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Abstract

Several important industrial and engineering problems are very difficult to solve analytically since
they are high nonlinear. The Chebyshev spectral collocation method possesses an ability to predict
the solution behavior for a system of high nonlinear ordinary differential equations. This method
which is based on differentiated Chebyshev polynomials is introduced to obtain an approximate
solution to the system of ordinary differential equations which physically describe the flow and heat
transfer problem of an unsteady Casson fluid model taking into consideration both heat generation
and radiation effects in the temperature equation. Based on the spectral collocation method, the
obtained solution is introduced numerically to various parameter values.

Keywords: Unsteady Casson Fluid; Ordinary Differential Equations; Slip Effects; Chebyshev
Spectral Collocation Method

MSC 2010 No.: 65N12, 65M60, 41A30, 76F12

1. Introduction

Nonlinear ordinary differential equations occur from many areas of engineering, mathematics,
physics, and chemistry. They are fundamental to the mathematical preparation of continuum mod-
els. There exist many numerical methods which can be used to solve these nonlinear ordinary

854

1

Babatin: Numerical Treatment for the flow of Casson Fluid

Published by Digital Commons @PVAMU, 2018



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 855

differential equations under different situations. The Chebyshev spectral collocation methods are
one of these methods which can be used. Firstly, we must be familiar with Chebyshev polynomial
(Rivlin (1990)) which is a well known with the family of orthogonal polynomials on the interval
[−1, 1]. These polynomials present good properties in the approximation of functions. Chebyshev
polynomials are used in different fields of mathematics, physics and engineering. The Chebyshev
spectral collocation method is a numerical method which has high accuracy, exponential rate of
convergence and it is easy to apply in finite and infinite domains for different problems (Canuto et
al. (2006), Khader (2011)).

After numerous publication of Chebyshev collocation method, many researchers have successfully
applied this method of different highly nonlinear problems of engineering and science. We refer to
Fakhar-Izadi and Dehghan who introduced the spectral method for Volterra integro-differential
equations with parabolic type based on a Legendre collocation scheme (Fakhar and Dehghan
(2011)). In the same context, the concept of the spectral collocation method was introduced pre-
viously in (Huang and Zhang (2013)) to derive methods of stochastic delay differential equations.
Likewise, a Chebyshev collocation method which can solve the unsteady two-dimensional Navier-
Stokes equations in vorticity-stream function variables was presented and discussed by (Ehrenstein
and Peyret (1989)). On the other hand, Elbarbary (2005) investigated a new spectral differentiation
matrix to decrease round off error. Also, Chebyshev spectral collocation methods have proven suf-
ficient success in the field of numerical solution to large different boundary value problems (Fox
and Parker (1968)) and also, in the field of computational fluid mechanics (Canuto et al. (1988)).
The relevance of Chebyshev spectral collocation methods are also seen in the research introduced
by (Khater et al. (2008)). This work is based on the differentiated Chebyshev polynomials to obtain
numerical solutions for various kinds of nonlinear partial differential equations. Advancement of
the Chebyshev spectral collocation methods are noticed in the paper by (Yin and Gan (2015)) who
introduced a new solution for several types of stochastic delay differential equations. Very recently,
(Emran (2015)) studied two classes of non classical parabolic ordinary differential equations with
high accuracy on a simple domain using these methods.

Chebyshev spectral collocation methods are very effective to obtain an accurate and rigorous nu-
merical solution for any models containing a system of partial or ordinary differential equations.
In this paper, we use this method to derive a numerical solution for the velocities and temperature
components for a system of ordinary differential equations which describe unsteady motion for
non-Newtonian Casson fluid with thermal radiation, slip velocity and heat generation effects.

