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Abstract

This article introduces the matrix differential transform method (MDTM) to apply to matrix
partial differential equations (MPDEs) and employs it for solving matrix Fisher equations, matrix
Burgers equations and matrix KdV equations. We show how the MDTM applies to the linear part
and nonlinear part of any MPDE and give various examples of MPDEs to illustrate the efficiency
of the method. The results obtained are in excellent agreement with the exact solution and show
that the proposed method is powerful, accurate, and easy.
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1. Introduction

Most phenomena in the real world are described through nonlinear differential equations and
such equations have attracted much attention among scientists (Borhanifar and Abazari (2007),
Sweilam et al. (2011)). A large class of nonlinear equations does not have a precise analytic
solution, so approximate and numerical methods have largely been used to handle these equations.
There are also some analytic techniques for nonlinear equations. Some of the classic analytic
methods are the Lyapunov artificial small parameter method, perturbation techniques and δ-
expansion method. In the last two decades, some new analytic methods have been proposed to
handle functional equations, among them are Adomian decomposition method (ADM), (G

′

G
)–

expansion method (Borhanifar and Abazari (2011)), tanh method, sinh-cosh method, homotopy
analysis method (HAM), variational iteration method (VIM), homotopy perturbation method
(HPM) (Rajabi, et al. (2007)), Exp-function method and differential transform method (DTM).

Many problems in the fields of physics, engineering and biology are modeled by matrix dif-
ferential equations (MDEs) and matrix partial differential equations (MPDEs). The differential
transform method (DTM) was introduced by Borhanifar (Borhanifar and Abazari (2010a) and
(2010b)) for solving linear and nonlinear problems and Zhou (1986) used it to study approximate
solutions of electrical circuits.

In this paper, we extend the DTM to MPDEs, and derive analytic approximations for some im-
portant nonlinear matrix equations. The equations under consideration are matrix Fisher equation,
matrix Burgers equation and matrix KdV equation. These equations are formulated as follows:

Matrix Fisher Equation: ut = Auxx + u(I − u) +B(x, t),

Matrix Burgers Equation: ut + uux = Auxx +B(x, t),

Matrix KdV Equation: ut = Auux + uxxx +B(x, t),

(1)

where u(x, t) ∈ Rn×n, and A ∈ Rn×n is a constant matrix, I ∈ Rn×n is the identity matrix, and
B(x, t) ∈ Rn×n is a known function matrix.

Similarities, like the appearance of ut, uxx, and uxxx, in these equations motivated us to study
them as a class of nonlinear MPDEs in one single work. For the physical background of the
above equations one can refer to Ozdemir and Kaya (2006) and the references therein.

The layout of the paper is as follows. In Section 2, the matrix differential transform method is
presented, and we show how to use this method to approximate a solution. In Section 3, some
numerical results are given to clarify the method and a comparison is made with existing results.
Section 4 gives a brief conclusion of this paper. Note that we have computed the numerical
results by Maple programming.

2. Basic definitions

The DTM is a semi-numerical-analytic-technique that formalizes the Taylor series in a totally
different manner. It was first introduced by Zhou in a study about electrical circuits.
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908 M. M. Khader & A. Borhanifar

In this paper, we extend the DTM to MPDEs. With this technique, the given MPDEs and related
initial conditions are transformed into a recurrence equation that finally leads to the solution of
a system of algebraic equations as coefficients of a power series solution. This method is useful
for obtaining exact and approximate solutions of linear and nonlinear MPDEs. There is no need
for linearization, perturbations or large computational work and round-off errors are avoided. It
has been used to solve effectively, easily and accurately a large class of linear and nonlinear
MPDEs with approximations (Abazari and Kilicman (2012), Bildik and Konuralp (2006)). The
basic definitions of matrix differential transform are introduced as follows.

2.1. One-dimensional matrix differential transformation

With reference to the articles (Jang et al. (2001), Khader et al. (2013)), we introduce the basic
definitions of the one-dimensional matrix differential transform.

Definition 1.

