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Abstract 

 
The present paper deals with the wavelet transform of fractional integral operator (the Riemann-
Liouville operators) on Boehmian spaces. By virtue of the existing relation between the wavelet 
transform and the Fourier transform, we obtained integrable Boehmians defined on the 
Boehmian space for the wavelet transform of fractional integrals. 
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1. Introduction  

 
Wavelet is a new area that stands at the intersection of frontiers of mathematics, scientific 
computing and signals and image processing. It has been one of the major research directions in 
science in the last decade and is still undergoing rapid growth. Some group of mathematician 
view it as a new basis for representing function; some consider it as a technique for time 
frequency analysis. Wavelet analysis is an abstract branch of mathematics that is originated as a 
lack in Fourier analysis. In order to eliminate the weakness of finding the frequency spectrum of 
a signal locally in time, Gabor (1946) first introduced the Windowed – Fourier transform (or 
short – time Fourier transform) or Gabor transform by using a Gaussian distribution function as 
the window function Gabor (1946). The concept of wavelets or ondelettes started to appear in the 
literature only in early in 1980s.  

  
Morlet et al. (1982) introduced the idea of wavelet transform as a new tool for seismic signal 
analysis. Grossman broadly defined wavelets in the context of quantum physics. Then by the 
joint venture of mathematical group in Marseilles, led by Grossman, in collaboration with 
Daubechies, Paul and others, extended Morlet discrete version of wavelet transform to the 
continuous version by relating it to the theory of coherent states in quantum physics. See 
Grossman and Morlet (1984), and Daubechies (1992, 1998a, 1998b).   

 
Meyer learnt about the work of Morlet and Marseilles group and applied the Little-wood Paley 
theory to the study of wavelet decomposition Meyer (1986), where he also explains the 
construction of wavelets and the application of wavelet series representation to the analysis for 
function spaces such as Hölder, Hardy, Besov and studied the notion of holomorphic wavelets. 
Creditable contributions to the wavelet theory is made by many authors Chui (1992), Daubechies 
(1992, 1998a), Grossman and Morlet (1984), Janseen (1981a, 1981b), Mikusiński (1983, 1988).  

 

The Gabor transform (i.e., the windowed Fourier transform) of f with respect to g [cf. Debnath 
(1998, p.688)] is 
 
  




  detgftf ti)()(
2

1
),]([  
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where F is the Fourier transform and G is the Gabor transform. Parseval formula for Gabor 
transform is given by 
 

   hfggf ,~,
~ 2 ,                                                      (4) 

 
whereas the inversion formula is 
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                                           (5) 

 
Basic properties of the Gabor transform are linearity, translation, modulation, and conjugation. 
The theory of Gabor transform has been generalized by Janssen (1981a, 1981b) for tempered 
distributions S  . The treatment of wavelet transform with the Schwartz distribution was 
explained by authors Pandey (1999), Pathak (1998), Walter (1992), Walter (1993), Walter 
(1994), among others. 
 
In Banerji et al. (2004), authors investigate the Gabor transform for integrable Boehmians.  
Definition and terminologies, relevant to present work and the convergence for the Boehmian 
space are explained later.  
 
The fractional calculus (fractional integrals and derivatives, also called fractional differintegrals) 
have several applications in integral transforms and distribution spaces, which are called 
fractional transforms, see for instance, Loonker and Banerji (2007). 
 
In the present work, using relation between the Fourier and the Wavelet transform, we have 
obtained the Gabor transform for fractional integral operator (Riemann-Liouville type) which is 
further proved for integrable Boehmians.  
  

Definition 1. 

 
 Samko et al. (1993, p. 33): Let ),()( 1 baLx  . Then the integrals 
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where 0 , are Riemann-Liouville fractional integrals of order . They are also known as left-
sided and right-sided fractional integrals, respectively. Indeed, these integrals are extensions 
from the case of a finite interval ],[ ba  to the case of a half-axis, given by 
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while for the whole axis, it is given, respectively, by Samko et al. (1993, p. 94) as 
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The convolution of formulae (9) and (10) is 
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Fractional integral for function ),(  pL , 10    and /11  p , is given by 
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There are two ways to define the fractional integrals and derivatives of generalized functions 
Samko et al. (1993, p. 146). The first is based on the definition of a fractional integral operator as 
a convolution 
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of the function 1

)(

1 




x , with the generalized function f. The second is by virtue of the use of 

adjoint operators. By employing fractional integration by parts, formulae (6) and (7) assume the 
form 
  

))(,())((  
  ba IffI  .          (16) 

 
The function f, in (16) may, indeed, be defined as the generalized function if 

bI  maps 

continuously the space of test functions X into itself. When f and )( fI a

 are considered to be 

generalized functions on different spaces of test function X and Y such that Xf  (the dual of 

the test function space X) and YfIa  )( (the dual of the test function space Y), 
bI   maps Y into 

X continuously.  
 
The fractional integration 

I of a generalized function f  (the dual of ) is given by 
   

   ),,,(),( IffI .                                                                                        (17) 
 
Indeed, using (17), the Fourier transform is given by 

    

)),(ˆ)(,
~

(),
~

(),( xixfIfIf   


                                                        (18) 
 
which is derived by virtue of the notions of convolution prescribed in (16). The Fourier 
transform of the fractional integrals I  are [Samko et al. (1993, p. 147)] 
 

).,(),(ˆ)()( 1 baLxixI  
   F          (19) 

 
Study of regular operators of Mikusiński by Boehme (1973) resulted into the theory of 
Boehmians, the generalization of Schwartz distribution theory. These regular operators form 
subalgebra of Mikusiński operators such that they include only such functions whose support is 
bounded from the left, and at the same time do not have any restriction on the support. The 
general construction of Boehmians gives rise to various function spaces, which are known as 
Boehmian spaces [cf. Mikusiński and Mikusiński (1981) and Mikusiński (1983, 1988)]. It is 
observed that these spaces contain all Schwartz distributions, Roumieu ultradistributions and 
tempered distributions. 
 