2. Formulation of the problem

In this section, we present the system of ordinary differential equations which describe the physical
problem of fluid mechanics. In fluid mechanics there exists a kind of fluid which can be classified
as a non-Newtonian fluid termed Casson model. Casson flow model is a type of non-Newtonian
fluid which exhibits to yield stress (Mukhopadhyay et al. (2013)). Examples of a Casson fluid
are: blood, jelly, tomato sauce, honey, soup, concentrated fruit juices, etc. (Mukhopadhyay et al.
(2013)). From the literature, we can describe the system of ordinary differential equations for
unsteady two-dimensional laminar boundary layer slip flow of a Casson fluid over a continuous
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moving stretching sheet which results from a thin slit in the presence of thermal radiation and heat
generation as follows:

(1 +
1

β
)f ′′′ + ff ′′ = f ′2 + S

(η
2
f ′′ + f ′

)
, (1)

1

Pr
(1 +R) θ′′ + fθ′ +

1

Pr

(
a∗e−η + b∗θ

)
= 2f ′θ + S

(
η

2
θ′ +

3

2
θ

)
, (2)

f(0) = 0, f ′(0)− λ
(

1 +
1

β

)
f ′′(0) = 1, θ(0) = 1, (3)

f ′ → 0, θ → 0, as η →∞. (4)

Equation (1) is called the momentum equation for a Casson fluid, while Equation (2) describes
the energy equation. Also, a prime which appears in these equations denotes differentiation with
respect to η. Likewise, the parameters in Equation (1) are the unsteadiness parameter S and the
Casson parameter β. Equation (2) which describes the energy equation has the radiation parameter
R, the Prandtl number Pr and both the heat generation parameters a∗ and b∗. Equation (3) de-
scribes the boundary conditions which contain the velocity slip parameter λ. Finally, Equation (4)
physically means that at the free stream, both the fluid velocity and the fluid temperature vanish.
Here we must note that, as mentioned in (Mukhopadhyay et al. (2013)), if the Casson parameter
β is ignored, then, the equation of fluid flow is transformed to the Newtonian fluid model. Also, if
the unsteadiness parameter S = 0 the motion for the fluid becomes steady flow.

3. Procedure solution using Chebyshev spectral collocation method

3.1. An approximate formula for the derivative of Chebyshev polynomials expansion

The well-known Chebyshev polynomials (Snyder (1966)) are defined on the interval [−1, 1] and
can be determined with the aid of the following recurrence formula:

Tk+1(z) = 2z Tk(z)− Tk−1(z), T0(z) = 1, T1(z) = z, k = 1, 2, ... .

In order to use these polynomials on the interval [0, 1] for example, we define the so called shifted
Chebyshev polynomials by introducing a change of variable z = 2x − 1. The shifted Chebyshev
polynomials are denoted by T̄k(x) = Tk(2x − 1) = T2k(

√
x). We can generalize this formula in

any interval [0, η∞]. The function u(x), which belongs to the space of square integrable functions
L2[0, 1], may be expressed in terms of the T̄k(x) as

u(x) =

∞∑
k=0

ck T̄k(x), (5)

where the coefficients ck are given by

ck =
Υk

π

∫ 1

0

u(x) T̄k(x)√
x− x2

dx, Υ0 = 1, Υk = 2, k = 1, 2, ... .
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In practice, only the first (m+1)-terms of the shifted Chebyshev polynomials are considered. Then,
we have

um(x) =

m∑
k=0

ck T̄k(x). (6)

The analytic form of the shifted Chebyshev polynomials T̄n(x) of degree n is given by

T̄n(x) = n

n∑
k=0

(−1)n−k
22k (n+ k − 1)!

(2k)! (n− k)!
xk, n = 1, 2, . . . . (7)

The main approximate formula for the derivative of um(x) is given in the following theorem.

Theorem 3.1 (Samy and Khader (2017)).

Let u(x) be approximated by shifted Chebyshev polynomials as in Equation (6) and also suppose
r is an integer number, then,

D(r)(um(x)) =

m∑
i=r

i∑
k=r

ci λi, k, r x
k−r, λi, k, r = (−1)i−k

22k i (i+ k − 1)!k!

(i− k)! (2 k)! (k − r)!
. (8)

The convergence analysis and evaluation of the upper bound of the error of the proposed formula
are given in the following two theorems.

Theorem 3.2 (Samy and Khader (2017)).

The derivative of order r for the shifted Chebyshev polynomials can be expressed in terms of the
shifted Chebyshev polynomials themselves in the following form

Dr(T̄i(x)) =

i∑
k=r

k−r∑
j=0

Ψi,j,k T̄j(x), (9)

where

Ψi,j,k =
(−1)i−k 2i(i+ k − 1)!Γ(k − r + 1

2)

hjΓ(k + 1
2) (i− k)! Γ(k − r − j + 1) Γ(k + j − r + 1)

, h0 = 2, hj = 1, j = 1, 2, ... .

