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Abstract 
 

In this paper, a nonlinear model is proposed and analyzed to study the spread of Leukemia by 

considering the effect of genetically engineered patients T cells to attack cancer cells. The model 

is governed by four dependent variables namely; naive or susceptible blood cells, infected or 

dysfunctional blood cells, cancer cells and immune cells. The model is analyzed by using the 

stability theory of differential equations and numerical simulation. We have observed that the 

system is stable in the local and global sense if antigenicity rate or rate of stimulation of immune 

cells is greater than a threshold value dependent on the density of immune cells. Further, external 

infusion of T cells (immune cells) reduces the concentration of cancer cells and infected cells in 

the blood. It is observed that the infected cells decrease with the increase in antigenicity rate or 

stimulation rate of immune response due to abnormal cancer cells present in the blood. This 

indicates that immune cells kill cancer cells on being stimulated and as antigenicity rate increases 

rate of destruction of cancer cells also increase leading to decrease in the concentration of cancer 

cells in the body. This decrease in cancer cells further causes decrease in the concentration of 

infected or dysfunctional cells in the body. 
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1. Introduction 
 

Leukemia means "white blood" but it is not as commonly called, blood cancer. It is a cancer of 

the tissues in which blood is formed. Bone marrow is the soft, spongy center of the bone that 

produces red blood cells, white blood cells and platelets. Red blood cells carry oxygen to cells 

throughout the body and, if there are too few red blood cells, symptoms such as anemia, 

shortness of breath appear. White blood cells fight infection, and platelets, which control blood 

clotting, prevent hemorrhaging. The spleen and the lymph nodes produce a type of white blood 

cell called lymphocyte. Lymphocytes produce antibodies, act against infection, and contribute to 

the body's own immune system. All blood-forming tissues daily release millions of each type of 

cell into one of the body's two circulatory systems-the blood vessel system and the lymph 

system. When leukemia strikes, millions of abnormal, immature white blood cells called 

leukocytes are released into these circulatory systems. Because these cells are immature, they 

cannot carry out their basic function of fighting infection. In advanced leukemia, the 

uncontrolled multiplication of abnormal cells results in crowding out the production of normal 

white cells to fight infections, of platelets to control hemorrhaging and of red blood cells to 

prevent anemia (Indian Cancer Society). In 2000, approximately 256,000 children and adults 

around the world developed a form of leukemia, and 209,000 died from it. This represents about 

3% of the almost seven million deaths due to cancer that year, and about 0.35% of all deaths 

from any cause. Of the sixteen separate sites the body compared, leukemia was the 12th most 

common class of neoplastic disease, and the 11
th

 most common cause of cancer-related death, 

Mathers et al. (2001). 

 

The most common treatment for cancer is chemotherapy. But chemotherapy, though helpful, also 

causes unwanted side effects. Therefore, an alternative solution has developed which is termed 

as Adoptive Immunotherapy. Adoptive Immunotherapy is a form of immunotherapy used in the 

treatment of cancer in which an individual's own white blood cells are coupled with a naturally 

produced growth factor to enhance their cancer-fighting capacity. Then, these are injected into 

tumor site to increase immune response locally. 

 

In a potential breakthrough in cancer research, scientists at the University of Pennsylvania have 

genetically engineered patients' T cells — a type of white blood cell — to attack cancer cells in 

advanced cases of a common type of leukemia. Two of the three patients who received doses of 

the designer T cells in a clinical trial remained cancer-free for more than a year, Eryn (2011)
 
. 

 

To build the cancer-attacking cells, the researchers modified a virus to carry instructions for 

making a molecule that binds with leukemia cells and directs T cells to kill them. Then they drew 

blood from three patients who suffered from chronic lymphocytic leukemia and infected their T 

cells with the virus. When they infused the blood back into the patients, the engineered T cells 

successfully eradicated cancer cells, multiplied to more than 1,000 times in number and survived 

for months. They even produced dormant "memory" T cells that might spring back to life if the 

cancer was to return. On average, the team calculated, each engineered T cell eradicated at least 

1,000 cancer cells. The findings, published simultaneously on August 2011, in the New England 

Journal of Medicine and Science Translational Medicine, were the first demonstration of the use 
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of gene transfer therapy to create "serial killer" T cells aimed at cancerous tumors, Eryn (2011). 

We focus on this therapy in our model. 

