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Abstract 

S. epidermidis infections on medically implanted devices are a common problem in modern 

medicine due to the abundance of the bacteria. Once inside the body, S. epidermidis gather in 

communities called biofilms and can become extremely hard to eradicate, causing the patient 

serious complications. We simulate the complex S. epidermidis-Neutrophils interactions in order 

to determine the optimum conditions for the immune system to be able to contain the infection 

and avoid implant rejection. Our cellular automata model can also be used as a tool for 

determining the optimal amount of antibiotics for combating biofilm formation on medical 

implants. 

Keywords:     Medical implants, Neutrophils, S. epidermidis, biofilms, Cellular automata  
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1.  Introduction 

Medically implanted devices are becoming increasingly important in medical practice, Xue et al. 

(2007). Due to the abundance of skin-colonizing bacteria, infectious reactions on such implants 

constitute a problem for modern medicine, Otto (2009). The most common member of the group 

of coagulase-negative staphylococci is Staphyloccocus epidermidis, Vuong and Otto (2002), 

which is a bacterial colonizer of the skin and mucous membranes of humans and other mammals, 

Otto (2009). It has been characterized as the main pathogen involved in nosocomial bloodstream 

infections, cardiovascular infections, and infections of the eye, ear, nose and throat, Vuong and 

Otto (2002). Being a common colonizer of human skin and one of the most often isolated 

bacterial pathogens in hospitals it is almost impossible to prevent S. epidermidis from entering 

the body while inserting a medical implant, Vuong and Otto (2002) and Otto (2009). Once in the 

body, S. epidermidis can lead to a wide variety of complications including inflammation, 

thrombosis, infections and fibrosis, Xue et al. (2007). These complications have a direct effect on 

the stability of the implanted device because they trigger immune responses, including a rapid 

accumulation of phagocytic cells, Xue et al. (2007).  

If the immune system is not able to eradicate S. epidermidis during the first hours after it has 

entered the body then biofilm formation is likely to commence. A biofilm consists of bacterial 

cells immobilized in a substratum which is frequently embedded in an organic polymer matrix of 

microbial origin. Biofilms appear in many different forms, including layers, clumps ridges, and 

even more complex micro-colonies that are arranged into stalks or mushroom-like formations, 

Costerton (1999) and Eberhard et al. (2005). Once protected by the biofilm, bacteria become 

difficult for the immune system to eradicate, Gunter et al. (2009), and studies suggest that 

biofilms are present on the surface of the implant as early as 16 hours after implantation, Gunter 

et al. (2009). However young biofilms are more vulnerable to phagocytic cells than mature ones 

which have been growing for more than 48 hours, Gunter et al. (2009). In addition, most 

antibiotics are only effective against the fast growing bacteria which reside in the outer layers of 

the biofilm, while the slow growing bacteria deep inside of the biofilm formation tend to be 

spared and to persist in the body, Eberhard et al. (2005).  

Therefore, it is critical that the immune system destroys the majority of the bacteria before a 

biofilm begins to form. Recent studies suggest that biofilm formation by S. epidermidis is 

regulated by a chemical communication between the bacteria called the agr system, Kong et al. 

(2006). When bacterial communities reach a certain size they are ready to gather into a biofilm, 

so they start releasing a specific chemical that will give the signal to start the attachment process. 

By disrupting the agr system these chemicals are never released then the biofilm will never form, 

which allows the immune system to kill the bacteria and contain the infection.  

Of all the types of phagocytic cells, the most important to the immune system's defence against 

S. epidermidis are the white blood cells Neutrophils. In order to attack the S. epidermidis 

growing on medical implants, Neutrophils cells adhere to the surface of the device and move 

towards the bacterial formations, Xue et al. (2007). The strength of Neutrophils adhesion to the 

medical implant depends on the type of protein present on the surface of the implant. Fibrinogen 

and Albumin are two of the most commonly used protein coatings on medically implanted 
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devices. Fibrinogen facilitates a strong attachment between Neutrophils and the implant since it 

is readily recognized as a malign substance by the immune system. However, Fibrinogen also 

works as a distraction to the Neutrophils because the phagocytes place themselves in one spot 

attacking the Fibrinogen covered implant and move very slowly towards the bacteria, Tang and 

Eaton (1993) and Kuntz and Saltzman (1997). In contrast, Albumin is not recognized by the 

phagocytes as a malign substance and hence the Neutrophils cells can move freely around the 

implant.  

