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Abstract

The principle of linearized stability for size-structured population dynamics models is proved

giving validity to previous stability results reported in, for example, El-Doma (2008-1). In

particular, we show that if all the roots of the characteristic equation lie to the left of the imaginary

axis then the steady state is locally exponentially stable, and on the other hand, if there is at

least one root that lies to the right of the imaginary axis then the steady state is unstable. We

also point out cases when there is resonance.

Keywords: The principle of linearized stability; Population; Stability; Steady state; Size-structure;

Inflow of newborns; Resonance; Characteristic equation.

MSC 2010: 45K05; 45M10; 35B35; 35L60; 92D25

1. Introduction

In this paper, we study the following size-structured population dynamics model:
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∂p(a, t)

∂t
+

∂

∂a
(V (a, P (t))p(a, t)) + µ(a, P (t))p(a, t) = 0, a > 0, t > 0,

V (0, P (t))p(0, t) = C +

∫ ∞

0

β(a, P (t))p(a, t)da, t ≥ 0,

p(a, 0) = p0(a), a ≥ 0,

P (t) =

∫ ∞

0

p(a, t)da, t ≥ 0,

(1)

where p(a, t) is the density of the population with respect to size a ∈ R
+ = [0,∞) at time

t ≥ 0; P (t) =

∫ ∞

0

p(a, t)da is the total population size at time t; β(a, P (t)), µ(a, P (t)) are,

respectively, the birth modulus i.e. the average number of offspring, per unit time, produced by

an individual of size a when the population size is P (t), and the death modulus i.e. the death rate

at size a, per unit population, when the population size is P (t); 0 < V (a, P ) is the individual

growth rate at the population size P ; p(0, t) =

∫ ∞

0

β(a, P (t))p(a, t)da is the number of births,

per unit time, when the population size is P (t); and, C ≥ 0, is a constant that represents the

inflow of newborns from an external source, for example, seeds, when carried by winds in plants

or, eggs of fish, when carried by water.

We shall assume the following compatibility conditions:

V (0, P (0))p0(0) = C +

∫ ∞

0

β(a, P (0))p0(a)da, (2)

P ′(0) = V (0, P (0))p0(0) −
∫ ∞

0

µ(a, P (0))p0(a)da, (3)

VP (0, P (0))p0(0)P
′(0) = V (0, P (0))

{(

V (0, P (0))p0(0)
)

a
+ p0(0)

[

µ(0, P (0)) + β(0, P (0))
]}

+

∫ ∞

0

[

βP (a, P (0))P ′(0) + βa(a, P (0))V (a, P (0)) − β(a, P (0))µ(a, P (0))
]

p0(a)da, (4)

(

V (a, P (0))p0(a)
)

a
∈ L(R+);V (a, P (0))p0(a) ∈ C1(R+) ∩ L1(R+). (5)

As in Haimovici (1979), Gyllenberg (1982), (1983), we also assume that the total population is

finite for each t i.e.,

P (t) =

∫ ∞

0

p(a, t)da < +∞. (6)
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622 M. El-Doma

We note that problem (1) is studied in Calsina, et al. (1995) where C is assumed to depend on

time t; they proved the existence and uniqueness of solution, the existence of a global attractor

when the inflow of newborns C is a constant. El-Doma (2008-1) studied problem (1) when C = 0,

El-Doma (2008-2) studied problem (1), determined the steady states and examined their stability.

El-Doma (2009-1)-El-Doma (2009-3) studied problem (1) when C = 0, with the additional

assumption that the population is divided into adults and juveniles; steady states are determined

and stability results are obtained. Generalization of this work to the case when C > 0 is obtained

in El-Doma (Preprint-1), El-Doma (To appear) and El-Doma (2011).

Size-structured population models are studied by many other authors, for example, see Metz, et

al. (1986), and the references in the above mentioned papers.

Our motivation for the present study is to extend the stability results for age-structured population

dynamics model, given in the classical work of Gurtin, el al. (1974), to the case of size-structured

population dynamics models with inflow of newborns from an external source, and to prove the

principle of linearized stability.

We note that in our previous papers El-Doma (2008-1), El-Doma (2008-2), and El-Doma (2009-

1), we assumed linearized stability for size-structured models, a principle that has received

considerable attention in recent years. This principle consists of two parts, namely, stability

part and instability part, for example, see Diekmann, et al. (2007 b). The stability part says

that a nontrivial steady state is locally exponentially stable if all the roots of the corresponding

characteristic equation, which results from the linearization of the model equations at a steady

state, lie to the left of the imaginary axis. The instability part says that a nontrivial steady state is

unstable if the corresponding characteristic equation has at least one root that lies to the right of

the imaginary axis. For example, Tucker, et al. (1988), proved the stability part for a general size-

structured model. De Roos, et al. (1990), concluded that their numerical results are in agreement

with the stability results obtained via linearization for a size-structured model of Daphnia. Calsina,

et al. (1995), proved the existence of a global attractor for problem (1). Diekmann, et al. (2007 a),

conjectured the principle and outlined preliminary steps for a proof. Diekmann, et al. (2007 b),

Diekmann, et al. (2007 c) and Diekmann, et al. (2008), reformulated delay differential equations

and delay equations as abstract integral equations and improved them progressively to prove the

principle of linearized stability for physiologically structured population dynamics models. Their

methods have the potential to address the principle of linearized stability for problem (1).

In this paper, we study problem (1) and consider the steady states, which are given in our previous

papers, for example, see El-Doma(2008-1), El-Doma (2009-1) for the case C ≡ 0, and El-Doma

(2008-2), El-Doma (Preprint-1) for the case C > 0. We also introduce a transformation that

transforms problem (1) to an age-structured type model, and then use it to prove the principle

of the linearized stability.

The organization of this paper as follows: in section 2 we determine the steady states; in section

3 we prove the principle of linearized stability for size-structured population models; in section

4 we conclude our results.
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2. The Steady States

In this section, we determine the steady states of problem (1). A steady state of problem (1)

satisfies the following:










































d

da
[V (a, P∞)p∞(a)] + µ(a, P∞)p∞(a) = 0, a > 0,

V (0, P∞)p∞(0) = C +

∫ ∞

0

β(a, P∞)p∞(a)da,

P∞ =

∫ ∞

0

p∞(a)da.

