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Abstract 
 

In this paper, we extend the ordinary differential Duffing equation into a partial 

differential equation. We study the traveling wave solutions to this model by using the 

GG /  expansion method. Then, based on the obtained results given for the Duffing 

equation, we generate kink, singular soliton and periodic solutions for a coupled 

integrable dispersionless nonlinear system. All the solutions given in this work are 

verified. 

 

Keywords: Duffing equation; Coupled dispersionless system; GG /  expansion method 

 

MSC(2010): 74J35, 35G20 

 

 

1. Introduction 
 

Many physical phenomena are modeled by nonlinear systems of partial differential 

equations (PDEs). An important problem in the study of nonlinear systems is to find 
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exact solutions and explicitly describe traveling wave behaviors. Motivated by potential 

applications in physics, engineering, biology and communication theory, the damped 

Duffing equation  

 3( ) ( ) ( ) ( ) = 0,x t x t x t x t       (1.1) 

 

has received much interest. In the above,   is the coefficient of viscous damping and the 

term 3( ) ( )x t x t   represents the nonlinear restoring force, acting like a hard spring, 

and the prime denotes differentiation with respect to time. The Duffing equation is a 

typical model arising in many areas of physics and engineering such as the study of 

oscillations of a rigid pendulum undergoing with moderately large amplitude motion 

[Jordan and Smith (1977)], vibrations of a buckled beam, and so on [Thompson and 

Stewart (1986), Pezeshki and Dowell (1987) and Moon (1987)]. Exact solutions of (1.1) 

were discussed by [Chen (2002)] using the target function method, but no explicit 

solutions were shown. In [Lawden (1989)], exact solutions were presented by using the 

elliptic function method for various special cases. Senthil and Lakshmanan (1995) dealt 

with equation (1.1) by using the Lie symmetry method and derived an exact solution 

from the properties of the symmetry vector fields. Finally, approximate solutions of (1.1) 

were investigated by Alquran and Al-khaled (2012) using the poincare method and 

differential transform method. 

 

Many nonlinear PDEs can be converted into nonlinear ordinary differential equations 

(ODEs) after making traveling wave transformations. Seeking traveling wave solutions 

for those nonlinear systems is equivalent to finding exact solutions of their corresponding 

ODEs. Now, we extend the ODE given in (1.1) into the following 1)(1 dimensional 

PDE 

 3 = 0,tt tu u u u      (1.2) 

 

where  ,,  are real physical constants and ( , )u u x t . The aim of this current work is 

to study the solution of the PDE given in (1.2) with 0=  [Qawasmeh (2013)] by 

implementing the GG / -expansion method [Alquran and Qawasmeh (2014) and 

Qawasmeh and Alquran (2014 a,b)]. Then, we will use the obtained results to retrieve 

solutions to another interesting model called the coupled integrable disperssionless 

system. 

 

2. Construction and analysis of GG /  method 
 

Consider the following nonlinear partial differential equation PDE:  

 

 0,=,...),,,,( xtttxt uuuuuP  (2.1) 

 

where ),(= txuu  is an unknown function, P  is a polynomial in ),(= txuu  and its 

various partial derivatives, in which the highest order derivatives and nonlinear terms are 

involved. By the wave variable ctx =  the PDE (2.1) is then transformed to the ODE 
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 0,=,...),,,,,( 2 uucucuucuP   (2.2) 

 

where )(= uu . Suppose that the solution of (2.2) can be expressed by a polynomial in 

GG /  as follows  

 
1 0( ) = ,

m

m

G G
u a a a

G G


    
     

   
 (2.3) 

 

where )(= GG  satisfies the second order differential equation in the form 

  

 0,=GGG   (2.4) 

 

0 1, ,..., ,ma a a   and   are constants to be determined later, provided that 0ma  . The 

positive integer m  can be determined by considering the homogeneous balance between 

the highest order derivatives and nonlinear terms appearing in the ODE (2.2). 