Theorem 3.3 (Samy and Khader (2017)).

The error |EmT | = |D(r)u(x)−D(r)um(x)| in approximating D(r)u(x) by D(r)um(x) is bounded by

|EmT | ≤
∣∣∣ ∞∑
i=m+1

ci

( i∑
k=r

k−r∑
j=0

Ψi,j,k

)∣∣∣. (10)

3.2. Solution procedure

In this subsection, we implement the proposed method to solve the system of ordinary differential
equations of the form (1)-(2) numerically. The unknown functions f(η) and θ(η) may be expanded
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by finite series of shifted Chebyshev polynomials as the following approximations

fm(η) =

m∑
k=0

f̄kT̄k(η), θm(η) =

m∑
k=0

θ̄kT̄k(η). (11)

From Equations (1)-(2), (11) and Theorem 1 we have(
1 +

1

β

)( m∑
i=3

i∑
k=3

f̄i γi, k, 3 η
k−3

)
+

(
m∑
i=0

f̄iT̄i(η)

)(
m∑
i=2

i∑
k=2

f̄i γi, k, 2 η
k−2

)

−

(
m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1

)2

− S

[
η

2

m∑
i=2

i∑
k=2

f̄i γi, k, 2 η
k−2 +

m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1

]
= 0,

(12)

(
1 +R

Pr

)( m∑
i=2

i∑
k=2

θ̄i γi, k, 2 η
k−2

)
+

(
m∑
i=0

f̄iT̄i(η)

)(
m∑
i=1

i∑
k=1

θ̄i γi, k, 1 η
k−1

)

− 2

(
m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1

)(
m∑
i=0

θ̄iT̄i(η)

)
− S

(
η

2

(
m∑
i=1

i∑
k=1

θ̄i γi, k, 1 η
k−1

)
+

3

2

m∑
i=0

θ̄iT̄i(η)

)

+
1

Pr

(
a∗e−η + b∗

m∑
i=0

θ̄iT̄i(η)

)
= 0.

(13)

We now collocate Equations (12)-(13) at (m− n+ 1) points ηs, s = 0, 1, ...,m− n as

(
1 +

1

β

)( m∑
i=3

i∑
k=3

f̄i γi, k, 3 η
k−3
s

)
+

(
m∑
i=0

f̄iT̄i(ηs)

)(
m∑
i=2

i∑
k=2

f̄i γi, k, 2 η
k−2
s

)

−

(
m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1
s

)2

− S

[
ηs
2

m∑
i=2

i∑
k=2

f̄i γi, k, 2 η
k−2
s +

m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1
s

]
= 0,

(14)

(
1 +R

Pr

)( m∑
i=2

i∑
k=2

θ̄i γi, k, 2 η
k−2
s

)
+

(
m∑
i=0

f̄iT̄i(ηs)

)(
m∑
i=1

i∑
k=1

θ̄i γi, k, 1 η
k−1
s

)

− 2

(
m∑
i=1

i∑
k=1

f̄i γi, k, 1 η
k−1
s

)(
m∑
i=0

θ̄iT̄i(ηs)

)

− S

(
ηs
2

(
m∑
i=1

i∑
k=1

θ̄i γi, k, 1 η
k−1
s

)
+

3

2

m∑
i=0

θ̄iT̄i(ηs)

)
+

1

Pr

(
a∗e−ηs + b∗

m∑
i=0

θ̄iT̄i(ηs)

)
= 0.

(15)

For suitable collocation points, we use the roots of the shifted Chebyshev polynomial T̄m−n+1(η).
Also, by substituting formula (11) in the boundary conditions (3)-(4) we can obtain five equations
as follows

m∑
k=0

(−1)kf̄k = 0,

m∑
k=0

Ω̄kf̄k − λ
(

1 +
1

β

)( m∑
k=0

¯̄Ωkf̄k

)
= 1,

m∑
k=0

(−1)kθ̄k = 1,

m∑
k=0

¯̄̄
Ωkf̄k = 0,

m∑
k=0

θ̄k = 0,

(16)

5

Babatin: Numerical Treatment for the flow of Casson Fluid

Published by Digital Commons @PVAMU, 2018



AAM: Intern. J., Vol. 13, Issue 2 (December 2018) 859

where Ω̄k = T̄′k(0), ¯̄Ωk = T̄′′k(0),
¯̄̄
Ωk = T̄′k(η∞). Equations (14)-(15), together with five equations

of the boundary conditions (16), give a system of (2m+2) algebraic equations which can be solved,
for the unknowns f̄k, θ̄k, k = 0, 1, ...,m, using Newton iteration method.