If u(t) ∈ Rn×n is a matrix analytical function in the domain T , then it can be differentiated
continuously with respect to time t,

dku(t)

dtk
= φ(t, k), ∀ t ∈ T, (2)

for t = ti, where φ(t, k) = φ(ti, k), where k belongs to the set of non-negative integers, denoted
as the K domain. Therefore, Equation (2) can be written as

Ui(k) = φ(ti, k) =
[dku(t)
dtk

]
t=ti

, ∀ k ∈ K, (3)

where Ui(k) ∈ Rn×n is called the spectrum of u(t) at t = ti, in the domain K.

Definition 2.

If u(t) ∈ Rn×n can be expressed by a Taylor series about a fixed point ti, then u(t) can be
represented as

u(t) =
∞∑
k=0

u(k)(ti)

k!
(t− ti)k. (4)

If un(t) is the n-partial sum of a Taylor series (4), then

un(t) =
n∑

k=0

u(k)(ti)

k!
(t− ti)k +Rn(t), (5)

where un(t) is called the nth Taylor polynomial for u(t) about ti and Rn(t) is the remainder
term. If U(k) is defined as

U(k) =
u(k)(ti)

k!
, where k = 0, 1, ..., (6)

then Equation (4) reduces to

u(t) =
∞∑
k=0

U(k)(t− ti)k, (7)
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Table I: The fundamental operations of one-dimensional matrix differential transform method

Original matrix function Matrix transformed function
w(x) = u(x)± v(x) W (k) = U(k)± V (k)

w(x) = c u(x) W (k) = cU(k)

w(x) = d
dx

u(x) W (k) = (k + 1)U(k + 1)

w(x) = d2

dx2 u(x) W (k) = (k + 1)(k + 2)U(k + 2)

w(x) = dm

dxm u(x) W (k) = (k + 1)...(k +m)U(k +m)

w(x) = u(x)v(x) W (k) = U(k)⊗ V (k) =
∑k

l=0 U(l)V (l − k)

and the n-partial sum of the Taylor series (5) reduces to

un(t) =
n∑

k=0

U(k)(t− ti)k +Rn(t). (8)

The U(k) defined in Equation (6) is called the matrix differential transform of matrix function
u(t). For simplicity assume that t0 = 0; then the solution (7) reduces to

u(t) =
n∑

k=0

tkU(k) +Rn+1(t). (9)

From the above definitions, the concept of the one-dimensional matrix differential transform is
derived from the Taylor series expansion. With Equations (6) and (7), the fundamental mathe-
matical operations performed by the one-dimensional matrix differential transform can readily
be obtained and are listed in Table I.

2.2. Two-dimensional matrix differential transformation

Consider a matrix function of two variables w(x, t) ∈ Rn×n. Based on the properties of the
one-dimensional matrix differential transform, function w(x, t) can be represented as

w(x, t) =
∞∑
i=0

∞∑
j=0

W (i, j)xitj, (10)

where W (i, j) ∈ Rn×n is called the spectrum of w(x, t).

The basic definitions and operations of the two-dimensional matrix differential transform are
introduced as follows.

Definition 3.

If w(x, t) ∈ Rn×n is an analytical matrix function and differentiated continuously with respect
to time t and x in the domain of interest, then

W (k, h) =
1

k!h!

[ ∂k+h

∂xk∂th
w(x, t)

]
x=x0
t=t0

, (11)

where the spectrum function W (k, h) is the transformed function, which is also called the T-
function in brief.

In this paper, the lowercase w(x, t) represents the original function while the uppercase W (k, h)

represents the transformed function (T-function).
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Table II: The fundamental operations of two-dimensional differential transform method

Original matrix function Matrix transformed function
w(x, t) = u(x, t)± v(x, t) W (k, h) = U(k, h)± V (k, h)

w(x, t) = c u(x, t) W (k, h) = cU(k, h)

w(x, t) = ∂
∂x

u(x, t) W (k, h) = (k + 1)U(k + 1, h)

w(x, t) = ∂
∂t
u(x, t) W (k, h) = (h+ 1)U(k, h+ 1)

w(x, t) = ∂r+s

∂xr∂ts
u(x, t) W (k, h) = (k + 1)...(k + s)(h+ 1)...(h+ s)U(k + r, h+ s)

w(x, t) = u(x, t)v(x, t) W (k, h) = U(k, h)⊗ V (k, h)

=
∑k

r=0

∑h
s=0 U(r, h− s)V (k − r, s)

The differential inverse transform of W (k, h) is defined as

w(x, t) =
∞∑
k=0

∞∑
h=0

W (k, h)(x− x0)k(t− t0)h. (12)

Combining Equations (11) and (12), and assuming x0 = t0 = 0, we obtain

w(x, t) =
∞∑
k=0

∞∑
h=0

1

k!h!