(7)

From (7), by solving the differential equation, we obtain that

p∞(a) = p∞(0)V (0, P∞)
π(a, P∞)

V (a, P∞)
, (8)

where π(a, P∞) is defined as

π(a, P∞) = e
−

R a

0
µ(τ,P∞)
V (τ,P∞)

dτ
. (9)

Also, from (7) and (8), we obtain that p∞(0) satisfies the following:

V (0, P∞)p∞(0) = C + V (0, P∞)p∞(0)

∫ ∞

0

β(a, P∞)

V (a, P∞)
π(a, P∞)da. (10)

Accordingly, from (10), we conclude that either p∞(0) = 0 = C or P∞ satisfies the following:

1 =

∫ ∞

0

β(a, P∞)

V (a, P∞)
π(a, P∞)da +

C

V (0, P∞)p∞(0)
. (11)

In order to facilitate our writing, we define a threshold parameter R(P ) by

R(P ) =

∫ ∞

0

β(a, P )

V (a, P )
π(a, P )da+

C

P

∫ ∞

0

π(a, P )

V (a, P )
da, (12)

which when V ≡ 1, C ≡ 0, and a is age (the age-structured case) is interpreted as the number

of children expected to be born to an individual, in a life time, when the population size is P.

We note that from equation (8), p∞(0) =
P∞

V (0, P∞)

∫ ∞

0

π(a, P∞)

V (a, P∞)
da

, and accordingly, either

p∞(a) ≡ 0 or p∞(a) is completely determined by a solution P∞ > 0 of equation (11).

In the following theorem, we describe the steady states of problem (1), the proof can be found

in El-Doma (2008-1), for the case C = 0, and El-Doma(2008-2), for the case C > 0.

Theorem 2.1

(1) If C = 0, then problem (1) has the trivial steady state, P∞ = 0.
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624 M. El-Doma

(2) If C > 0, then problem (1) has no trivial steady state.

(3) All positive solutions of, R(P∞) = 1, are nontrivial steady states of problem (1).

3. Stability of the Steady States

In this section, we study the stability of the steady states for problem (1) as given by Theorem

2.1.

To study the stability of a steady state p∞(a), which is a solution of (7) and is given by equation

(8), we consider a perturbation ω(a, t) defined by ω(a, t) = p(a, t) − p∞(a), where p(a, t) is a

solution of problem (1). Accordingly, we obtain that ω(a, t) satisfies the following:



































∂ω(a, t)

∂t
+

∂

∂a

(

V (a, P∞)ω(a, t)
)

+D(a, P∞)W (t) + µ(a, P∞)ω(a, t) = φ(a, t), a > 0, t > 0,

ω(0, t)V (0, P∞) =

∫ ∞

0

β(a, P∞)ω(a, t)da+ θW (t) + ψ(t), t ≥ 0,

ω(a, 0) = ω0(a) = p0(a) − p∞(a), a ≥ 0,
(13)

where W (t), φ(a, t), ψ(t), D(a), θ are given, respectively, by

W (t) =

∫ ∞

0

ω(a, t)da, t ≥ 0, (14)

φ(a, t) = − ∂

∂a
[Ω(a,W (t);V )(ω(a, t) + p∞(a))] − Ω(a,W (t);µ)[ω(a, t) + p∞(a)]

−
[

µP (a, P∞)ω(a, t) +
∂

∂a

(

VP (a, P∞)ω(a, t)
)]

W (t), (15)

ψ(t) =

∫ ∞

0

Ω(a,W (t); β)[ω(a, t)+ p∞(a)]da−Ω(0,W (t);V )[ω(0, t) + p∞(0)]

+
[

∫ ∞

0

βP(a, P∞)ω(a, t)da− VP (0, P∞)ω(0, t)
]

W (t), (16)

D(a, P∞) = p∞(a)µP (a, P∞) +
∂

∂a

(

VP (a, P∞)p∞(a)
)

, (17)

θ =

∫ ∞

0

βP (a, P∞)p∞(a)da− p∞(0)VP (0, P∞), (18)

5
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where Ω(a,W (t); β) is given by

Ω(a,W (t); β) = β(a, P∞ +W (t))− β(a, P∞) − βP (a, P∞)W (t), (19)

we also note that Ω(a,W (t); .), where ” . ” stands for any function, is defined similarly.

We now make the following change of variable.

τ =

∫ a

0

dσ

V (σ, P∞)
= g(a), (20)

dτ

da
=

1

V (a, P∞)
, (21)

α =

∫ ∞

0

dσ

V (σ, P∞)
. (22)

Now, putting Z(a, t, P∞) = ω(a, t)V (a, P∞), and using (13), we obtain



























































∂Ẑ(τ, t, P∞)

∂t
+
∂Ẑ(τ, t, P∞)

∂τ
+ µ̂(τ, P∞)Ẑ(τ, t, P∞) +D∗(τ, P∞)W (t)

= φ̂(τ, t)V̂ (τ, P∞), τ > 0, t > 0,

Z(0, t, P∞) =

∫ α

0

β̂(τ, P∞)Ẑ(τ, t, P∞)dτ + θW (t) + ψ(t), t > 0,

Ẑ(τ, 0, P∞) = Ẑ0(τ, P∞) = ω̂0(τ )V̂ (τ, P∞), τ ≥ 0,

(23)

where Ẑ(τ, t, P∞), D∗(τ, P∞) are defined as

Ẑ(τ, t, P∞) = Z(g−1(τ ), t, P∞), (24)

D∗(τ, P∞) = µ̂P (τ, P∞)p̂∞(τ )V̂ (τ, P∞) +
∂

∂τ
[V̂P (τ, P∞)p̂∞(τ )], (25)

where g is given by equation (20), we also note that all the other functions withˆare defined in

a manner similar to the definition of Ẑ(τ, t, P∞).
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626 M. El-Doma

From (23), by integrating along characteristic lines, we obtain the following implicit solution:

Ẑ(τ, t, P∞) =



































































Ẑ0(τ − t, P∞)
π∗(τ, P∞)