Another important distinction between Albumin and Fibrinogen is the amount of Neutrophils 

each protein coating attracts. Experimental studies suggest that two groups of chemokines 

macrophage inflammatory protein (MIP) and monocyte chemoattactant protein (MCP) appear to 

play a major role in phagocyte-implant interactions, Xue et al. (2007). By releasing chemokines, 

the Neutrophils cells present on the surface of the implant are able to attract more Neutrophils to 

the site. These chemotactic interactions create waves of incoming phagocytic cells, which aid in 

the fight against the bacterial infection. While Fibrogen covered implants are interpreted as a 

threat to the body and many phagocytes are attracted to them, the Albumin coated implant is not 

perceived as a threat and thus fewer phagocytes are present to fight the infection. 

In this paper we examine a variety of mixtures of Fibrinogen and Albumin implant coatings in 

order to maximize the effectiveness of the immune system response. Finding the optimum 

amounts of each of these two proteins will help the immune system destroy most of the bacteria 

before they start to form biofilm communities. This will reduce the number of rejections of 

medically implanted devices and drastically improve the ability of the body’s immune system to 

combat bacterial infections. Our simulations can also be used to help determine the appropriate 

amount of antibiotics to use over the implant area so that an S. epidermidis infection can be 

successfully controlled as well as to predict what will happen if biofilm formation is avoided.  

 

2.  Cellular Automata Models 

Cellular automata models are dynamical systems in which space and time are discrete, Eberhard 

et al. (2005).  A cellular automaton consists of a regular grid, each of which can be in one of a 

finite number of possible states updated synchronously in discrete time steps according to local, 

identical rules, Mallet and de Pillis (2006). In this paper, we employ a cellular automata 

modeling approach to simulate interactions between Neutrophils and S. epidermidis subject to a 

variety of coatings of Albumin and Fibrinogen mixtures on a medically implanted device. A set 

of rules for the movement of the cells and the growth of the bacteria is given for the two different 

types of protein coatings. The amounts of Albumin and Fibrinogen in the mixture are allowed to 

be varied, since they have different effects on the speed of the Neutrophils and their ability to 

control a bacterial infection. 

We consider a biased motility model, in which Neutrophil cells move with greater probability 

towards larger bacterial concentrations. The model is divided into three parts. The first part 

simulates the complex S. epidermidis-Neutrophils interactions between 4 and 20 hours after the 

implant is introduced into the body. We consider the reproduction of bacteria at the early stage of 

a bacterial community formation which triggers the immune response. We also incorporate a 

series of chemotaxing waves of Neutrophils cells in our model. The second part of the model 

simulates the system dynamics after the S. epidermidis have started forming a biofilm which 

3

Prieto-Langarica et al.: A Cellular Automata Model of Infection Control on Medical Implants

Published by Digital Commons @PVAMU, 2011



1744                                                                                                                                      Prieto-Langarica et al. 

 

 
takes place between the 20 and the 52 hours. During this part of the simulation, bacteria 

experience an increase in the reproduction rate while the immune system response gradually 

decreases effectiveness as the biofilms become stronger. The last part of the model, after the 52 

hours, the immune system can no longer fight S.epidermidis since they are all gather in fully 

formed strong biofilms.  

The novelty of this mathematical approach is the implementation of the cellular automata on 

different scales. The two-scale discrete CA model includes one scale for the Neutrophils and 

another scale for the bacteria, taking into consideration the much larger size of the white blood 

cells. 

 

3.  Numerical Implementation 

Our biased motility cellular automata model is implemented on an SxS grid. A square in the grid 

is occupied by bacteria with a variable density while a Neutrophil cell occupies a cxc square.  

Each square in the grid is in one of the following four states: 

 Empty 

 Covered with S. epidermidis 

 Covered with a Neutrophil cell and S. epidermidis 

 Covered with a Neutrophil cell but without any bacteria present 

 

Each numerical simulation consists of a series of iterative steps. We initialize the model with two 

SxS matrices. Every entry in each matrix represents a square in the grid described above. On the 

first matrix we randomly select m blocks of cxc numbered squares, each block representing a 

single Neutrophil cell. Each cell has the ability to move in 8 different directions (Figure 1). 

Direction i is chosen with probability Pi, i = 1 ,..., 8 where the value of Pi depends on the 

concentration of bacteria in each direction. In the second matrix, b units of S. epidermidis are 

placed randomly, with no limit on the number of bacteria that can reside in a single grid square.  

Each block of cxc squares in the matrix that represents the Neutrophil cells is uniquely 

numbered. Every time step we check the area under each cell for S. epidermidis bacteria. 