[ ∂k+h

∂xk∂th
w(x, t)

]
x=0
t=0

xk th =
∞∑
k=0

∞∑
h=0

W (k, h)xk th. (13)

From the above definitions, the concept of the two-dimensional differential transform is derived
from the two-dimensional Taylor series expansion. With Equations (11) and (12), the fundamental
mathematical operations performed by two-dimensional differential transform can readily be
obtained and are listed in Table II.

3. Applications and numerical results

This section is devoted to computational results. We apply the proposed method and solve some
examples. These examples are chosen such that exact solutions exist.

3.1. Matrix Fisher equation

The matrix Fisher equation is of the form

ut = Auxx + u(I − u) +B(x, t), (14)

where u(x, t) ∈ Rn×n and A ∈ Rn×n is a constant matrix, I ∈ Rn×n is the identity matrix and
B(x, t) ∈ Rn×n is a known function matrix.

Using the matrix differential transformation method on matrix Fisher equation (14), for k, h =

0, 1, ..., we obtain

(h+ 1)U(k, h+ 1) = (k + 1)(k + 2)AU(k + 2, h) + U(k, h)− U(k, h)⊗ U(k, h) + B(k, h), (15)

where U(k, h) and B(k, h) are the matrix differential transform of u(x, t) and B(x, t), respectively.
Note that the matrices B(k, h) are the matrix coefficients of xkth in Taylor’s expand of B(x, t).
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From (15), and the matrix differential transform operators of Table II, we obtain

U(k, h+ 1) =
1

(h+ 1)

{
(k + 1)(k + 2)AU(k + 2, h) + U(k, h)−

k∑
r=0

h∑
s=0

U(r, h− s)U(k − r, s) + B(k, h)
}
. (16)

Example 1.

Consider Equation (14) with

A =

[
0 −1
−1 0

]
, B(x, t) =

[
cos2(x)e(2t) 1− cos(x)et

− cos(x)et e2(x+t)

]
,

subject to initial condition

u(x, 0) =

[
cos(x) −1

0 ex

]
. (17)

From initial condition (17), we obtain

u(x, 0)=

∞∑
k=0

U(k, 0)xk=

[
1 −1

0 1

]
+

[
0 0

0 1

]
x+

[
− 1

2!
0

0 1
2!

]
x2+

[
0 0

0 1
3!

]
x3+

[
1
4!

0

0 1
4!

]
x4+ ..., (18)

and from functions matrix B(x, t), we obtain

B(x, t)=

∞∑
k=0

B(k, h)xkth=

[
1 0

−1 1

]
+

[
0 0

0 2

]
x+

[
2 −1

−1 2

]
t+

[
−1 1

2
1
2

2

]
x2+

[
0 0

0 4

]
xt

+

[
2 − 1

2

− 1
2

2

]
t2+

[
0 0

0 4
3

]
x3+

[
−2 1

2
1
2

4

]
x2t+

[
0 0

0 4

]
xt2+

[
4
3

− 1
6

− 1
6

4
3

]
t3+...,

(19)

From Equation (16), for k, h = 0, 1, ... we obtain

U(0, 1) = 2AU(2, 0) + U(0, 0)− U(0, 0)2 + B(0, 0) =
(

1 0

0 0

)
,

U(1, 1) = 6AU(3, 0) + U(1, 0)− 2U(0, 0)U(1, 0) + B(1, 0) =
(

0 0

0 1

)
,

U(2, 1) = 12AU(4, 0) + U(2, 0)− 2U(0, 0)U(2, 0)− U(1, 0)2 + B(2, 0) =
(

− 1
2

0

0 1
2

)
,

U(3, 1) = 20AU(5, 0) + U(3, 0)− 2U(0, 0)U(3, 0)− 2U(1, 0)U(2, 0) + B(3, 0) =
[

0 0

0 1
6

]
,

...