π∗(τ − t, P∞)
+

∫ t

0

[

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)

−D∗(τ + σ − t, P∞)W (σ)
] π∗(τ, P∞)

π∗(τ + σ − t, P∞)
dσ, τ > t,

Z(0, t− τ, P∞)π∗(τ, P∞) +

∫ t

t−τ

[

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)

−D∗(τ + σ − t, P∞)W (σ)
] π∗(τ, P∞)

π∗(τ + σ − t, P∞)
dσ, τ < t,

(26)

where π∗(τ, P∞) is defined as

π∗(τ, P∞) = e−
R τ

0 µ̂(σ,P∞)dσ. (27)

Suppose that B(t, P∞) is defined as

B(t, P∞) = Z(0, t, P∞). (28)

Then from (23), we obtain that B(t, P∞) satisfies the following:

B(t, P∞) =

∫ α

0

β̂(τ, P∞)Ẑ(τ, t, P∞)dτ + θW (t) + ψ(t). (29)

Accordingly, using (26), we obtain the following:

B(t, P∞) − θW (t)−
∫ t

0

β̂(τ, P∞)B(t− τ, P∞)π∗(τ, P∞)dτ +

∫ t

0

∫ α

t−σ

D∗(τ + σ − t, P∞)β̂(τ, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)
W (σ)dτdσ =

∫ t

0

∫ α

t−σ

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)β̂(τ, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)
dτdσ

+

∫ α

t

Ẑ0(τ − t, P∞)
π∗(τ, P∞)

π(τ − t, P∞)
β̂(τ, P∞)dτ + ψ(t). (30)

Also, using equation (14), we obtain

W (t) =

∫ ∞

0

ω(a, t)da =

∫ α

0

Ẑ(τ, t, P∞)dτ. (31)
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Accordingly, using (26), we obtain

W (t)−
∫ t

0

B(t− τ, P∞)π∗(τ, P∞)dτ +

∫ t

0

∫ α

t−σ

D∗(τ + σ − t, P∞) ×

π∗(τ, P∞)

π∗(τ + σ − t, P∞)
W (σ)dτdσ =

∫ α

t

Ẑ0(τ − t, P∞)
π∗(τ, P∞)

π∗(τ − t, P∞)
dτ

+

∫ t

0

∫ α

t−σ

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)
dτdσ. (32)

Now, from (30), (3,20), we obtain the following integral equation:

Ax(t) +

∫ t

0

K(t− σ)x(σ)dσ = f(t), (33)

where A, x(t), K(t), f(t) are given, respectively, as follows:

A =

(

1 0

−θ 1

)

, (34)

x(t) =

(

W (t)

B(t, P∞)

)

, (35)

K(t) =











∫ α−t

0
D∗(τ, P∞)π∗(τ+t,P∞)

π∗(τ,P∞)
dτ −π∗(t, P∞)

∫ α−t

0
D∗(τ, P∞)π∗(τ+t,P∞)

π∗(τ,P∞)
β̂(τ + t, P∞)dτ −π∗(t, P∞)β̂(t, P∞)











, (36)

f(t) =

∫ t

0

∫ α

t−σ

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)

(

1

β̂(τ, P∞)

)

dτdσ

+

(

0

ψ(t)

)

+

∫ α−t

0

Ẑ0(τ, P∞)
π∗(τ + t, P∞)

π∗(τ, P∞)

(

1

β̂(τ + t, P∞)

)

dτ. (37)

We note that a similar integral equation to (33) is also obtained in Gurtin, et al. (1974), which

has the solution

x(t) = A−1f(t) +

∫ t

0

J(t− s)f(s)ds, (38)

where L{J}(ξ) is the inverse of L{K}(ξ). We note that in Gurtin, et al. (1974), it has been

shown J(t) satisfies

J(t) ≤ C0e
−µt, (39)

8
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where C0 is a constant, and µ is a constant that satisfies

µ < µ∗ = inf
a≥0

µ(a, P∞) > 0.

We also note that if we set det[L{K}(ξ)+A] = 0, we obtain the following characteristic equation:

1 =
[

1 +

∫ α

0

∫ τ

0

e−(τ−σ)ξD∗(σ, P∞)
π∗(τ, P∞)

π∗(σ, P∞)
dσdτ

]

∫ α

0

e−ξτ β̂(τ, P∞)π∗(τ, P∞)dτ

+
[

θ −
∫ α

0

∫ τ

0

e−(τ−σ)ξβ̂(τ, P∞)D∗(σ, P∞)
π∗(τ, P∞)

π∗(σ, P∞)
dσdτ

]

∫ α

0

e−ξτπ∗(τ, P∞)dτ

−
∫ α

0

∫ τ

0

e−(τ−σ)ξD∗(σ, P∞)
π∗(τ, P∞)

π∗(σ, P∞)
dσdτ. (40)

We also note that the linear version of system (23) is given by the following:






































∂Ẑ(τ, t, P∞)

∂t
+
∂Ẑ(τ, t, P∞)

∂τ
+ µ̂(τ, P∞)Ẑ(τ, t, P∞) +D∗(τ, P∞)W (t) = 0, τ > 0, t > 0,

Z(0, t, P∞) =

∫ α

0

β̂(τ, P∞)Ẑ(τ, t, P∞)dτ + θW (t), t > 0,

Ẑ(τ, 0, P∞) = Ẑ0(τ, P∞) = ω̂0(τ )V̂ (τ, P∞), τ ≥ 0.
(41)

By substituting Ẑ(τ, t, P∞) = m(τ, P∞)eξt in (41), where ξ is a complex number, and straight-

forward calculations, we obtain the characteristic equation (40) again.