 

There is an extensive body of work on the study of spread of an infectious agent from cell to cell 

within one patient. Nowak and May (2000) have proposed a detailed surveys of the main ideas 

developed through such models. Several diseases with immune system response have been 

modeled in literature, for example, tuberculosis by Wigginton and Kirschner (2001) and hepatitis 

B disease by Nowak et al. (1996)
. 
H.I. Freedman (2000)

 
presents a detailed mathematical study 

of cancer immunotherapy. They presented a model of cancer treatment by immunotherapy, 

treating normal cells and cancer cells as competitors for common resources. The anti-cancer cells 

were thought of as predators on the cancer cells. Kolev (2003)
 
also presented a mathematical 

model, showing competition between tumors and immune system, considering the role of 

antibodies. Early modeling of leukemia includes models given by Cronkite and Vincent (1969), 

Rubinow and Lebowitz (1975), and Rubinow (1969). 

 

In this paper, a nonlinear mathematical model is proposed and analyzed to study the spread of 

leukemia with the effect of external engineered T cells infusion into the cancer patients. Our 

model consists of a system of four nonlinear ordinary differential equations for naive or 

susceptible blood cells, infective of dysfunctional blood cells, cancer cells and immune cells. We 

consider a source term for naive blood cells entering into the circulatory blood from other 

compartments like bone marrow, lymph nodes and thymus as well as from transfusion. The 

encounter of naive blood cells with the cancer cells are considered according to the law of mass 

action. On being infected by cancer cells, naive blood cells become dysfunctional and enter into 

the class of infectives. Further, we consider blood transfusion also in the model since blood 

transfusions are likely to be done in blood cancer patients by their family members. Immune 

cells are assumed to be activated and proliferated in the presence of costimulators and 

immunotherapy. 

 

2. Mathematical Model 
 

To model the problem, let us consider the spread of leukemia in the blood circulating system. Let 

x  be the population of naive/susceptible blood cells, y be the population of infected or 

dysfunctional blood cells. sc
 
is the population of leukemic or cancer cells (abnormal cells)  and 

z is the population of white blood cells or immune cells. Following the basic intracellular process 

of bilinear mass action for cancer growth, the epidemic model is proposed as follows: 

 

                                                         sxcxaA
dt

dx
 0 , 

                                                         yxc
dt

dy
s 0  , 

                                                           zckckk
dt

dc
ss

s
10  ,                                                    (2.1) 

                                                         ss zcbzbbcB
dt

dz
10  . 
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First term on the first equation of right hand side of model (2.1) is the recruitment rate of naive 

or susceptible blood cells entering into the circulatory blood from compartments like bone 

marrow, lymph nodes and thymus, nA  as well as from transfusion, tA . It is considered to be a 

constant A , thus nt AAA  . The second term is the natural death rate constant of naive blood 

cells which is considered to be proportional to its concentration, 0a being a constant.   is the 

decay rate constant of naive blood cells because of being killed/ infected by the cancer cells and 

becoming dysfunctional. It is assumed to be a bilinear mass action term, which says that the total 

number of encounters between members of two populations is proportional to the product of the 

sizes of two populations.  

 

In the second equation of the model (2.1), the bilinear term describes the change of susceptible 

blood cells to infected or dysfunctional blood cells and the second term is the natural death 

rate, 0 of these cells. 

 

In third equation of the model (2.1), first term k is a constant recruitment rate of cancer cells into 

the blood system and 0k is the natural death rate constant of cancer cells. The third term with 

coefficient 1k represents the loss of cancer cells due to encounter with the immune cells.  

 

Similarly, the fourth equation of the model (2.1) represents the rate of change of immune cells 

with time. B is the rate of external intravenous re-infusion of T cells into the cancer patients. b is 

the proliferation rate of T cells (immune cells) due to cancer antigen presenting cells in the blood 

if cancer relapse. 0b is the natural death rate of immune cells and fourth term with coefficient 

1b is loss rate of immune cells due to encounter with cancer cells. This term represents the 

competition among cancer and immune cells for its survival.  

The following lemma gives the region of attraction of the solution of the model (2.1) which we 

state without proof:
  

Lemma 1.  
 