U(0, 2) = AU(2, 1) + 1
2
U(0, 1)− U(0, 1)U(0, 0) + 1

2
B(0, 1) =

[
1
2

0

0 1
2

]
,

U(1, 2) = 3AU(3, 1) + 1
2
U(1, 1)− U(0, 1)U(1, 0)− U(0, 0)U(1, 1) + 1

2
B(1, 1) =

[
0 0

0 1
2

]
,

U(2, 2) = 6UA(4, 1) + 1
2
U(2, 1)− U(0, 1)U(2, 0)− U(0, 0)U(2, 1)− U(1, 1)U(1, 0) + 1

2
B(2, 1)

=

[
− 1

4
0

0 1
4

]
,

U(3, 2) = 10AU(5, 1) + 1
2
U(3, 1)− U(0, 1)U(3, 0)− U(0, 0)U(3, 1)− U(1, 1)U(2, 0)− U(1, 0)U(2, 1)

+ 1
2

B(3, 1) =
[

0 0

0 1
12

]
,

...

(20)

In the same manner, the rest of the components can be obtained using Maple.
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Substituting the quantities listed in (20) into Equation (19), when x0 = t0 = 0, the matrix
approximation solution in series form is

u(x, t)=

[
1 −1
0 1

]
+

[
0 0

0 1

]
x+

[
1 0

0 1

]
t+

[
−1

2
0

0 1
2

]
x2

+

[
0 0

0 1

]
xt+

[
1
2

0

0 1
2

]
t2+

[
0 0

0 1
3!

]
x3+... .

(21)

The closed form of the above solution is

u(x, t) =

[
cos(x)et −1

0 e(x+t)

]
,

which is exactly the same as the exact solution.

3.2. Matrix Burgers equation

The matrix Burgers equation is of the form

ut + uux = Auxx +B(x, t), (22)

where u(x, t) ∈ Rn×n, A ∈ Rn×n is a constant matrix, and B(x, t) ∈ Rn×n is a known function
matrix.

Using the matrix differential transformation method on matrix Burgers equation (22), for k, h =

0, 1, ..., we obtain

(h+ 1)U(k, h+ 1) + U ⊗ Ux|x=k
t=h

= (k + 1)(k + 2)AU(k + 2, h) + B(k, h), (23)

where U(k, h), and B(k, h) are the matrix differential transform of u(x, t) and B(x, t), respec-
tively.

Note that the matrices B(k, h) are the matrix coefficients of xkth in Taylor’s expansion of B(x, t).
From (23), and matrix differential transform operators of Table II, we obtain

U(k, h+ 1) =
1

(h+ 1)

{
−

k∑
r=0

h∑
s=0

(k − r + 1)U(r, h− s)U(k − r + 1, s)

+(k + 1)(k + 2)AU(k + 2, h) + B(k, h)
}
.

(24)

Example 2.

Consider Equation (22) with

A =

[
−1 0

1 −1

]
, B(x, t) =

[
sin(x) cos(x)e(2t) 1− e−t

sin(x)et xet(1 + et)

]
,

subject to initial condition

u(x, 0) =

[
sin(x) 1

0 x

]
. (25)
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From initial condition (25), we obtain

u(x, 0)=

∞∑
k=0

U(k, 0)xk=

[
0 1

0 0

]
+

[
1 0

0 1

]
x+

[
0 0

0 0

]
x2+

[
− 1

3!
0

0 0

]
x3+

[
0 0

0 0

]
x4+ ..., (26)

and from functions matrix B(x, t), we obtain

B(x, t)=

∞∑
k=0

B(k, h)xkth=

[
0 0

0 0

]
+

[
1 0

1 2

]
x+

[
0 1

0 0

]
t+

[
0 0

0 0

]
x2+

[
2 0

1 3

]
xt

+

[
0 − 1

2

0 0

]
t2+

[
− 2

3 0

− 1
6 0

]
x3+

[
0 0

0 0

]
x2t+

[
2 0
1
2

5
2

]
xt2+... .