4. Validation of the Chebyshev spectral collocation method

To check the application for the proposed numerical scheme, the missing values −f ′′
(0) for New-

tonian fluid ( 1β = 0) and the absence of slip velocity parameter λ = 0 at the boundary are compared
with the values reported by (Mukhopadhyay et al. (2013)). Therefore, the calculated results of the
Chebyshev spectral collocation method are presented in Table 1 by comparing the computed values
of −f ′′

(0) of different values of unsteadiness parameter S with the earlier problem of (Mukhopad-
hyay et al. (2013)). From this comparison, and without any doubt, we can conclude that this nu-
merical method is valid to present the numerical results which are in an excellent agreement with
the earlier published paper (Mukhopadhyay et al. (2013)). Also, the obtained results demonstrate
the reliability and the efficiency of the proposed numerical method.

Table 1. Comparison of −f ′′(0) with λ = 0 and 1
β = 0 for various values of S.

S Mukhopadhyay et al. (2013) Present study
0.8 1.261479 1.2699801
1.2 1.377850 1.3762724

5. Results and discussion

We point out the difficulty associated with the analytical solution to Equations (1)-(2) which are
highly nonlinear in nature. The analytical solution does not seem feasible. Therefore, Equations
(1)-(2) with boundary conditions (3) and (4) are solved numerically by applying the Chebyshev
spectral collocation method using Mathematica software. That is, when applying this numerical
method, the analysis for the velocity and temperature distribution were obtained graphically. Figure
1 illustrates f(η) and θ(η) for different parameter values. From this figure, we can confirm that the
solution achieves the boundary conditions.

Figure 2 illustrates that the boundary layer thickness increases as β decreases. Also, for increasing
values of β, the fluid velocity distribution reduces away from the sheet but the reverse is true to the
sheet. Likewise, the temperature in the thermal boundary layer increases for increasing β. Also,
the thermal boundary layer thickness increases with increasing Casson parameter.

Figure 3 illustrates the effects of the velocity slip parameter λ on f ′(η) and θ(η). Velocity distri-
bution is found to decrease with increasing λ. An increase in the velocity slip parameter λ leads
to enhancement of the fluid temperature distribution within the boundary layer. Finally, Figure 4
shows that increasing the radiation parameter R results in an increases in both the temperature
distribution and the thermal boundary layer thickness.
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f 0.2

0.8

S 0.5

a b 0.1

R 0.2, Pr 1

Figure 1. The presentation for the solutions f(η) and θ(η).
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f '
a b 0.1

R 0.2, Pr 1

0.2, S 1.0

0.5, 0.8, 2.0

0.5, 2.0, 5.0

Figure 2. The solutions f ′(η) and θ(η) for different values of β.

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

f '
a b 0.1

R 0.2, Pr 1

0.8, S 1.0

0.0, 0.2, 0.5

0.0, 0.2, 0.5

Figure 3. The solutions f ′(η) and θ(η) for different values of λ.

6. Conclusion

The Chebyshev spectral collocation method was applied in this work to obtain a numerical solution
to a system of nonlinear ordinary differential equations that appear in the field of boundary layer
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1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

a b 0.1

0.8, S 1.0

Pr 1, 0.2

R 0.0, 0.5, 1.0, 2.0, 5.0

Figure 4. The solutions θ(η) for different values of R.

flow in fluid mechanics. The influence of parameters which governing the equations including Cas-
son parameter, radiation parameter, unsteadiness parameter and the slip velocity parameter on the
dimensionless velocity and the dimensionless temperature were presented through graphs. Con-
vergence of the Chebyshev spectral collocation method was also studied. The present numerical
solution was compared with literature to check the accuracy of our proposed numerical method.
The present results were found to be in acceptable agreement with the prior results from the liter-
ature. It is interesting to observe that as the Casson fluid parameter and the velocity slip parameter
increase in magnitude, the fluid slows down past the sheet. Finally, temperature distribution of the
boundary layer was found to increase with increasing radiation parameter.
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