Solutions of the system (2.1) are bounded within a region ,  

 

 where  

 

 
0

0 0 0

( , , , ) : 0 ( ) ,   0 ( ) ( ) ,  

                   0  and 0  

s

s

x y c z x t A a x t y t A

c k k z(t) B bk k b

      
   

      
  

 

 

and ),min( 00  a . 
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3. Equilibrium Analysis 
 

The model (2.1) has only one equilibrium point, namely, ),,,(*  zcyxE s  whose components 


scyx ,,  and 

z  are the positive solutions of the following algebraic equations: 

 

                                                   00  sxcxaA  ,                                                               (3.1)                        

                                                  00  yxcs  ,                                                                     (3.2)    

                                                 010  zckckk ss ,                                                                (3.3)                                               

                                                010  ss zcbzbbcB .                                                         (3.4) 

From (3.3) we have,  

 

                                                         
01

0

1 kzk

kk
cs




 .                                                               (3.5)  

 

Using (3.5) in (3.4) we have the following quadratic equation in z : 

 

                                       0)()( 01100
2

01  BkkbzBkkbbkzbk .                                    (3.6) 

 

It can be easily observed that (3.6) has a unique positive root by Descartes’ rule of sign, z (say). 

Using value of z in (3.5) we get 

 

          
,

1 01

0

kzk

kk
cs 






                                                            (3.7) 

,
)1(

01000

01

kzkakka

kzkA
x











  

 and          

.
0010000 k

k

kzkakka

A
y

























 

Now we perform local and global stability analysis of the equilibrium point *E . 

 

4.  Local Stability Analysis  
 

We present here local stability analysis of the equilibrium point *E  by linearization in the 

following theorem:  
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Theorem 4.1.  

 

The interior equilibrium point *E  is locally asymptotically stable.   

 

Proof: 

See Appendix A. 

 

 

5.  Global Stability Analysis 
 

In the following theorem, we will show the global stability of the equilibrium point. In order to 

prove this theorem we will use lemma 1 that establishes a region of attraction for model (2.1). 

 

Theorem 5.1.  

 

If the inequality bkzbk 0
2
max112   holds then the interior equilibrium point *E is globally 

asymptotically stable.  

Proof: 

See Appendix B. 

The above theorem gives a sufficient condition for the interior equilibrium *E to be globally 

asymptotically stable. It states that dormant memory or antigenicity of immune cells should be 

greater than a threshold value the magnitude of which depends on the equilibrium level of 

immune cells, death rate of cancer cells due to immune cells, death rate of immune cells due to 

its competition with cancer cells and natural death rate of cancer cells. Under condition  

bkzbk 0
2
max112  , 

the immunotherapy will be able to cure cancer.  

 

From (3.7) we observe that when k , that is, the case when number of immature white blood 

cells becomes very large then susceptible blood cells concentration, 0x . This may be due to 

complete infection of blood cells in blood circulatory system due to cancer cells. However, 

infected cell concentration in the blood also reaches a high equilibrium value given by  

0

A
y  as k . 
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6.  Particular Cases 
 

 

Case I:  

 

In the model (2.1) if we neglect the immune response of the body i.e. 0z , then the model is 

simplified as follows:   

 

                                                    ,0 sxcxaA
dt

dx
  

                                                   
,0 yxc

dt

dy
s  

                                                               (6.1)          
 

                                                   
.0 s

s ckk
dt

dc
                                                                       

 

This situation in the body takes place in severe cases when the immune system is very weak. In 

such cases, cancer cells and infected cells continue to grow without any inhibition leading to 

worsening of clinical condition of the patient. The model (6.1) has following equilibrium: 

 

                                                    
,

00 kka

A
x




                                                                (6.2) 

                                                    
,

0000 k

k

kka

A
y 


















                                                   (6.3)  

                                                    
,

0k

k
cs 

                                                                             (6.4) 

                                                    .0z                                                                                   (6.5) 

 

In this case, cancer cells grow without any constraint and approach its maximum possible limit in 

the blood.  

 

Case II:  

 

If we consider immunotherapy and assume that there is no dormant memory or immune response 

activation from professional antigen presenting cells, then we have the following mathematical 

model: 

                                                 
,0 sxcxaA

dt

dx
  

                                                
,0 yxc

dt

dy
s    
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,10 zckckk

dt

dc
ss

s                                                            (6.6) 

                                               
.10 szcbzbB

dt

dz


 
 

This model also has only one equilibrium point )ˆ,ˆ,ˆ,ˆ(ˆ zcyxE s . 

 

When  0
dt

dcs , we have  
 

                                              
.