We note that it is easy to see that the characteristic equation (40) can be rewritten in the following

form:

1 =
1

V (0, P∞)

∫ ∞

0

e−
R a

0 E(τ )dτβ(a, P∞)da
(

1 +

∫ ∞

0

∫ a

0

e−
R a

σ
E(τ )dτD(σ, P∞)

V (σ, P∞)
dσda

)

−
∫ ∞

0

∫ a

0

e−
R a

σ
E(τ )dτD(σ, P∞)

V (σ, P∞)
dσda+

1

V (0, P∞)

∫ ∞

0

e−
R a

0 E(τ )dτda
[

θ −
∫ ∞

0

∫ a

0

e−
R a

σ
E(τ )dτβ(a, P∞)

D(σ, P∞)

V (σ, P∞)
dσda

]

, (42)

where E(σ) is given by

E(σ) =
ξ + Vσ(σ, P∞) + µ(σ, P∞)

V (σ, P∞)
. (43)

In order to facilitate our results, we assume the following:
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(A1) 0 ≤ p0(a), p∞(a) ∈ L1(R+) ∩ C1(R+), p
′

∞(.) ∈ L1(R+),R+ = [0,∞).

(A2) V (a, P (t)), β(a, P (t)), µ(a, P (t)) ≥ 0& ∈ C0(R+ × R
+).

(A3) Va(a, P ), VP (a, P ), VPa(a, P ), βP(a, P ), µP (a, P ) exist ∀a ≥ 0, P ≥ 0.

(A4) V (., P ), Va(., P ), VP (., P ), VPa(., P ), β(., P ), βP(., P ), µ(., P ), µP (., P ), as functions of P ∈
C0(R+ : L∞(R+)).

(A5)
∂k

∂ak
β(a, P∞) exists for k = 1, 2, and, as functions of a belong to L∞(R+);

∂

∂a
µ(a, P∞)

exists, and, as a function of a belongs to L∞(R+).

(A6)
Ω(a,W ; β)

W
,
Ω(a,W ;V )

W
,
Ω(a,W ;µ)

W
,
Ω(a,W ;Va)

W
, tend to zero as W −→ 0 uniformly for

a ≥ 0.

(A7) pa(., t) ∈ L1(R+).

(A8) µ∗ = inf
a≥0

µ(a, P∞) > 0.

(A9) If α < +∞, then we also assume that D∗(τ, P∞) ∈ C1([0, α]).

(A10) p(., t), pt(., t) ∈ L1(R+), and the integrals converge uniformly for t ≥ 0.

(A11) ||pa(., t)||L1(R+) is bounded by a constant for all t.

We note that in our upcoming results, we shall use the order of magnitude symbols “O” and “0”

as well as the behaves like symbol “ ∼ ” with the following standard meanings:

• h1(t) = O(h2(t)) as t −→ t0 if |h1(t)| ≤ constant.|h2(t)| for t sufficiently close to t0.

• h1(t) = 0(h2(t)) as t −→ t0 if lim
t−→t0

h1(t)

h2(t)
= 0.

• h1(t) ∼ h2(t) as t −→ +∞ if lim
t−→∞

h1(t)

h2(t)
= 1.

In the following result, we give a proof for the stability part of the linearized stability principle.

We note that this result is a generalization of the result given in Gurtin, et al. (1974).
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Theorem 3.1 Assume (A1)−(A9), (2)−(6), also assume that the characteristic equation (40) has

no solution ξ with <(ξ) ≥ 0. Then ∃δ > 0, and, µ > 0 such that for any initial size-distribution

p0 which satisfies ||p0(.)− p∞(.)||L1(R+) < δ the corresponding solution of problem (1) satisfies

P (t)− P∞ = O(e−µt) as t −→ +∞
p(a, t)− p∞(a) = O(e−µt) for each a, as t −→ +∞.

Proof. We note that the integral equation (33) is similar to that given in Gurtin, et al. (1974),

and therefore, in order to prove the theorem it suffices to check that the functions f,K, x,W, ψ

satisfy the analogous conditions as in Theorem 7 of Gurtin, et al. (1974).

Indeed, using equations (37), (15), (16) and conditions (A1) − (A4), A8, we obtain

|f(t)| ≤ C1

{

∫ t

0

e−µ∗(t−σ)||φ(., σ)||L1(R+)dσ + e−µ∗t||ω0(.)||L1(R+) + |ψ(t)|
}

, (44)

where C1 is a constant.

We also note that from assumptions (A1) − (A5), (A8), (A9), we obtain

∣

∣

∣

dk

dtk
K(t)

∣

∣

∣
≤ C2e

−µ∗t, k = 0, 1, 2, (45)

where C2 is a constant. Accordingly, the Laplace transform of K(t) denoted by L{K}(ξ) exists

for <(ξ) > −µ∗.

Also, using equations (38)-(39), (44), it is easy to see that |x(t)| satisfies the following inequality:

|x(t)| = (W (t)2 +B(t, P∞)2)
1
2

≤ C3

{

||ω0(.)||L1e−µt + |ψ(t)|+
∫ t

0

e−µ(t−σ)[||φ(., σ)||L1(R+) + |ψ(σ)|]dσ
}

, (46)

where C3 is a constant.

From the definition of Ẑ(τ, t, P∞), and the change of variable (20), we obtain
∫ α

0

|Ẑ(τ, t, P∞)|dτ =

∫ ∞

0

|ω(a, t)|da = ||ω(., t)||L1(R+). (47)

Now, using (26), (A1), (A8), we obtain

||ω(., t)||L1(R+) ≤
∫ t

0

|B(t− τ, P∞)|e−µ∗tdτ + ||ω0(.)||L1(R+)e
−µ∗t +

∫ t

0

e−µ∗(t−σ)
{

||φ(., σ)||L1(R+) + ||D(., P∞)||L1(R+)|W (σ)|
}

dσ. (48)

Also, using (46), we obtain

||ω(., t)||L1(R+) ≤ C4

{

||ω0(.)||L1(R+)e
−µt +

∫ t

0

e−µ(t−σ)[||φ(., σ)||L1(R+) + |ψ(σ)|]dσ
}

, (49)
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where C4 is a constant.

By assumption (A6) and for ε > 0 fixed ∃δ = δ(ε) such that for |W | < δ(ε), we have

|Ω(a,W, .)| < ε|W |, and we assume that δ < ε.

Now, using (A1), (A4), (A7), (A11), (2) − (6), we obtain

||φ(., t)||L1(R+) ≤ C5{|W |||ω(., t)||L1(R+) + ε|W |}, (50)

where C5 is a constant.

