{(3)}$, $v_{2}^{(3)}, v_{3}^{(3)}, \ldots, v_{p_{3}}^{(3)}+1\left(=v_{3}\right)$ be the vertices of G and $v_{0}=v_{0}^{(i)}$, for $1 \leq i \leq 3$.

Let $e_{j}^{(i)}=v_{j-1}^{(i)} v_{j}^{(i)}, 1 \leq j \leq p_{i}+1$ and $1 \leq i \leq 3$ be the edges of G and G has $p_{1}+p_{2}+p_{3}+4$ vertices and $p_{1}+p_{2}+p_{3}+3$ edges with $p_{1} \leq p_{2} \leq p_{3}$.

We define $f: V(G) \rightarrow\left\{1,2,3, \ldots, p_{1}+p_{2}+p_{3}+4\right\}$ as follows:

$$
\begin{gathered}
f\left(v_{0}\right)=p_{1}+p_{2}+3, f\left(v_{i}^{(l)}\right)=p_{1}+p_{2}+4-2 i, \text { for } 1 \leq i \leq p_{1}+1, \\
f\left(v_{i}^{(2)}\right)= \begin{cases}p_{1}+p_{2}+3-2 i, & 1 \leq i \leq p_{1}+1, \\
p_{2}+2-i, & p_{1}+2 \leq i \leq p_{2}+1 \text { and } p_{1} \neq p_{2}\end{cases} \\
\text { and } f\left(v_{i}^{(3)}\right)=p_{1}+p_{2}+3+i, \text { for } 1 \leq i \leq p_{3}+1 .
\end{gathered}
$$

The induced edge labelling is as follows:

$$
\begin{gathered}
f^{*}\left(v_{i}^{(1)} v_{i+1}^{(1)}\right)=p_{1}+p_{2}+2-2 i, \text { for } 1 \leq i \leq p_{1}, \\
f^{*}\left(v_{i}^{(2)} v_{i+1}^{(2)}\right)= \begin{cases}p_{1}+p_{2}+1-2 i, & 1 \leq i \leq p_{1}, \\
p_{2}+1-i, & p_{1}+1 \leq i \leq p_{2} \text { and } p_{1} \neq p_{2},\end{cases} \\
f^{*}\left(v_{i}^{(3)} v_{i+1}^{(3)}\right)=p_{1}+p_{2}+3+i, \text { for } 1 \leq i \leq p_{3}, f^{*}\left(v_{0} v_{1}^{(1)}\right)=p_{1}+p_{2}+2, \\
f^{*}\left(v_{0} v_{2}^{(1)}\right)=p_{1}+p_{2}+1 \text { and } f^{*}\left(v_{0} v_{3}^{(1)}\right)=p_{1}+p_{2}+3 .
\end{gathered}
$$

Hence, f is an F-Geometric mean labelling of G. Thus, the arbitrary subdivision of S_{3} is an F-Geometric mean graph.

An F-Geometric mean labelling of G with $p_{1}=6, p_{2}=9$ and $p_{3}=10$ is as shown in Figure 15.

Figure 15. An F-Geometric mean labelling of arbitrary subdivision of S_{3} and its edge labelling

3. Conclusion

In this paper, we analysed the F-Geometric meanness of some standard graphs. We propose the following open problems to the readers for further research work.

Open Problem 1.

Find a sub graph of a graph in which the graph is not an F-Geometric mean graph.

Open Problem 2.

Find a necessary condition for a graph to be an F-Geometric mean graph.
By Theorem 2.6, we observe that $G+e$ is not necessarily an F-geometric mean graph when G is an F-geometric mean graph and e is an additional edge. Also from Theorem 2.2, $G-e$ is not necessarily an F-geometric mean graph when e is a cut edge and G is an F-geometric mean graph. So it is possible to discuss the remaining case.

Open Problem 3.

For a non-cut edge e, characterize the F-geometric mean graph G in which $G-e$ is also an F-geometric mean graph.

Acknowledgement

The authors would like to thank the editor and three anonymous reviewers for helpful suggestions which improved the presentation of the paper.

REFERENCES

Gallian, J.A. (2014). A dynamic survey of graph labelling, The Electronic Journal of Combinatorics, 17.
Harary, F. (1972). Graph theory, Addison Wesely, Reading Mass.
Mohanaselvi, V. and Hemalatha, V. (2014). On super geometric mean labelling of graphs, Asia Pasific Journal of Research, 1(14): 79-87.
Nagarajan, A. and Vasuki, R. (2011). On the meanness of arbitrary path super subdivision of paths, Australas. J. Combin., 51: 41-48.
Rosa, A. (1967). On certain valuation of the vertices of graph, International Symposium, Rome, Gordon and Breach, N.Y. and Dunod Paris: 349-355.
Selvam, A. and Vasuki, R. (2009). Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1): 273-284.
Somasundaram, S. and Ponraj, R. (2003). Mean labelling of graphs, National Academy Science Letter, 26: 210-213.
Somasundaram, S. and Ponraj, R. (2003). Some results on mean graphs, Pure and Applied Mathematika Sciences, 58: 29-35.
Somasundaram, S., Vidhyarani, P. and Ponraj, R. (2011). Geometric mean labelling of graphs, Bullentin of pure and applied sciences, 30E: 153-160.
Somasundaram, S., Vidhyarani, P. and Sandhya, S.S. (2012). Some results on Geometric mean graphs, International Mathematical Form, 7: 1381-1391.
Vaidya, S.K. and Lekha Bijukumar (2010). Mean labelling in the context of some graph operations, International Journal of Algorithms, Computing and Mathematics,3(1):1-8.
Vasuki, R. and Nagarajan, A. (2010). Further results on mean graphs, Scientia Magna, 6(3):1-14.