1 01

0

kzk

kk
cs




                                                       (6.7) 

 

Using (6.7), white blood cell population ẑ (say) is determined by the unique root of the equation,  

 

                                 0)( 01100
2

01  BkzBkkbbkzbk .                                    (6.8)                                                

 

It can be easily observed that (6.8) has a unique positive root by Descartes’ rule of sign. 

 

Equilibrium values of population of other cells in the blood system are given by  

 

         
,

ˆ

)ˆ1(
ˆ

01000

01

kzkakka

kzkA
x






                          (6.9) 

                                              ,
ˆ

ˆ
0010000 k

k

kzkakka

A
y 


















                                (6.10) 
 

  and               

       
.

ˆ1
ˆ

01

0

kzk

kk
cs




                                               (6.11) 

 

We observe that equilibrium value of cancer cells in this case is less than that in case I due to 

immune response activation by immunotherapy. Thus, in this case, growth of cancer cell or 

immature white blood cells is checked by the immune response activation due to infusion of 

engineered T cells (immune cells) in the blood. It implies that immunotherapy by engineered T 

cells is helpful in controlling the number of cancer cells in the blood even when no antigenicity 

due to cancer cells is present.    
 

 

Case III:  

Now, if we consider immune response due to natural stimulation only and no immunotherapy is 

done then model (2.1) becomes: 
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,0 sxcxaA

dt

dx
  

                                                 
,0 yxc

dt

dy
s    

                                                
,10 zckckk

dt

dc
ss

s                                                        (6.12) 

                                                 
.10 ss zcbzbbc

dt

dz
  

 

The model (6.12) also has only one equilibrium point that is obtained by equating to zero right 

hand side of the system (6.12).  We have  
                                    

 

 

     
.

1 01

0

kzk

kk
cs




                                            (6.13) 

 

using (6.13), white blood cell population z~  (say) is determined by the unique root of the 

equation, 

  

                                                      0)( 100
2

01  bkzkbbkzbk .                                       (6.14)                                                

 

It can be easily observed that (6.14) has a unique positive root by Descartes’ rule of sign. 

 

Equilibrium values of population of other cells in the blood system are given by  

 

                                                    
,~

)~1(~

01000

01

kzkakka

kzkA
x






                                            (6.15) 

                                                   ,~
~

0010000 k

k

kzkakka

A
y 


















                           (6.16)
 

                                                    
.~1

~

01

0

kzk

kk
cs




                                                              (6.17) 

From (6.17), we observe that concentration of cancer cells case III is lesser than that in case I 

because of the presence of immune response in the blood by natural stimulation.  

Equilibrium value of cancer cells in case II and III depend on the number of immune cells in 

either case. However, in practice equilibrium value of immune cells due activation by 

immunotherapy by external infusion of engineered T cells is more than that in case without 

immunotherapy thus, number of cancer cells in the blood can be controlled better by 

immunotherapy rather than by natural stimulation of immune cells.   
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In each case, we observe that susceptible or naive blood cells tend to extinction and each 

susceptible blood cell becomes infected if concentration of cancer cells or abnormal immature 

white blood cells increases to a large value (that is k ). However, in the presence of immune 

response equilibrium level of cancer cells can be controlled to a lower level.  

 

7.  Numerical Simulation 
 

Here we justify our analytical findings numerically by choosing the following parameter values 

in the model (2.1): 

 

                         ,5.1A ,01.00 a ,00001.0 ,003.00  ,10k ,50 k  

                               ,005.01 k ,2B ,01.0b ,05.00 b 001.01 b .                                     (7.1) 

 

We observe that model (2.1) has a unique positive equilibrium for the above set of parameters. 

The numerical value of equilibrium point is: 

 

                         ,7118.149x    ,9607.0y      ,9251.1
sc    8877.38z       

 

In addition, global stability condition of the system is also satisfied. To see the effect of various 

parameters on the dynamics of the system, we plot the graphs with the help of MATLAB 

software.  

 

Figures 1 and 2 are drawn to show variation of cancer cells and infected cells with time for 

different growth rate of cancer cells in the body, .k  It is observed that the number of cancer cells 

and infected cells increases with the increase in .k  This is obvious, as due to increase in the 

recruitment rate of immature white blood cells in the blood, number of immature white blood 

cells in the blood will increase. Due to increase in number of immature white blood cells, rate of 

infection of susceptible blood cells due to overcrowding will also increase. This will increase the 

concentration of infected cells in the blood. Further, increase in cancer cells in the blood due to 

increase in its growth rate from bone marrow is obvious.  