From equation (16), assumptions (A4), (A6), and equation (13)2, we obtain

|ψ(t)|
[

1 − |W |
(ε+ |VP (0, P∞)|

V (0, P∞)

)]

≤ ε|W |
[

||ω(., t)||L1(R+) + P∞ + p∞(0)
]

+

|W |||βP(., P∞)||L∞(R+)||ω(., t)||L1(R+) + |W |
(ε+ |VP (0, P∞)|

V (0, P∞)

)[

||β(., P∞)||L∞(R+) ×

||ω(., t)||L1(R+) + |θ||W |
]

. (51)

Then if we choose ε > 0 such that |W |[ε + |VP (0, P∞)|] < V (0, P∞), for example, when

ε < min
(

√

V (0, P∞)√
2

,
V (0, P∞)

2|VP (0, P∞)|
)

, we obtain

||ψ(., t)||L1(R+) ≤ C6{|W |||ω(., t)||L1(R+) + ε|W |}, (52)

where C6 is a constant.

Now, we can use Theorem 7 in Gurtin, et al. (1974) to obtain the theorem. This completes the

proof of the theorem.

Remark 3.1: We note that in Theorem 3.1 if V = V (a), then we do not need conditions

(A7), (A9), (A10), and in (A6),Ω(a,W ;V ) = Ω(a,W ;Va) = 0, accordingly, the result follows

from the age-structured case given in Gurtin, et al. (1974).

We also note that from equations (36), (34), we obtain that

A + L{K}(ξ) =











1 +
∫ ∞

0

∫ a

0
e
−ξ

R a

σ
dτ

V (τ,P∞)D(σ, P∞) π(a,P∞)
V (a,P∞)π(σ,P∞)

dσda −
∫ ∞

0
e
−ξ

R a

0
dτ

V (τ,P∞)
π(a,P∞)
V (a,P∞)

da

−θ +
∫ ∞

0

∫ a

0
e
−ξ

R a

σ
dτ

V (τ,P∞ )D(σ, P∞) β(a,P∞)
V (a,P∞)

π(a,P∞)
π(σ,P∞)

dσda 1 −
∫ ∞

0
e
−ξ

R a

0
dτ

V (τ,P∞)
β(a,P∞)
V (a,P∞)

π(a, P∞)da











,

(53)

where π(a, P∞) is given by equation (9).

12

Applications and Applied Mathematics: An International Journal (AAM), Vol. 6 [2011], Iss. 2, Art. 15

https://digitalcommons.pvamu.edu/aam/vol6/iss2/15



632 M. El-Doma

In the next result, we prove the instability part of the principle of the linearized stability for size-

structured models. We note that this part is not proved for many known models, for example,

Gurtin, et al. (1974), Tucker, et al.(1988).

In order to facilitate our result, we define F (ξ, f) to be F (ξ, f) = L{f(t)}(ξ), then

F n(ξ, f) =

∫ ∞

0

(−a)ne−ξaf(a)da, (54)

where n=0,1,...

Theorem 3.2 Suppose that the characteristic equation (40) or equivalently the equation det[A+

L{K}(ξ)] = 0, has m roots ξj, j = 1, 2, ..., m,m = 1, 2, ... Let mj be the multiplicity of the

root ξj. Moreover, suppose that F 0(ξj , f),L{K}(ξj) exist for 1 ≤ j ≤ m, and that assumptions

(A1) − (A5), (A7) − (A10), (2) − (5) hold. Then x(t) is given by the following two formulas:

x(t) =
m

∑

j=1

mj−1
∑

k=0

pjk

k!

∫ ∞

0

(t− a)keξj(t−a)f(a)da−
m

∑

j=1

mj−1
∑

k=0

pjk

k!

∫ ∞

t

(t− a)keξj(t−a)f(a)da, (55)

x(t) =
m

∑

j=1

eξjt

mj−1
∑

k=0

tk

k!

mj−1
∑

n=k

pjn

F n−k(ξj, f)

(n− k)!
−

m
∑

j=1

eξjt

mj−1
∑

k=0

pjk

k!

∫ ∞

t

(t− a)ke−ξjaf(a)da. (56)

Moreover, the last term in the formula for x(t) contains the integral

∫ ∞

t

(t− a)keξj(t−a)f(a)da,

and we have the following three cases for its behavior as t −→ +∞ :

Case 1 : <(ξj) > 0, 0(tkeξjt) as t −→ +∞, k = 0, 1, 2, ...mj − 1.

Case 2 : <(ξj) = 0, 0(tk) as t −→ +∞, k = 0, 1, 2, ...mj − 1.

Case 3 : <(ξj) < 0, 0(tkeξjt) as t −→ +∞, k = 0, 1, 2, ...mj − 1.

Proof. We note that from (45), we obtain that

L{K}(ξ) =
K(0)

ξ
+
K̇(0)

ξ2
+ 0(ξ2) as ξ −→ ∞. (57)

From equation (57), we obtain that det[A+ L{K}(ξ)] −→ 1 as ξ −→ ∞. Therefore, it is easy

to see that ∃ γ = sup
1≤j≤m

<(ξj) < +∞. Accordingly, det[A + L{K}(ξ)] 6= 0 for <(ξj) > γ, and

hence, we can use the Laplace inversion formula for the left-half plane to determine x(t) via a

Laurent series expansion, as in Miller (1974). The Laurent expansion for [A+L{K}(ξ)]−1 near

ξ = ξj , j = 1, 2, ..., m, has the following form:

[A + L{K}(ξ)]−1 =

mj−1
∑

k=0

pjk(ξ − ξj)
−k−1 +

∞
∑

k=0

Ljk(ξ − ξj)
k, (58)
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where pjk, Ljk, are constant matrices.

We note that by assumptions (2) - (5), we obtain that problem (1) has a C1(R+ × R
+) so-

lution and therefore f(t) is continuous by assumptions (A1) − (A4), (A7) − (A10); and hence,

|f(t)e−ξjt| is bounded for all t ∈ R
+ and as t −→ +∞ as well, because F 0(ξj , f) exists, and

accordingly, f is of exponential order. Also, x(t) has a continuous derivative by assumptions

(A1)− (A5), (A7), (A10), (2)− (5). We note that this fact will validate our representation for x(t)

by a series.