Consequently, one of the following two cases holds: 

 There are some bacteria under the area covered by the Neutrophil. In this case, the 

Neutrophil doesn't move and consumes one unit of bacteria each time step until there 

is no more bacteria under the area covered by the Neutrophil.  

 There are no bacteria under the area covered by the Neutrophil. In this case, the cell 

moves to an available, free from other Neutrophil cells, neighboring space i, i=1,…,8,  

(Figure 1) with a probability Pi. 
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Figure 1. Directions i=1,…,8 for movement of the Neutrophil cells. 

The direction i of cell movement is determined randomly according to specific probabilities 

assigned to each direction. The Neutrophil cells move toward a higher concentration of bacteria 

with a greater probability Pi. To compute Pi, we consider a 3x3 grid and place the Neutrophil cell 

on the center square in the grid. Then we calculate Pi  according to the formula Pi = Ai/B, i = 

1,...,8, where B is the total amount of bacteria on each of the 8 squares surrounding the cell and 

Ai is the amount of S. epidermidis on each of the surrounding positions. 

To take into consideration the chemotaxis interactions between the Neurophil cells, we add G 

additional cells to the system every dx units of time, where dx is a constant, and G is a function 

of the protein mixture, the amount of bacteria currently present and, the amount of phagocytes in 

the model at that time. The new cells are placed randomly on available spaces of the implant 

ensuring that no two cells overlap on the implant. The protein coating is a mixture of Albumin 

and Fibrinogen. For convenience, we will use the variable A to quantify the percentages of 

Albumin in the protein coating mixture. A is a number between 0 and 1 which indicates the 

fraction of Albumin in the protein coating mixture while 1-A represents the fractional amount of 

Fibrinogen in the protein coating mixture.  

 

4.  Numerical Simulations 

In order to examine the effect of Neutrophils ability to identify bacteria on the progression of the 

bacterial infection, we run a set of biased motility simulations. The amounts of Fibrinogen and 

Albumin are varied in the implant’s coating mixture in order to determine the optimal amounts of 

each protein that facilitate the best immune system response. We use Matlab® to implement our 

biased motility cellular automata model. The time unit used for the simulations is Δt=20 

seconds, which is the same as the approximate time that it takes for a Neutrophil cell to ingest a 

single S. epidermidis bacterium. In our numerical simulations we model the first 76 hours after 

the implant is introduced to the body. After the initial 20 hours, S. epidermidis bacteria start 

forming a biofilm and the immune system gradually becomes less effective in fighting the 

bacterial infection. After 52 hours, the immune system can no longer fight the infection.  
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The specific functions and parameters that are used in the simulations are listed below. The time 

at which new Neutrophils are incorporated into the simulation, dx, is given by  

,180 tdx   

this represents a one-hour interval and is consistent with the available experimental data that we 

are basing the model on. When levels of Albumin decrease more Neutrophils are recruited which 

means chemotaxis becomes stronger which means that more Neutrophils are incorporated into 

the model each hour. Therefore, we use 

,
2

1
)1(2)( 
















 n

b
AroundAG


 

to represent the amount of new Neutrophil cells that are incorporated into the system every hour. 

Here, A represents the fraction of Albumin in the protein mixture; b is the current amount of 

bacteria, n is the number of Neutrophils currently on the simulation and β is a normalizing factor. 

For the experiments we are running β=9072 since this represents the average initial bacteria on 

the experimental implant, Tang (2010). 

The more Albumin in the mixture the fewer Neutrophils cells are recruited into the implant. As 

bacteria accumulate on the surface of the implant, more Neutrophils are recruited due to 

chemotaxis which increases the ability of the immune system to fight the infection. According to 

experimental data, approximately 40% more Neutrophils are found when Fibrinogen is the only 

protein used to cover the implant as opposed to when only Albumin coating is used, Tang and 

Eaton (1993). The amount of initial Neutrophil cells on the implant surface, m, is modeled by the 

following function: 

,2)1(8)( 











b
AroundAm  

where the function m depends only on the amounts of Albumin in the protein mixture and the 

initial amounts of bacterium since there are no Neutrophils on the surface of the implant at this 

point. There will be more cells recruited when less Albumins is present in the mixture.  