0 100 200 300 400 500
1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

Time (t)

c s(t
)

 

 

k = 10

k = 12

k = 14

 
Figure 1. Variation of cancer cells with time for different growth rate 

of cancer cells in the body k  
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0 500 1000 1500 2000 2500 3000
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Time (t)

y
(t

)

 

 

k = 10

k = 12

k = 14

 
Figure 2. Variation of infected cells with time for different growth 

rate of cancer cells in the body k  

 

Figure 3 shows the effect of decay rate coefficient of susceptible or naive blood cells due to 

interaction with the cancer cells on the infected cells with time,  . We note here that the number 

of infected cells increase with the increase in  . It implies that interaction of cancer cells with 

uninfected cells give rise to infected cells and as interaction rate increases, number of infected 

cells increase significantly.  

 

0 500 1000 1500 2000 2500 3000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Time (t)

y
(t

)

 

 

 = 0.000010

 = 0.000012

 = 0.000015

 
Figure 3.  Variation of infected cells with time for different decay rate 

coefficient of susceptible or naive blood cells due to 

interaction with the cancer cells   
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From the figure, we observe that first infected cell population rises and finally obtain a steady 

state. It implies that initially cancer cells or abnormal white blood cells divide out of control and 

crowd out the normal cells in the bloodstream. Resulting in an abrupt increase in number of 

infected blood cells that could not function properly. However, later with the time, infected cell 

lysis due to apoptosis takes place and infected cells reach a constant equilibrium level. 

 

Figure 4 displays variation of cancer cell concentration with time for different rate of external re-

infusion of T cells (immune cells) into the cancer patients, B. It is observed that when 

immunotherapy is not done, concentration of cancer cells in the blood is high. However, when 

immunotherapy is done it decrease. Further, if B  is increased according to the need of the 

patient, concentration of cancer cells decreases. It may be due to an increase in cancer fighting 

capability of immune cells due to immunotherapy because of which cancer cells are destroyed 

and their concentration in the blood decreases.    
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Figure 4. Variation of cancer cell concentration with time for different 

rate of external re-infusion of T cells (immune cells) into the 

cancer patients B  

 

 

Figure 5 displays the effect of variation of B on infected or dysfunctional cells. It is observed that 

infected cells also decrease with the increase in B and equilibrium level of infected cells without 

therapy is more than the case when therapy is not done in the patients.  In addition, since number 

of cancer cells in the blood decrease due to therapy, infected cells also decrease due to lesser 

overcrowding of susceptible cells by cancer cells.  
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Figure 5. Variation of B on infected or dysfunctional cells with time 

Figure 6 displays the variation of cancer cells with time for different antigenicity rate or 

stimulation rate of immune response due to abnormal cancer cells present in the blood, b. It is 

observed that the infected cells decrease with the increase in b. This is an indication of the fact 

that immune cells kill cancer cells on being stimulated and as antigenicity rate increases rate of 

destruction of cancer cells also increase leading to decrease in the concentration of cancer cells 

in the body. This is achieved in practice by Immunotherapy.   
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Figure 6. Variation of cancer cells with time for different 

antigenicity rate or stimulation rate of immune response 

due to abnormal cancer cells present in the blood b 

Figure 7 is drawn to show variation of infected cells with time for different antigenicity rate or 

stimulation rate of immune response due to abnormal cancer cells present in the blood, b. It is 

found that infected cells also decrease with the increase in b. This indicates elimination of 

infected cells from the system by the immune response of the body. With the increase in 

stimulation rate, number of cancer cells are reduced due to which lesser number of susceptible 

cells are killed by them and hence concentration of infected cells in the blood also decreases. 

Thus, immune response reduces the concentration of cancer cells and infected cells in the body. 
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Figure 7. Variation of infected cells with time for different antigenicity 

rate or stimulation rate of immune response due to abnormal 

cancer cells present in the blood b 

 

8.  Conclusion 
 

In this paper, a nonlinear model is proposed and analyzed to study the spread of Leukemia by 

considering the effect of genetically engineered patients T cells to attack cancer cells. The model 

is governed by four dependent variables namely; naive or susceptible blood cells, infected or 

dysfunctional blood cells, cancer cells and immune cells. The model is analyzed by using the 

stability theory of differential equations and numerical simulation.  