We also note that x(t) has a Laplace transform because since γ < +∞, we can choose γ∗ > γ

and obtain the following estimate:

sup
s∈[0,t]

|e−γ∗sx(s)| ≤
(

∫ ∞

0

|A−1K(σ)|e−γ∗(σ)dσ
)

sup
s∈[0,t]

|e−γ∗sx(s)| + sup
t∈R+

e−γ∗t|A−1f(t)|, (59)

We note that in (59) we have used |.| for two different norms one time for a vector and another

time for a matrix.

We also note that γ∗ can be chosen such that

∫ ∞

0

|A−1K(σ)|e−γ∗(σ)dσ < 1, since K(t) satisfies

(45). Accordingly, from (59), we obtain

sup
s∈[0,t]

|e−γ∗sx(s)|
[

1 −
∫ ∞

0

|A−1K(σ)|e−γ∗(σ)dσ
]

≤ C7, (60)

where C7 is a constant.

From (60), we obtain that x(t) is of exponential order, and hence has a Laplace transform.

Accordingly, we can use Laplace inversion formula to obtain

x(t) =
m

∑

j=1

mj−1
∑

k=0

pjk

k!

∫ t

0

(t− a)keξj(t−a)f(a)da. (61)

From equation (61), it is easy to see that equation (55) holds. Now, using equation (54), it is

easy to see that equation (56) holds.

We note that by induction, equation (61) holds for m = 1, 2, ...

For <(ξj) > 0, we note that

m
∑

j=1

eξjt

mj−1
∑

k=0

pjk

k!

∫ ∞

t

(t− a)ke−ξjaf(a)da =
m

∑

j=1

eξjt

mj−1
∑

k=0

mj−1
∑

n=k

tk

k!
pjn

∫ ∞

t

(−a)n−ke−ξjaf(a)

(n− k)!
da.

(62)

But

∫ ∞

t

(−a)n−ke−ξjaf(a)da −→ 0 as t −→ +∞, since by assumption F 0(ξj , f) exists, and

accordingly, (−a)n−ke−ξjaf(a) is integrable, therefore, this term is 0(tkeξjt) as t −→ +∞. This

proves case 1.
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For <(ξj) = 0, we can see that

m
∑

j=1

mj−1
∑

k=0

∫ ∞

t

pjk

k!
(t− a)kf(a)da =

m
∑

j=1

mj−1
∑

k=0

mj−1
∑

n=k

tk

k!
pjn

∫ ∞

t

(−a)n−kf(a)

(n− k)!
da. (63)

But

∫ ∞

t

(−a)n−kf(a)da −→ 0 as t −→ +∞, since by assumption F 0(0, f) exists, and accord-

ingly, (−a)n−kf(a) is integrable. Hence this term is 0(tk) as t −→ +∞. This proves case 2.

For <(ξj) < 0, we can see that

m
∑

j=1

eξjt

mj−1
∑

k=0

pjk

k!

∫ ∞

t

(t− a)ke−ξjaf(a)da =

m
∑

j=1

eξjt

mj−1
∑

k=0

mj−1
∑

n=k

tk

k!
pjn

∫ ∞

t

(−a)n−ke−ξjaf(a)

(n− k)!
da.

(64)

Now, similar arguments as in Case 1 lead to the fact that this term is 0(tkeξjt) as t −→ +∞.

This proves case 3, and completes the proof of the theorem.

Remark 3.2: We note that if <(ξj) > 0∀j, then from equation (56), we obtain the following

condition for x(t) to be bounded:

mj−1
∑

n=k

pjn

F n−k(ξj , f)

(n− k)!
= 0, j = 1, 2, ..., m; k = 0, 1, ..., mj − 1.

Also, note that since F depends on the initial size-distribution p0, we can alter it to obtain

instability in case there is at least one root that lies to the right of the imaginary axis.

In the next result, we deduce the second half of the principle of the linearized stability, and

further, we show that in the case of roots with multiplicity bigger than one and real parts zero

we have resonance, we also retain Theorem 3.1.

Corollary 3.3 Suppose that the assumptions of Theorem 3.2 hold. Then the following hold:

1) If there is at least one root of the characteristic equation (42) with real part greater than

zero, then the steady state is unstable.

2) If there is at least one root of the characteristic equation (42) with real part equal to zero

and multiplicity greater than one, and there are no roots with real parts greater than zero,

then there is resonance if the imaginary part is not equal to zero, and if the imaginary part

is equal to zero, then x(t) behaves as a polynomial; and in both cases the steady state is

unstable.

3) If the characteristic equation (42) has no root ξj with <(ξj) ≥ 0, then the steady state is

locally exponentially stable.

Proof. To prove 1, we note that Case 1 of Theorem 3.2 shows that x(t) grows exponentially,

and therefore, the steady state is unstable. This proves 1.

To prove 2, we note that Case 2 of Theorem 3.2 shows that x(t) grows as tk, k = 0, 1, ..., mJ−1,

where mj is at least 2, and accordingly, we obtain resonance if the imaginary part is not equal

to zero, otherwise, we obtain a polynomial in t. This proves 2.
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To prove 3, we note that case 3 of Theorem 3.2 shows that x(t) decays exponentially, and

therefore, the steady state is locally exponentially stable. This proves 3 and completes the proof

of the corollary.

We note that 3. of Corollary 3.3 is exactly Theorem 3.1, and hence we retained that result.

In the following corollary, we study the stability of the special case of problem (1) when β(a, P ) =

β(a) has compact support and not identically zero, µ(a, P ) = µ(a), V (a, P )

≡ 1, and other conditions hold.

Corollary 3.4 Suppose that (A1), (A7), (A9), (A10), and (2) − (5), hold, β(a, P ) = β(a) 6≡ 0,

has compact support; µ(a, P ) = µ(a), V (a, P ) ≡ 1;F 0(ξj , f),L{K}(ξj) exist for 1 ≤ j ≤ m,

where f in the definition of F is given by equation (69) below; and ξj is a solution of the

following equation:

1 =

∫ ∞

0

e−ξjaβ(a)π(a)da. (65)

We also assume the following:

(A∗
2) β(a), µ(a) ≥ 0 & ∈ C0(R+).

