
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 6 Issue 2 Article 5 

12-2011 

Peristaltic Induced Flow of a Two-Layered Suspension in Non-Peristaltic Induced Flow of a Two-Layered Suspension in Non-

Uniform Channel Uniform Channel 

Amit Medhavi 
Kamla Nehru Institute of Technology 

Dharmendra Singh 
S.M.S. Institute of Technology 

Ajay S. Yadav 
S.M.S. Institute of Technology 

Ramesh S. Gautam 
Kanpur Institute of Technology 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Fluid Dynamics Commons 

Recommended Citation Recommended Citation 
Medhavi, Amit; Singh, Dharmendra; Yadav, Ajay S.; and Gautam, Ramesh S. (2011). Peristaltic Induced 
Flow of a Two-Layered Suspension in Non-Uniform Channel, Applications and Applied Mathematics: An 
International Journal (AAM), Vol. 6, Iss. 2, Article 5. 
Available at: https://digitalcommons.pvamu.edu/aam/vol6/iss2/5 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol6
https://digitalcommons.pvamu.edu/aam/vol6/iss2
https://digitalcommons.pvamu.edu/aam/vol6/iss2/5
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/201?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol6/iss2/5?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol6%2Fiss2%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


462 
 

 

Available at 
http://pvamu.edu/aam 

Appl. Appl. Math. 

ISSN: 1932-9466 
 

Vol. 6, Issue 2 (December 2011),  pp. 462 – 481  

Applications and Applied 
Mathematics:  

An International Journal 
(AAM) 

 

 
 

Peristaltic Induced Flow of a Two-Layered Suspension in  
Non-Uniform Channel  

 
 
 

Amit Medhavi  
Department of Mechanical Engineering  
Kamla Nehru Institute of Technology 

Sultanpur-228 118, India 
 amitmedhavi@yahoo.co.in 

 
Dharmendra Singh and Ajay S. Yadav  

Department of Mathematics 
 S.M.S. Institute of Technology 

Lucknow, India  
dr.dsingh09@gmail.com; ajaysinghydv@gmail.com 

 
Ramesh S. Gautam 

Department of Mathematics 
 Kanpur Institute of Technology 

  Kanpur, India 
rsg.kanpur@gmail.com 

 
Received: November 29, 2010; Accepted: August 8, 2011  

 
Abstract 
 
Peristaltic transport of a two-layered particulate suspension in a non-uniform channel has been 
investigated. The coupled differential equations for both the fluid and the particle phases in the 
central as well as in the peripheral layers have been solved and the expression for the flow rate, 
the pressure rise and the friction force has been derived. The results obtained are discussed both 
qualitatively and quantitatively in brief. The significance of the particle concentration as well as 
the peripheral layer has been well explained. 
  
Keywords: Particle concentration, peripheral layer, flow rate, pressure rise, friction             
           force. 
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1.  Introduction   
 
For about four and half decades, the flow induced by peristaltic waves had been the subject of 
scientific and engineering research. Latham was probably the first to introduce the mechanism of 
peristaltic transport in his M. S. thesis in the year 1966. Peristalsis, as termed by the 
physiologists, is a form of fluid transport that occurs when a progressive wave of area 
contraction or expansion propagates along the length of a distensible duct containing liquid or 
mixture. Including the vascomotion of small blood vessels, it has been found to be involved in 
many biological organs (Srivastava and Srivastava, 1984).Certain biomechanical systems such 
heart-lung machine, finger and roller pumps have been fabricated using the principles of 
peristalsis. Shapiro et al. (1969) and Jaffrin and Shapiro (1971) explained the basic principles of 
peristaltic pumping and brought out clearly the significance of the various parameters governing 
the flow. The literature on the subject is quite extensive by now. A review of most of the early 
theoretical and experimental investigations reported up to the year 1994 may be found in  
Srivastava and Coworkers (1984, 1995). The literature beyond this and of recent years include 
the investigations of Srivastava and Srivastava (1997), Mekheimer et al. (1998), Hakeem et al. 
(2002), Srivastava (2002), Misra and Pandey (2002), Hayat and coworkers (2002, 2003, 2004, 
2005, 2006a,b; 2008a,b), Mekheimer (2003), Misra and Rao (2004), Srivastava (2007a), Ali and 
Hayat (2008), Medhavi and coworker (2008, 2010), and a few others.  
 