 

Now, if we let  

 ,=)(=
G

G
YY


  (2.5) 

 then by the help of (2.4) we get 

  

 
2 2

2

2 2

( )
= = = ,

GG G G G G G
Y Y Y

G G

 
 

      
     (2.6) 

or, equivalently  

 .= 2  YYY  (2.7) 

 

By result (2.7) and by implicit differentiation, one can derive the following two formulas 

 

                   3 2 2= 2 3 (2 ) ,Y Y Y Y                                                                  (2.8) 

  

                 4 3 2 2 3 2 2= 6 12 (7 8 ) ( 8 ) ( 2 ).Y Y Y Y Y                           (2.9) 

 

Combining equations (2.3), (2.5) and (2.7)-(2.9), yieldspolynomial of powers of Y . Then, 

collecting all terms of the same order of Y and equating to zero, yields a set of algebraic 

equations for 0 1, ,..., ,ma a a  , and  . 

 

It is known that the solution of equation (2.4) is a linear combination of sinh and cosh or 

of sine and cosine, respectively, if 0>4= 2   or 0< . Without lost of generality, 

we consider the first case and therefore 

  

 
2 2

2
4 4

( ) = sinh( ) cosh( ) ,
2 2

G e A B
      


   

 
 
 

 (2.10) 
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where A  and B  are any real constants.  

 

3. The extended Duffing equation 
 

In this section we derive kink, singular soliton and periodic solutions of the following 

PDE  

 3 = 0,ttu u u    (3.1) 

 

where ),(= txuu . By the wave variable ctx = , the above PDE is transformed into the 

ODE  

 2 3 = 0,c u u u    (3.2) 

where )(= uu . Consider  

 

 
1 0( ) = ...

m

m

G G
u a a a

G G


    
     

   
 (3.3) 

 

with )(= GG . Using the assumption given in (2.4) and the result obtained in (2.6) we 

have 

 

3

3 3( ) = ...,

m

m

G
u a

G


 
 

 
 (3.4) 

and  

 

2

( ) = ( 1) .

m

m

G
u m m a

G



 

   
 

 (3.5) 

 

Balancing the nonlinear term 3u  in (3.4) with the linear term ''u  in (3.5), requires that 

3 = 2m m  . Thus, 1=m , and t (3.3) can be rewritten as  

 

 
1 0 1 0( ) = = .

G
u a a a Y a

G


 
  

 
 (3.6) 

 

Differentiating the above function u  twice yields 

  

 .=)( 1Yau   (3.7) 

 

Now, we substitute equations (3.6), (3.7) and (2.8) in (3.2) to get the following algebraic 

system:  

4
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3 2

0 0 1

2 2 2 2

1 0 1 1 1

2 2

0 1 1

2 3

1 1

0 = ,

0 = 3 2 ,

0 = 3 3 ,

0 = 2 .

a a a c

a a a a c a c

a a a c

a c a

  

   

 



 

  





 (3.8) 

 

Solving the above system produces two different solution sets involving the parameters 

10 ,,, aa  and c . The first set is  

 1 02

2
= 0, = , = , = 0,

2

i c
a a

c


 


   (3.9) 

 and the second set is  

 

 
2

0 0
12

2 2
= , = , = .

2

i a a i c
a

c c

  
 



 
  (3.10) 

  

Considering the first obtained set, the solution of (3.1) is  

 

 

2

2

tanh ( )
2

( , ) = ,

tanh ( )
2

A B x ct
ci

u x t

B A x ct
c





 

 
  

 

 
  

 

 (3.11) 

 

where the parameters , , ,c A   and B are free real constants. For example: 

 

Case I:  

 

If we choose =1, = 1, =1, = 0, =1c A B   , then ( , ) = tanh
2

x t
u x t

 
 
 

 is a solution of 

equation (3.1) which is of thie kink type. 

 

Case II:  

 

If  =1, = 1, =1, =1, = 0c A B   , then  

 

( , ) = coth ,
2

x t
u x t

 
 
 

 

which is singular soliton.  

 

Case III:  

 

If = 1, = 1, =1, = 0, =1c A B   , then  

5
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( , ) = tan
2

x t
u x t

 
  

 
 

 

is a periodic solution that (3.1) possess and by swapping the values of A  and B  in this 

case another periodic solution 

 

( , ) = cot
2

x t
u x t

 
 
 

 

 

does the (3.1) have. See Figures 1 and 2.  