(27)

From Equation (24), for k, h = 0, 1, ... we obtain

U(0, 1) = B(0, 0) + 2AU(2, 0)− U(0, 0)U(1, 0) =

[
0 −1

0 0

]
,

U(1, 1) = B(1, 0) + 6AU(3, 0)− 2U(0, 0)U(2, 0)− U(1, 0)2 =

[
1 0

0 1

]
,

U(2, 1) = B(2, 0) + 12AU(4, 0)− 3U(0, 0)U(3, 0)− 3U(1, 0)U(2, 0) =

[
0 0

0 0

]
,

U(3, 1) = B(3, 0) + 20AU(5, 0)− 4U(0, 0)U(4, 0)− 4U(1, 0)U(3, 0)− 2U(2, 0)2 =

[
− 1

6
0

0 0

]
,

...

U(0, 2) = 1
2

B(0, 1) +AU(2, 1)− 1
2
U(0, 1)U(1, 0)− 1

2
U(0, 0)U(1, 1) =

[
0 1

2

0 0

]
,

U(1, 2) = 1
2

B(1, 1) + 3AU(3, 1)− U(0, 1)U(2, 0)− U(0, 0)U(2, 1)− U(1, 1)U(1, 0) =

[
1
2

0

0 1
2

]
,

U(2, 2) = 1
2

B(2, 1) + 6AU(4, 1)− 3
2
U(0, 1)U(3, 0)− 3

2
U(0, 0)U(3, 1)− 3

2
U(1, 1)U(2, 0)− 3

2
U(1, 0)U(2, 1)

=

[
0 0

0 0

]
,

U(3, 2) = 1
2

B(3, 1) + 10AU(5, 1)− 2U(0, 1)U(4, 0)− 2U(0, 0)U(4, 1)− 2U(1, 1)U(3, 0)− 2U(1, 0)U(3, 1)

−2U(2, 1)U(2, 0) =

[
− 1

12
0

0 0

]
,

...

(28)

In the same manner, the rest of the components can be obtained using Maple.

Substituting the quantities listed in (28) into Equation (27), when x0 = t0 = 0, the matrix
approximation solution in series form is

u(x, t)=

[
0 1

0 0

]
+

[
1 0

1 2

]
x+

[
0 −1

0 0

]
t+

[
0 0

0 0

]
x2+

[
1 0

0 1

]
xt+

[
0 1

2

0 0

]
t2+

[
− 1

6
0

0 0

]
x3+... . (29)

The closed form of the above solution is

u(x, t) =

[
sin(x)et e−t

0 xet

]
,

which is exactly the same as the exact solution.
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3.3. Matrix KdV equation

The matrix KdV equation is of the form (Athorne and Fordy (1987), Özer (1998))

ut = Auux + uxxx +B(x, t), (30)

where u(x, t) ∈ Rn×n, and A ∈ Rn×n is a constant matrix and B(x, t) ∈ Rn×n is known function
matrix.

Similar to the previous example using the DTM on matrix KdV equation (30), for k, h = 0, 1, ...,

we obtain

(h+ 1)U(k, h+ 1) = AU ⊗ Ux|x=k
t=h

+ (k + 1)(k + 2)(k + 3)U(k + 3, h) + B(k, h), (31)

where U(k, h), and B(k, h) are the matrix differential transforms of u(x, t) and B(x, t), respec-
tively, and the matrices B(k, h) are the matrix coefficients of xkth in a Taylor expansion of
B(x, t).

From (31), and matrix differential transform operators of Table II, we obtain

U(k, h+ 1) =
1

(h+ 1)

{
A

k∑
r=0

h∑
s=0

(k − r + 1)U(r, h− s)U(k − r + 1, s)

+(k + 1)(k + 2)(k + 3)U(k + 3, h) + B(k, h)
}
.

(32)

Example 3. Consider Equation (30) with

A =

[
1 −1
1 0

]
, B(x, t) =

[
−e2(x+t) e2(x−t) − e(x−t)
−e2(x+t) −3e(x−t)

]
,

subject to initial condition

u(x, 0) =

[
ex 1

0 ex

]
. (33)

From initial condition (33), we obtain

u(x, 0) =

∞∑
k=0

U(k, 0)xk =

[
1 1

0 1

]
+

[
1 0

0 1

]
x+

[
1
2

0

0 1
2

]
x2+

[
1
3!

0

0 1
3!

]
x3+

[
1
4!

0

0 1
4!