Analytically, we have determined that the system is stable in the local and global sense if 

antigenicity rate of stimulation of white blood cells is greater than a threshold value dependent 

on the density of immune cells. Further, it is observed that number of cancer cells in the blood 

can be controlled by external infusion of genetically engineered patients T cells.
                                                                                                                                

    

Numerical simulation of the model demonstrates some important results given below: It is 

observed that the number of cancer cells and infected cells increases with the increase in growth 

rate of cancer cells. It is observed that the number of infected cells increase with the increase in 

 . It implies that interaction of cancer cells with uninfected cells give rise to more infected cells 

and as interaction rate increases, number of infected cells increase significantly. 

In addition, we studied the effect of external intravenous infusion of T cells (immune cells) on 

the spread of leukemia numerically and found that the number of cancer cells in the blood 

decrease due to it. Further, infected cells also decrease due to lesser overcrowding of susceptible 

cells by cancer cells.  
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It is observed that the infected cells decrease with the increase in antigenicity rate or stimulation 

rate of immune response due to abnormal cancer cells present in the blood. This indicates that 

immune cells kill cancer cells on being stimulated and as antigenicity rate increases rate of 

destruction of cancer cells also increase leading to decrease in the concentration of cancer cells 

in the body. Decrease in cancer cells further causes decrease in the concentration of infected or 

dysfunctional cells in the body. 

 

Acknowledgement 

We gratefully acknowledge the assistance provided to the second author in the form of a Senior 

Research Fellowship from University Grants Commission, New Delhi, India. 

 

REFERENCES 
 

Brown Eryn (2011).  Huge' results raise hope for cancer breakthrough, Los Angeles Times. 
Cronkite, E.P., Vincent, P.C. (1969). Granulocytopoiesis, Ser. Haematol, 2, pp. 3–43. 

Indian Cancer Society, http://www.indiancancersociety.org/faqs/faqs1.htm#1 
Kolev, M. (2003). Mathematical modelling of the competition between tumors and immune 

system considering the role of the antibodies, Math. Comput. Model, 37, pp. 1143–1152. 

Mathers, Colin D, Cynthia Boschi-Pinto, Alan D Lopez and Christopher JL Murray (2001). 

"Cancer incidence, mortality and survival by site for 14 regions of the world" Global 

Programme on Evidence for Health Policy Discussion Paper No. 13 (World Health 

Organization). 

Nani F., Freedman H.I. (2000). A mathematical model of cancer treatment by immunotherapy, 

Mathematical Biosciences, 163, pp. 159-199. 

Nowak, M.A., Bonhoeffer, S., Hill, A.M., Boehme, R., Thomas, H.C., McDade, H.(1996). Viral 

dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA 93, pp. 4398–4402. 

Nowak, M.A., May, R.M. (2000). Virus Dynamics: Mathematical Principles of Immunology and 

Virology. Oxford University Press, Oxford, UK. 

Rubinow, S.I. (1969). A simple model of steady state differentiating cell system. J. Cell Biol. 43, 

pp. 32–39. 

Rubinow, S.I., Lebowitz, J.L. (1975). A mathematical model of neutrophil production and 

control in normal man, J. Math. Biol. 1, pp. 187–225. 

Wigginton, J.E., Kirschner, D. (2001). A model to predict cell-mediated immune regulatory 

mechanisms during human infection with Mycobacterium tuberculosis. J. Immunol. 166, pp. 

1951–1967. 

 

 

APPENDICES 
 

Appendix A 

 

15

Agarwal and Bhadauria: Mathematical Modeling and Analysis of Leukemia

Published by Digital Commons @PVAMU, 2015

http://www.indiancancersociety.org/faqs/faqs1.htm#1


264                                                                                                                Manju Agarwal
 
and Archana S. Bhadauria 

 

 

Proof of Theorem 4.1: 

 

Using the transformation 

 

Xxx  * ,   Yyy  * ,    sss Ccc  *  ,     Zzz  *  

 

we transform the model  (2.1) into an equivalent system  given below having the origin as 

equilibrium.  

                                         
,0

  ss XcCxXa
dt

dX
  

                                         
,0YXcCx

dt

dY
ss     

,110
  zCkZckCk

dt

dC
sss

s                                  (A.1) 

                                           
.110
  sss ZcbCzbZbbC

dt

dZ
 

 

We consider following positive definite function: 

2 2 2 2

1 2 3

1 1 1 1
,

2 2 2 2
sW X c Y c C c Z     

 

where,  321 ,, ccc are positive constants to be chosen later suitably. 