The study of the theory of particulate suspension is very useful in many areas of technical 
importance (powder technology, fluidization, sedimentation, combustion, aerosol filtration, 
atmospheric fallout, lunar ash flows, environmental pollution, etc.). Recently, interest is 
increasingly developing in applying the particulate suspension theory to physiological flows as it 
provides an improved understanding of topics such as diffusion of protein, the rheology of blood, 
the swimming of microorganism, the particle deposition on respiratory tract, etc. Peristaltic 
pumping of multi-phase fluid has been addressed by Srivastava and Srivastava (1989, 1997), 
Mekheimer et al. (1998), Srivastava (2002), Medhavi and coworker (2008, 2009) and a few 
others. 

 

It is known that the peripheral layer plays a significant role whenever it is required to prevent the 
transported fluid from coming in contact with the mechanical parts of the pumps. Flows in many 
of the biological organs such as chyme in the small intestines and blood through small vessels 
are mainly two-layered. Peristaltic transport of two-layered models have been addressed by a few 
investigators including Shukla et al. (1980), Srivastava and Srivastava (1982, 1984), Brasseur et 
al. (1987), Srivastava and Saxena (1995), Rao and Usha (1995), Misra and Pandey (2002), etc. It 
is to note here that the interface shape depends on the viscosity ratio of the fluids in the two 
(central and peripheral) layers and not on the ratio of the radii of the outer (peripheral) and the 
central layers, in general (Brasseur et al.,1987; Rao and Usha,1995). However, the shape of the 
interface is not significantly affected when the viscosity of the fluid in one of the layers is varied 
with respect to the viscosity of the fluid in the other layer (Misra and Pandey, 2002). 
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The studies mentioned above have considered the core fluid to be either a single-phase 
Newtonian or non-Newtonian fluid. With increasing interest in particulate suspension flows, it is 
highly desired to address the two-fluid peristaltic transport problem in detail when the core fluid 
is represented by a particle-fluid suspension. In view of the above discussion, an attempt has 
been made in the present work to analyze the flow of a particle-fluid suspension induced by 
peristaltic waves in the presence of a peripheral layer in a non-uniform channel. The theoretical 
model considers a two-layered flow consisting of a central layer as a particle-fluid mixture and a 
peripheral layer as particle-free Newtonian fluid (same fluid as suspending medium in the central 
layer). 

 

2.     Formulation of the Problem  
 
Consider the flow of a two-layered particulate suspension through a two-dimensional infinite 
channel of non-uniform width with a sinusoidal wave traveling down its walls. The central layer 
(core region) consists of a particle-fluid mixture and the peripheral layer of particle free 
Newtonian viscous fluid (same as the suspending medium in the core region). The geometry of 
the wall surface is described (Figure 1) by 
 

ct),(x
λ

π
bd(x)H(x,t) 

2
sin                                                                            (1) 

  
with                         
 

kx,dd(x) o     

                                                                                  
                                                                                                                                                            

 

                    y 

                                                  λ 

                                  c    

                                                                            b 

                                                                                                    

                                   b1                                                                                

               do                                                                                                                                      d1(x)    

                                  d1o                                      H    H1                             d(x) 

 x 

             Fig. 1. Two layered flow geometry of peristaltic waves in a channel  
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where d(x) is the half width of the channel at any axial distance x from inlet, do is the half width 
of the channel at the inlet, k (<<1) is a constant whose magnitude depends on the length of the 
channel and exist and inlet dimensions, b is the amplitude of the wave, λ  is the wavelength, c is 
the wave propagation velocity and t is the time.                                                                 

The equations governing the linear momentum and the conservation of mass for both the fluid 
and particle phases in the peripheral and the central regions are expressed (Srivastava and 
Coworker, 1989, 2007b) 
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where 2 = 2222 y/x/   is two-dimensional Laplacian operator with y as the vertical 

coordinate measured in the direction normal to the tube axis, ( ff ,vu ) and ( pp ,vu ) denote 

velocity components of the fluid and particle phases in (x, y) directions, respectively in the core 
region, 

10 Hy  ; ( oo ,vu )  denotes velocity components of the fluid in the peripheral layer 

HyH 1
; pf ρρ and  be the actual densities of the material constituting fluid and particulate 

phases, respectively, (1-C) fρ  is the fluid phase density, C pρ the particulate phase density in the 

core region; p denotes pressure and C be the volume fraction of particulate phase; oμ  is the fluid 
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viscosity in the peripheral region; s (C) ~ s  is the suspension viscosity in the central layer and 

S being the drag coefficient of interaction for the force exerted by one phase on the other. In 
view of the argument stated earlier (Misra and Pandey, 2002), one may assume the form of 
interface (Shukla et al., 1980; Srivastava and Saxena, 1995) as: H1 = d1(x) + b1 sin  /2 (z-ct) 
with d1(x) = d1o+kx, b1 respectively as the central layer radius and interface wave amplitude and 
d1o being the radius of the central layer at the inlet. The limitations of the present theoretical 
model are well described in Srivastava and Srivastava (1983) and Srivastava (2007b). It is worth 
to mention here that fluid density in the central and the peripheral regions has been assumed the 
same, fρ  in view of the fact that the fluid in the peripheral layer is same as that of the 

suspending medium in the central core region.  