]
x4+ ..., (34)

and from functions matrix B(x, t), we obtain

B(x, t)=

∞∑
k=0

B(k, h)xkth=

[
−1 0

−1 −3

]
+

[
−2 1

−2 −3

]
x+

[
−2 −2

0 −2

]
t+

[
−2 3

2

−2 − 3
2

]
x2+

[
−4 −2

0 −4

]
xt

+

[
−2 3

2

−2 − 3
2

]
t2+

[
− 4

3
7
6

− 4
3

− 1
2

]
x3+

[
−4 − 7

2

−4 3
2

]
x2t+

[
−4 7

2

−4 − 3
2

]
xt2+... .

(35)
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From Equation (32), for k, h = 0, 1, ... we obtain

U(0, 1) = B(0, 0) + 6U(3, 0) +AU(0, 0)U(1, 0) =

[
1 0

0 −1

]
,

U(1, 1) = B(1, 0) + 24U(4, 0) + 2AU(0, 0)U(2, 0) +AU(1, 0)2 =

[
1 0

0 −1

]
,

U(2, 1) = B(2, 0) + 60U(5, 0) + 3AU(0, 0)U(3, 0) + 3AU(1, 0)U(2, 0) =

[
1
2

0

0 − 1
2

]
,

U(3, 1) = B(3, 0) + 120U(6, 0) + 4AU(0, 0)U(4, 0) + 4AU(1, 0)U(3, 0) + 2AU(2, 0)2 =

[
1
6

0

0 − 1
6

]
,

...

U(0, 2) = 1
2
B(0, 1) + 3U(3, 1) + 1

2
AU(0, 1)U(1, 0) + 1

2
AU(0, 0)U(1, 1) =

[
1
2

0

0 1
2

]
,

U(1, 2) = 1
2
B(1, 1) + 12U(4, 1) +AU(0, 1)U(2, 0) +AU(0, 0)U(2, 1) +AU(1, 1)U(1, 0) =

[
1
2

0

0 1
2

]
,

U(2, 2) = 1
2
B(2, 1) + 30U(5, 1) + 3

2
AU(0, 1)U(3, 0) + 3

2
AU(0, 0)U(3, 1) + 3

2
AU(1, 1)U(2, 0)

+ 3
2
AU(1, 0)U(2, 1) =

[
1
4

0

0 1
4

]
,

U(3, 2) = 1
2
B(3, 1) + 60U(6, 1) + 2AU(0, 1)U(4, 0) + 2AU(0, 0)U(4, 1) + 2AU(1, 1)U(3, 0)

+2AU(1, 0)U(3, 1) + 2AU(2, 1)U(2, 0) =

[
1
12

0

0 1
12

]
.

...

(36)

In the same manner, the rest of the components can be obtained using Maple. Substituting the
quantities listed in (36) into Equation (35), when x0 = t0 = 0, the matrix approximation solution
in series form is

u(x, t)=

[
1 1

0 1

]
+

[
1 0

0 1

]
x+

[
1 0

0 −1

]
t+

[
1
2

0

0 −1
2

]
x2+

[
1 0

0 −1

]
xt

+

[
1
2

0

0 1
2

]
t2+

[
1
6

0

0 1
6

]
x3+... .

(37)

The closed form of the above solution is

u(x, t) =

[
e(x+t) 1

0 e(x−t)

]
,

which is exactly the same as the exact solution.

4. Conclusions

In this paper, we have shown that the MDTM can be used successfully to solve a system of
nonlinear partial differential equations. This method is simple and easy to use and solves any
MPDE without any need for discretizing the variables. The results of given test examples show
that the MDTM results agree with the Taylor series solution of the exact solution. MDTM is
powerful compared to the other approximation methods such as ADM, VIM, HPM, and HAM. It
it not affected by computation round-off errors. Also, the proposed method is useful for finding an

10

Applications and Applied Mathematics: An International Journal (AAM), Vol. 11 [2016], Iss. 2, Art. 27

https://digitalcommons.pvamu.edu/aam/vol11/iss2/27



916 M. M. Khader & A. Borhanifar

accurate approximation of the exact solution. The symbolic calculation software package Maple
is used in the derivations. The method gives rapidly converging series solutions. The accuracy
of the obtained solution can be improved by taking more terms in the solution. In many cases,
the series solutions obtained with MDTM can be written in exact closed form.
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