 

Differentiating W with respect to t along the solution of model (2.1), we get 

 

       )()( 103
2

102
2

01
2

0
2   sss cbbcZzkkcCcYcaXW   

                                                          
   

   

2 1 3 1

*

1 1

* ( )

.

s S s

s s

C X x C Z c k c c b b z

C Y c x XY c c



 

 



     

 
   (A.2)

    

 

           
2

1

2

1 2
2212

2
11 ss CaXCaXaW 

 

                                      
           

2

1

2

1 2
3313

2
11 YaXYaXa   

                                        
           

2

1

2

1 2
3323

2
22 YaYCaCa Ss   

                                                              
,

2

1

2

1 2
4424

2
22 ZaZCaCa SS 

                      (A.3) 

Where 
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11 22 2 1 33 1 0 44 3 1

2
,     ,      ,        2 ,

3
s sa c a c k z a c a c b c   

    

                    
,12

 xa 
   

,113
 scca      ,123

 xca     
24 2 1 3 1( ).sa c h c c b b z    

      (A.4) 

 

Sufficient condition for W to be negative definite are that following inequalities hold: 

 

                                              2211
2

12 aaa                                                                            (A.5) 

                                               3311
2

13 aaa                                                                               (A.6) 

                                              3322
2

23 aaa                                                                           (A.7)                                                                         

                                               4422
2

24 aaa                                                                             (A.8) 

 

If we choose  

 

,
2

0
1 


sc
c




 ,

2

1

2

2 




zck

x
c

s


 and 2 1

3 1

1

,   ,sc k c
c b b z

b b z





 


 

 

then it can be checked that (A.6), (A.5) and (A.8) are automatically satisfied. Using 1c  and 2c  in 

(A.7) we can see easily that it also holds. 

 

Appendix B 

Proof  of  Theorem 5.1: 

 

We consider following positive definite function around the endemic equilibrium point *E  
 

                  

2
3

2
2

2
1

2
1 )(

2

1
)(

2

1
)(

2

1
)(

2

1   zzdccdyydxxW ss
          (B.1)

 

 

where 321 ,, ddd are positive constants to be chosen suitably. 

Differentiating 1W with respect to t along the solution of model (2.1), we get 

 

     )()()(*)( 102
2

01
2*

0
2

1
  zkkdccdyycaxxW sss    

 )()( 103
2   scbbdzz  xccxx ss  ))((

**

 

 xdccyy ss 1
** ))((     scdyyxx 1

*))((
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        bdckdzzcc sss 312
**
))((    

                                                           )))(( 13
**

zbdzzcc ss  .                                       (B.2) 

 

           )(
2

1
))(()(

2

1 2
22

*
12

2
111

  ssss ccbccxxbxxbW  

                     
    )(

2

1
))(()(

2

1 2*
33

**
13

2
11 yybyyxxbxxb    

                      
           )(

2

1
))(()(

2

1 2*
33

*
23

2
22 yybyyccbccb ssss 

  

                                             
           )(

2

1
))(()(

2

1 2*
44

*
24

2
22 zzbzzccbccb ssss 



 

               

2 * * 2

22 25 44

1 1
( ) ( )( ) ( ) ,

2 2
s s s sb c c b c c z z b z z       

            (B.3) 

where, 

 

,    ,    ,
2

1
   ,*

13440133022211


  ss cbdbdbkdbcb 
   

,12 xb   

                        
,113


 scdb 

 
,123 xdb   ,31224 bdckdb s  

 
.1325 zbdb 
                   (B.4)

 

 

Sufficient condition for W to be negative definite are that following inequalities hold: 

 

                                              2211
2

12 bbb                                                     (B.5) 

                                               3311
2

13 bbb                                                    (B.6) 

                                               3322
2

23 bbb                                                    (B.7)                                                                         
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2
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                                                                      4422
2

25 bbb                                                   (B.9) 

If we choose  
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2
00

2

2

3

ack

A
d

s





 and ,12
3

b

ckd
d s



  

 

then it can be checked that (B.6), (B.5) and (B.8) hold respectively. Further, using values of 

1d and 2d we find that (B.7) also holds provided that bkzbk 0
2
max112  .  
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