The name Boehmian is used for all objects by an algebraic construction, which is similar to the 
construction of the field of quotients. Suppose G  is an additive commutative semigroup, S  be a 
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subset of group G such that  GS   is a sub semigroup, for which we define a mapping   from 
SG  to G such that following conditions are satisfied (these condition are for the mapping ):  

 
(i) if S ,  then S )(   and    

(ii) if SG   ,,  then )()(    

(iii) if SG   ,,  then ).()()(     

 
The delta sequence, denoted by , is defined as members of class delta which are the sequences 
of subset S, and satisfies the conditions  
 

(i) if  )(,, nG   and nnn  ,  then    in G.  

(ii) if  )(),( nn   then  )( nn   . 

 
Then the quotient of sequences is defined as the element of certain class A of pair of sequences 
defined by  
 

A f f Gn n n
N

n  {( ),( ):( ) ,( ) }   .  

 
This is denoted by fn n/  such that 

   
f f m n Nm n n m      , , .   

 
Further, the quotients of sequences fn n/   and gn n are called equivalent if  

 
f g n Nn n n n      , .    

 
The equivalence relation defined on A and the equivalence classes of quotient of sequence are 
called Boehmians.  
 

The space of all Boehmians, denoted by B, has the properties addition, multiplication and 
differentiation. The Boehmian space 

1LB will be called the space of locally integrable Boehmians 

if the group G be the set of all locally integrable function on R and possibly two such functions 
are identified with respect to Lebesgue measure ( these functions are equal almost everywhere) 
and the topology of this space is taken to be the semi-norm topology generated by  
  

( ) ,  1,  2,  3, ,
n

n n
p f f d n


  
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where   is the usual Lebesgue measure on R and D R( ) . In other words, if  1Lf   and )( n  is 

the delta sequence, then 0)(  ff n , as n . A pair of sequences ),( nnf   is called a 

quotient of sequences, and is denoted by ,/ nnf   if ),,2,1(1  nLfn  where )( n  is a delta 

sequence and .,, Nnmff mnnm     Two quotients of sequences nnf /  and nng /  are 

equivalent if ., Nngf nnnn     The equivalence class of quotient of sequences will be 

called an integrable Boehmain, the space of all integrable Boehmian will be denoted by 
1LB . 

Convergence of Boehmians is defined in Mikusiński (1983). The terminologies regarding 
Boehmians and Boehmian spaces can be referred to in Mikusiński and Mikusiński (1981), 
Mikusiński (1983, 1988). We remark that present investigations are independent of the results 
given in Bargmann (1961, 1967).  
 

2. Wavelet Transform of Fractional Integrals for Integrable Boehmians 

 
Using the relation between the Gabor and the Fourier transform, relations (3) and (19), 
respectively, the fractional integrals for the Gabor transform, can be written in the form 

 

),(),(ˆ)())(( 1 baLffifI tt  
   F .          (20) 

 
In other words, (20) can be written as 

      

ˆ( ) ( ) ( ),tI f i f  
  G             (21) 

i.e.,      

ntn fifI ))(ˆ()()(   
  G  

          ).()ˆ()(  
ntfi             (22)  

 

Theorem 1: 

 
If

1
]/[ Lnn Bf  , then the sequence 

  

)( nfI 
G )()ˆ()(  

ntfi               (23)        

 
converges uniformly on each compact set in R. 
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Proof:  

 

If )( n is a delta sequence, then nt )ˆ(  converges uniformly on each compact set to the constant 

function unity. Therefore, 0)ˆ( k  on K (the compact set) and, thus, the left hand side of (23) 

gives 
   

 )ˆ(

)ˆ)(ˆ(

)ˆ(

)^(

)ˆ(

)ˆ)(ˆ(
)(

k

nk

k

kn

k

kn
n

fIfIfI
fI








 

 
 


G   on K   

          
)ˆ(

),ˆ()ˆ()(

k

nntfi


 




 [cf. Equation (22)]. 

This shows that the Gabor transform of fractional integrals for an integrable Boehmian 
]/[ nnfF   can be expressed as the limit of the sequence )( nfI 

G , which, in fact, is the space 

of all continuous functions on R. This proves the theorem completely. 
 

Property 1:  

 
Let 

1
]/[ Lnn Bf  . Then, FFn

n



lim , )()( FIFI n


 GG  uniformly on each compact set. 

 

Proof:  

 
We have }{}{lim FFFF nn

n
GG 


 , uniformly on each compact set. The sequence can be 

expressed as NknLFF kkn  ,,, 1 , which has a norm 

 
 
  0)(  kn FF  , as Nkn  , , 

 
where K is well defined. Since }{ kG is a continuous function, we have 0}{ kG on K for 

Nk  . It is, therefore, enough to prove that 
  
 
  }{}{}{}{ kkn FF  GGGG  , 

 
uniformly on K. We have, 

 
  }){(}{}{}{}{ knkkn FFFF   GGGGG , 
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such that 0)(  kn FF  , as .n   

 
 
This justifies the existence and validity of the property. 
 

 
3.  Conclusions  

 
The present paper focuses on the application of the Riemann Liouville type fractional integral 
operator to the Gabor transform and the integrable Boehmians. The fractional integral formula 
for the Gabor transform is given by using the relation between the Gabor and the Fourier 
transforms. The formula and the property established in this paper are suitable for certain 
Boehmian space for an integrable Boehmian. The compact set and the continuity of the function 
used, approves the existence of the results given in this paper.  
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