 

Introducing the following dimensionless variables 
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where  Re= fρ cdo/ 0 and  =do/  are Reynolds number and wave number, respectively, 
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Jaffirin and Shapiro (1971) observed that the Reynolds number is quite small when the 
wavelength is long and in such a case the inertial terms may be neglected. Thus, under the long 
wave approximation (i.e.,  << 1), equations (11) – (20) reduce t 
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with y/uC)μ(τ fsf  1  and y/uμτ ooo  ; of ,ττ  are shearing stress of the core and peripheral 

regions, respectively.  

 

The expression for the drag coefficient S and the empirical relation for the viscosity of the 
suspension are selected (Srivastava, 2007b; Srivastava et al., 2010) as  
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where T is measured in absolute temperature (oK). The viscosity of suspension expressed by this 
formula is found to be reasonably accurate up to C = 0.6 (i.e., 60% particle concentration).  

 

 3.  Analysis  
 

The expression for the velocity profiles, uo, uf and up obtained as the solution of equations (21) – 
(23) subject to the boundary conditions (24)-(26), are given as 
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where C)μ)μC(δ  13 , a non-dimensional suspension parameter. 
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Using now the fact that the total sum is equal to the sum of fluxes across the two regions : 

10 hy   and ,1 hyh   one arrives at the relations (Medhavi, 2009; Shukla et al., 1980), 

 α1  and αh.h 1  Substitution of these relations into equation (32), yields  
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The pressure rise, (t)ΔpL and the friction force at the walls, (t)FL  in the channel of length, L in 
their non-dimensional form are obtained as  
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Setting k = 0 in equations (34) and (35), one derives the expressions for the pressure rise and 
friction force for a two-layered particulate suspension in a uniform channel with 1α  in 
equations (34) and (35), the results for a single-layered particle-fluid suspension is derived. It is 
interesting to note that when C = 0, the core mixture reduces to the same fluid as in the 
peripheral layer and consequently the role of the interface automatically disappears and the 
results obtained above reduce to the corresponding result of single-phase Newtonian viscous 
fluid in a non-uniform channel.       

4.  Numerical Results and Discussion  

In order to discuss the results quantitatively, computer codes are now developed for the 
numerical evaluations of the analytical results obtained in equations (34) and (35) for various 
parameter values at the temperature of 370C in a channel of half width 0.01 cm. In view of the 
fact that the peripheral layer thickness strongly depends on the core mixture viscosity besides 
other factors (Bugliarello and Sevilla, 1970; Srivastava, 2007b), we choose 2a0 (diameter of a 
suspended particle)=8µm, the peripheral layer thickness 

,182582123603674186 ., ., ., ., ., .ε(C)ε(μm)   corresponding to the particle concentrations, C = 
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0.1, 0.2, 0.3 0.4, 0.5, 0.6, respectively from Srivastava (2007b). The value of α  is obtained from 
the relation: .1 oε/dα  We further assume the form of                                                                                           
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instantaneous flow rate q(x,t), periodic in (x-t) as (Gupta and Seshadri, 1976; Srivastava and 
Srivastava, 1988; Mekheimer, 2002) 

,2sin t)π(xQq(x,t)                                                                            (36) 

where Q is the time average of the flow over one period of the wave. The above form of q(x,t) 
has been assumed in view of the fact that the constant value gives (t)ΔPL  always negative and 
hence there would be no pumping action.  