(A∗
5) βk(a) exists for k = 1, 2, and belong to L∞(R+), µ

′

(a) exists and belongs to L∞(R+).

(A∗
8) µ∗ = inf

a≥0
µ(a) > 0.

Then x(t) ∼ x0e
pt as t → +∞, where x0 is given by

x0 =

∫ ∞

0

∫ a

0

e−p(a−σ)[p0(σ)− p∞(σ)]β(a)
π(a)

π(σ)
dσda

∫ ∞

0

ae−paβ(a)π(a)da









∫ ∞

0

e−paπ(a)da

1









, (66)

p is the unique real solution of equation (65), and π(a) is given by

π(a) = e−
R a

0 µ(τ )dτ . (67)

Accordingly, if p < 0, the steady state is locally exponentially stable, and if p > 0, the steady

state is unstable.

Proof. We note that, in this case, from the characteristic equation (42), we obtain

1 =

∫ ∞

0

e−ξaβ(a)π(a)da, (68)

which is exactly Lotka’s characteristic equation.

We also note that it is well-known that equation (68), under our assumptions, has a unique real

solution ξ = p, and any other root ξ satisfies <(ξj) < p.
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Moreover, in this case, we note that from equations (15), (16), we obtain that φ(a, t) = ψ(t) = 0,

and accordingly, since in this case, g, given by equation (20), is the identity map, f(t) satisfies

f(t) =

∫ ∞

0

Z0(τ, P∞)
π(τ + t, P∞)

π(τ, P∞)

(

1

β(τ + t, P∞)

)

dτ, (69)

accordingly, from (A1), (A
∗
5), (A

∗
8), it is easy to see that f ′′(t) exists, and the Laplace transform

of f exists because it is bounded, and therefore, it has a representation as in equation (57).

Using Laplace transform in equation (33), we obtain that

[A+ L{K}(ξ)]L{x}(ξ) = L{f}(ξ). (70)

We note that in the proof of Theorem 3.2 we showed that x(t) has Laplace transform, and

therefore, we obtain

L{x}(ξ) =
adj[A+ L{K}(ξ)]
det[A+ L{K}(ξ)]L{f}(ξ),<(ξj) > p. (71)

Accordingly, the pole of L{x}(ξ) at p in the Laplace transform inversion formula is simple

because

lim
ξ−→p

(ξ − p)
adj[A+ L{K}(ξ)]
det[A + L{K}(ξ)]L{f}(ξ) =

adj[A+ L{K}(p)]
(

det[A+ L{K}(p)]
)′F

0(p, f)

=

∫ ∞

0

∫ a

0

e−p(a−σ)[p0(σ)− p∞(σ)]β(a)
π(a)

π(σ)
dσda

∫ ∞

0

ae−paβ(a)π(a)da









∫ ∞

0

e−paπ(a)da

1









. (72)

Using equations (56), (72), and Theorem 3.2, we obtain that x(t) ∼ x0e
pt as t → +∞, where

x0 is given by equation (66). This completes the proof of the corollary.

We note that in Gurtin (1982), a similar result as in Corollary 3.4 is proved, except that in this

case we have matrices and the integrals are improper, also see Hoppensteadt (1975) for a related

result.

We also note that p, the unique real solution of equation (68), is known as the natural growth rate,

and the quantity

∫ ∞

0

ae−paβ(a)π(a)da, is known as the mean age of childbirth for persistent age

distributions. Also, the quantity R =

∫ ∞

0

β(a)π(a)da, is known as the net reproduction rate, and

is interpreted as the number of children expected to be born to an individual during its lifetime.

In the next result, we show that if the net reproduction rate R is less than one then the steady

state is locally exponentially stable, whereas if R is bigger than one then the steady state is

unstable.
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Corollary 3.5 Suppose that the conditions of Corollary 3.4 hold. Then if R < 1, the steady state

is locally exponentially stable, whereas if R > 1, the steady state is unstable.

Proof. We note that from the characteristic equation (65) if R =

∫ ∞

0

β(a)π(a)da < 1, then it is

easy to see that p is negative. Also, if R =

∫ ∞

0

β(a)π(a)da > 1, then p is positive. Therefore,

the result is obtained by using Corollary 3.4. This completes the proof of the corollary.

We note that Corollary 3.5 confirmed our stability results given in El-Doma (2008-1), for example,

see Theorem 3.1 therein.

We also note that in El-Doma (Preprint -2) it is shown that if C > 0, then the unique steady

state is actually globally stable. Also, note that in this case if C > 0, then from equation (11) it

is easy to see that fertility is below replacement, and therefore, this result seems to agree with

results given in Iannelli, et al. (2007) and the references therein, though the models are different.

In the next result, we prove that if α < +∞, then the number of the roots of the characteristic

equation is finite. This fact implies that [A+ L{K(ξ)}]−1 is a meromorphic function.

Theorem 3.6 Suppose that the following hold:

1) α < +∞.

2) Conditions (A1) − (A5), (A8), hold.

Then the number of the roots of the characteristic equation det[A+ L{K(ξ)}] = 0 is finite.

Proof. We note that by assumptions 1 - 2, K(t), given by equation (36), has compact support.

Accordingly, L{K(ξ)} is an entire function. Also, by assumptions 1 - 2, equation (57) holds via

inequality (45), and hence det[A + L{K(ξ)}] −→ 1 as ξ −→ ∞. Therefore, the roots of the

characteristic equation are contained in a compact subset of R
+2
, and hence they must be finite,

because the zeros of an analytic function are isolated. This completes the proof of the theorem.

In the next result, we prove that if the individuals in the population have a finite maximum size

span a†, then the number of the roots of the characteristic equation is finite.

We note that as in Gurtin (1982), we define β(a, P ), π∗(a, P ), V (a, P ), to be zero for a ≥ a†.

Theorem 3.7 Suppose that the following hold:

1) The individuals in the population have a finite maximum size span a†.

2) Conditions (A1) − (A5), (A8), hold.

Then the number of the roots of the characteristic equation det[A+ L{K(ξ)}] = 0 is finite.