As said before, it takes Neutrophils more time to move on a Fibrinogen surface than on an 

Albumin surface. To account for this we use the function Ts which represents the time that it 

takes each Neutrophils cell to move one unit in space (a square in the grid of the model) 

 .)( )1(4 A

S efloorAT   
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Figure 2.  Snapshots of the initial (left) and final (right) state of the system in a 20-hour 

simulation 

Other parameters used in the simulations include c, the size of the cxc square on the grid that a 

single Neutrophil cell occupies, and S, the size of the SxS grid used in the cellular automata 

models. We use c=12 since the ratio between the radius of a Neutrophil cell and an S. 

epidermidis bacteria is approximately 1:12, and S=120 which represents a grid of size 

approximately .01% of the area of a biomedical implant used in practice. We also consider the 

generation time of the bacteria inside a biofilm to be 200 minutes, Konig et al. (2001), while the 

generation time of free bacteria under stress to be 600 minutes, Tang (2010). 

 

Figure 3. Percentage of effective simulations using a biased motility model 

We run the simulation 10,000 times for 76 hours, retrieving the amount of bacteria left in each 

simulation after 20 (Figure 2), 52 and 76  hours. An effective simulation is defined as a 

simulation in which at most 1% of the implant area is covered with bacteria after 76 hours. The 

graph below shows the percentage of effective simulations for all values of Albumin between 0% 

and 100% in 10% increments (% of Fibrinogen=100 - % of Albumin) after 20, 52 and 76 hours.  
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Figure 3 shows the results of the simulations using our biased motility model, which yielded 

results similar to published experimental data by Tang and Eaton (1995).  

In order to improve the results for all Albumin and Fibrinogen percentages two strategies could 

be used: (1) medical devices can be pre-coated with antibiotics before implantation; or (2) 

biofilm formation can be blocked, Kong et al. (2006). The model was modified as follows to 

include both approaches: 

 To include the effect of antibiotics in our original model, every certain amount of time 

some percentage of the bacteria is eliminated at random from the implant. The amount of 

time and percentages can be modified to describe the effect of different types of 

antibiotics. The effects of a sample antibiotic on the different mixtures after a series of 

76-hour simulations are shown on the graphs below (Figure 4, left). 

 Bioflim formation can be avoided by disrupting the agr system to prevent the attachment 

of bacterial cells. Our original cellular automata model was modified to neglect biofilm 

formation by treating the 20-to-76-hour parts similarly to the 4-to-20-hour part of the 

model. Bacteria are treated as free bacteria, and Neutrophils are able to kill bacteria at the 

same speed during the entire 76-hour simulation. The results are shown on the graphs 

below (Figure 4, right) where the effect of disrupting the agr system can be easily 

observed. 

 

Figure 4. The effects of different doses of antibiotics (left) and the absence of biofilm 

formation (right) on bacterial infections 

 

5.  Discussion and Conclusions 

Using a biased motility cellular automata model we have numerically investigated the 

interactions between S. epidermidis and Neutrophils on the surface of a medically implanted 

device with protein-coating mixtures of Ablumin and Fibrinogen. By using our model, we found 

an array of different protein-coating mixtures that maximize the immune response while 
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minimizing the rejection caused by infection or inflammation. We also found the different 

protein-coating mixtures that prevent biofilms from forming on the surface of the implant 

altogether.  

Using this CA model we were able to obtain a range of protein-coating mixtures which 

maximizes the percentage of effective simulations. Over 99.7% of the experiments with mixtures 

between 30% Albumin (i.e., 70% Fibrinogen) and 70% Albumin (i.e., 30% Fibrinogen) were 

successful in eradicating the bacteria. Inside that range, mixtures of 40% Albumin and 60% 

Albumin were the most efficient (with 99.9% effective simulations).  

The model was also used to determine the effects of pre-coating implants with antibiotics before 

insertion. We ran the simulations for different doses of antibiotics to determine how many doses 

are needed to prevent biofilm formation. We were able to conclude that with three doses of 

antibiotics all protein coating mixtures yield effectiveness above 97.0%. For different antibiotics 

the simulation can be rescaled to represent accurate amounts of that specific antibiotic needed to 

successfully avoid biofilm formation under any protein-coating mixture.  

Finally the biased motility model was used to determine what will happen if biofilm formation 

can be prevented completely. The simulation showed that in this case all protein coating 

mixtures will control the infection over 97% of the time. If we could keep S. epidermidis from 

gathering into a biofilm, then very low percentages of Fibrinogen can be used on the protein 

coating mixture while having 99.9% effectiveness. This could mean greater efficiency in spite of 

low Neutrophils recruitment, which will lead to less inflammation.  

In this work, we also implemented an unbiased (random) motility model, in which Neutrophil 

cells move at random on the surface of the implant.  The results from the random motility model 

were found to be biologically inaccurate, and therefore were not presented in the paper. 
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