The dimensionless pressure rise, (t)ΔpL  and friction force, (t)FL  over the channels length, L for 
various values of the flow rate, Q amplitude ratio,   and the particle concentration. C is 

computed using equation (36). The average pressure rise LΔp  and the friction force, LF  are then 

evaluated by averaging (t)F(t)Δp LL and , respectively over one period of the wave. Other 
parameters are selected (Srivastava and Srivastava, 1984; Mekheimer, 2002) as 

,10cmλL   .00050
50 0 .
L

d.
k   

The integrals involved in equations (34) and (35) are evaluated using Simpson rule and some of 
the critical results are displayed in Figs. 2 – 15 graphically. 
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In both the single and double-layered analyses the pressure rise (t)ΔpL  increases with particle 

concentration, C. Depending on the particle concentration, C, the peak value of (t)ΔpL  occurs 

between .4030 .t.   (Fig. 2). The pressure rise (t)ΔpL  decreases with the increasing flow rate 

for any given set of other parameters (Fig. 3). The flow characteristic, (t)ΔpL  possesses similar 
characteristics with respect to any parameter in both the uniform and non-uniform channel. 
However, (t)ΔpL  assumes much smaller magnitude in non-uniform channel than its 
corresponding value in the uniform channel (Figs. 2-5). It is further to note that for any given 
vale of t, (t)ΔpL  assumes significantly lower magnitude in two-layered analysis than its 
corresponding value in single-layered analysis (Figs. 3 and 5).  

The average pressure rise, LΔp  versus time average flow rate, Q has been plotted in Figs. 6 and 

7 which indicate a linear relationship between LΔp  and Q and thus the maximum flow  
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rate is achieved at zero pressure rise and maximum pressure occurs at zero flow rate. The flow 
characteristic, LΔp  is found to be indefinitely increasing with the amplitude ratio,   for any 
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given flow rate, Q and the particle concentration, C in both the single and double-layered 
analyses and assume a very                      
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be steeply increasing with the particle concentration, C for small values of the flow  
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with increasing flow rate, Q (Fig.11). 
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The non-dimensional friction, (t)FL  decreases with increasing particle concentration, C in both 

the single and double-layered analyses (Fig. 12). (t)FL  is found to be decreasing with decreasing 

the flow rate, Q. The lowest magnitude of (t)FL  occurs for .4030 .t.  The flow 

characteristic, (t)FL  assumes much lower magnitude in non-uniform channel than its 
corresponding value in uniform channel (Figs. 14 and 15). Numerical results further reveals that 
there exists a linear relationship between the average friction force, FL and the average flow rate, 
Q. An inspection of the illustrations also reveal that the friction force FL(t) and its averaged value, 
FL possesses characteristics similar to that of (t)ΔpL  and LΔp , respectively with respect to any 
given parameter. 

Present investigation has been carried out under various approximations and assumptions. 
Comments needs to made here regarding the same and use of the some of the parameters 
involved in the study. It is noted that the peripheral layer thickness, ε decreases with increasing 
particle concentration, C in the core region, consequently the parameter α  increases with particle 
concentration, C. The explanation regarding the shape of the interface needs to be given here. It 
is known from the published works (Brasseur et.al., 1987; Rao and Usha, 1995) that the interface 
shape depends on the viscosity ratio of the fluids in the two regions (central and peripheral) and 
it does not bear a constant ratio of radii of the central and peripheral layers during the course of 
peristaltic action. However, the shape of interface is not significantly affected when the viscosity 
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of the fluid in one of the layers is varied with respect to the fluid viscosity in the other layer and 
consequently the radii ratio remains approximately constant (Misra and Pandey, 2002). The 
peripheral layer fluid viscosity µo remains always constant and it is suspension viscosity, µs 
varies with particle concentration, C in the central core layer. The condition stated in Misra and 
Pandey (2002) is obviously satisfied which allows the use of constant value of   for a given 
particle concentration, C.  Other limitations of the study are well addressed by earlier 
investigators including Shapiro et al. (1969), Shukla et al (1980), Srivastava and Saxena (1995), 
Medhavi (2010), etc. 
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5.  Conclusions  

To investigate the simultaneous effects of the peripheral layer and the particle concentration on 
the peristaltic pumping, the flow induced by peristaltic waves of a two-layered particulate 
suspension has been studied. It has been found that the pressure rise increases with the particle 
concentration in the core region and assumes a significantly lower magnitude in two-layered 
analysis than its corresponding value in one-fluid model. A linear relationship between the 
pressure and the flow is exhibited. The friction force possesses characteristics opposite to those 
of the pressure rise with respect to any given parameter. As evident from the published literature 
(Misra and Pandey, 2002; Medhavi and Singh, 2009) peristalsis does play an important role in 
vasomotion of small blood vessels in addition to the pulsatile flow, the findings of the present 
theoretical work (Srivastava, 2007b), may be applied to explain the flow behavior of blood in 
small vessels with varying cross-section.   
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