Proof. We note that from the characteristic equation (42), it is easy to see that L{K(ξ)} is an

entire function since a† < +∞. Now, the proof follows the same arguments as in the proof of

Theorem 3.6. This completes the proof of the theorem.

In the next result, we give a corollary to Theorem 3.2, it deals with the special case when either

α < +∞, or when the individuals in the population have a finite maximum size span a†. We
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note that in both cases we have shown that the number of the roots of the characteristic equation

is finite. We also note that in the latter case, we have two choices, either α =

∫ a†

0

dσ

V (σ, P∞)
is

finite or infinite, but we found that α = +∞ in this case does not affect our results, for example

see Corollary 3.8 and equation (73) below.

Corollary 3.8 Suppose that α < +∞, or the individuals in the population have a finite maximum

size span a†. Moreover, suppose that F 0(ξj ,

(

0

ψ(t)

)

) exists for 1 ≤ j ≤ m, where ξj is as in

Theorem 3.2, and that assumptions (A1) − (A5), (A7) − (A10), (2) − (5), hold. Then the result

of Theorem 3.2 holds with m finite.

Proof. We note that from Theorem 3.6 and Theorem 3.7, we have shown that in both cases

L{K(ξ)} is an entire function. Therefore, the assumption on L{K(ξ)} in theorem 3.2 can be

removed in this case. Now we are only left with the assumption on F 0(ξj , f) in Theorem 3.2

which is replaced by the assumption on F 0(ξj,

(

0

ψ(t)

)

), and that is because from equation

(37) f can be rewritten as

f(t) =

∫ α

t

∫ t

0

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)

(

1

β̂(τ, P∞)

)

dσdτ

+

∫ t

0

∫ t

t−τ

φ̂(τ + σ − t, σ)V̂ (τ + σ − t, P∞)
π∗(τ, P∞)

π∗(τ + σ − t, P∞)

(

1

β̂(τ, P∞)

)

dσdτ

+

∫ α−t

0

Ẑ0(τ, P∞)
π∗(τ + t, P∞)

π∗(τ, P∞)

(

1

β̂(τ + t, P∞)

)

dτ +

(

0

ψ(t)

)

. (73)

We note that the first three terms in the right-hand side of equation (73) are of compact support

(in both cases), and therefore, their Laplace transform is an entire function. This completes the

proof of the corollary.

In the next result, we use Corollary 3.8 to obtain a result that is similar to that in Corollary 3.3.

The result follows immediately from the proof of Corollary 3.3, therefore, we omit the proof.

Corollary 3.9 Suppose that the assumptions of Corollary 3.8 hold. Then the result of Corollary

3.3 hold with the number of the roots ξj, 1 ≤ j ≤ m, finite.

In the next result, we use Corollary 3.9 to obtain a result that is similar to that in Corollary 3.4,

for the special case when the individuals in the population have a finite maximum size span a†.

Corollary 3.10 Suppose that (A1), (A
∗
2), (A

∗
5), (A

∗
8), and (2) − (5), hold, β(a, P ) = β(a) 6≡

0, V (a, P ) ≡ 1, µ(a, P ) = µ(a), and, the individuals in the population have a finite maximum

size span a†. Then the result of Corollary 3.4 holds with ∞ replaced by a†, and the number of

the roots ξj , 1 ≤ j ≤ m, is finite.

Proof. We note that as before, L{K(ξ)} is an entire function. Also, note that f, given by equation
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(69) has compact support, accordingly, F 0(ξ, f) is an entire function. Furthermore, we do not

need assumption (A10) because of our assumption that the individuals in the population have a

finite maximum size span a†. This completes the proof of the corollary.

In the next result, we use Corollary 3.10 to obtain a result that is similar to that in Corollary 3.5.

The result follows immediately from Corollary 3.5, therefore, we omit the proof.

Corollary 3.11 Suppose that the assumptions of Corollary 3.10 hold. Then the result of Corollary

3.5 holds with ∞ replaced by a†, and the number of the roots ξj, 1 ≤ j ≤ m, is finite.

4. Conclusion

In this paper, we have studied a size-structured population dynamics model with vital rates i.e.,

the birth rate, the death rate, and the growth rate, which depend on size as well as the population

size, and we also assumed that there is an inflow of newborns from an external source. Our

aim here is to establish the principle of linearized stability, which consists of two parts. The

first part of the principle says that if all the roots of the characteristic equation lie to the left

of the imaginary axis, then the steady state is locally exponentially stable, this part is proved

by extending the methods established in Gurtin, et al. (1974), for their classical model. The

second part of the principle says that if at least one root of the characteristic equation lies to

the right of the imaginary axis, then the steady state is unstable. We note that this part is not

proved in, for example, Gurtin, et al. (1974), for their classical model, Tucker, et al. (1988),

for their general size-structured model, Haimovici (1979), Gyllenberg (1982), (1983), and many

other papers as well. We proved the second part of the principle by utilizing a Laplace transform

inversion formula and an expansion of Laurent series, and we also identified cases where there

can be resonance as well, and this is stronger statement than the principle, because this is the

case where the roots have zero real parts. This method also provided another proof for the first

part of the principle of linearized stability.

In the attack of problem (1), we used a transformation that revealed that there are exactly two

cases, viz. α < +∞ and α = +∞, where α is given by equation (22). We also proved that if

α < +∞, then the number of the roots of the characteristic equation is finite. For age-structured

models α = +∞, raising the question whether some size structured models, as far as the number

of the roots of the characteristic equation is concerned, are structurally simpler than some age-

structured models? We also note that finite maximum size span for individuals in the population

implies that the number of the roots of the characteristic equation is finite. For example, see

Diekmann, et al. (2007 b) where this is also assumed in addition to the assumption that the death

modulus is affine.

We note that these results justified our previous results which are reported in El-Doma (2008-1),

El-Doma(2008-2). We also note that the inflow of newborns from an external source affects the

steady states via equation (11), and, in fact, if C > 0, then problem (1) has no trivial steady

state, and also it is known that it has stabilizing effects, for example, see El-Doma (Preprint -2),

for a global stability result, and El-Doma(2008-2), El-Doma (Preprint 1), El-Doma (To appear),

and El-Doma (2011), for local stability results.
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