 

 

 

 

Figure 1. Plots of solutions for  (3.1) obtained in Case I and II respectively 

   

 

 

 

 

 

Figure 2. Plots of solutions for (3.1) obtained in Case III 
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It is noteworthy here that solitons are the solutions in the form sech  and 2sech ; the 

graph of the soliton is a wave that goes up only. It is not like the periodic solutions sine, 

cosine, etc, as in trigonometric function, that goes above and below the horizontal. Kink 

is also called a soliton; it is in the form tanh  not 2tanh . In kink the limit as x  , 

gives the answer as a constant, not like solitons where the limit goes to 0 [Alquran and 

Al-Khaled (2011 a,b), Alquran (2012) and Alquran el at (2012)]. 

 

Now, by using the second set, another solution for (3.1) is given by: 

  

     

0 0 2

2 0

2

( ) ( ) tanh ( )
2

( , ) = ,

tanh ( )
2

i A a B i B a A x ct
ci

u x t a

B A x ct
c


   

 

 
    

 


 
  

 

   (3.12) 

 

provided that A B  to avoid obtaining the constant solution. The general solution 

given in (3.12) produces the same types of solutions obtained by (3.11).  

 

4. Coupled integrable dispersionless equations 
 

The coupled integrable dispersionless equations [Kono and Onon (1994) and Bekir and 

Unsal (2013)] are:  

 

 0,=)( xxt vwu   (4.1) 

  

 0,=2 xxt vuv   (4.2) 

  

 0.=2 xxt wuw   (4.3) 

 

Physically, the above system describes a current-fed string interacting with an external 

magnetic field in a three-dimensional Euclidean space. It also appears geometrically as 

the parallel transport of each point of the curve along the direction of time where the 

connection is magnetic-valued. The wave variable ctx =  transform the above PDEs 

to the ODEs:  

 ( ) = 0,cu vw    (4.4) 

  

 2 = 0,cv vu    (4.5) 

  

 2 = 0.cw wu    (4.6) 

 

From equation (4.4), we deduce the following relation:  

 

 = ,cu vw R   (4.7) 

 

7
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where R  is the constant of integration. Accordingly, both equation (4.5) and (4.6) are 

symmetric in the functions )(v  and ( )w  . Therefore, w  is proportional to v , i.e.,  

 

                                                                    ( ) = ( ),w k v                                           (4.8) 

 

where k  is the proportionality constant. Based on the above analysis we finally get the 

following ODE in terms of v  only 

  

 2 32 2 = 0.c v Rv k v    (4.9) 

 

Now, recalling equation (3.2), the function ),( txv  admits the same obtained solutions for 

the extended Duffing equation (3.1) by replacing   by R2  and   by k2 . Thus, using 

the relations (4.7) and (4.8) the solutions to the dispersionless system are:  

  

2

1

2

tanh ( )

( , ) = ,

tanh ( )

R
A B x ct

ci R
v x t

k R
B A x ct

c

 
  

 

 
  

 

 

 

2

1

2

tanh ( )

( , ) = ,

tanh ( )

R
A B x ct

ci k R
w x t

k R
B A x ct

c

 
  

 

 
  

 

 

 

                                
2 2

1

2

( )
( , ) = .

coth ( )

c R A B
u x t

B R
A B x ct

c

 

 
  

 

    (4.10) 

 

And 

0 0 2

2 0

2

( ) ( ) tanh ( )
1

( , ) = ,

tanh ( )

R
i RA a B k i RB a A k x ct

c
v x t a

k R
B A x ct

c

 
    

 


 
  

 

 

0 0 2

2 0

2

( ) ( ) tanh ( )

( , ) = ,

tanh ( )

R
i RA a B k i RB a A k x ct

c
w x t a k k

R
B A x ct

c

 
    

 


 
  

 
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2 2

2

2

( )
( , ) = .

coth ( )

c R A B
u x t

B R
A B x ct

c

 

 
  

 

            (4.11) 

 

5. Discussion and conclusion 
 

It is worth of mention in this work that there are other physical models that possess the 

same solutions obtained for the extended Duffing equation as well as the dispersionless 

system. For example, the Klein-Gordon equation 

  

 0.=
6

1 3uuuu xxtt   (5.1) 

 

This equation appears in many scientific fields such as solid state physics, nonlinear 

optics, and dislocations in metals [Biswas et al. (2012)]. The wave variable ctx =  

transforms (5.1) into the ODE  

 

 0.=
6

1
1)( 32 uuuc   (5.2) 

 

Comparying (5.2) with (3.2),  it is clear that =1, = 1/ 6    and 2c  is replaced by 

12 c .  

 

Another example is the Landau-Ginzburg-Higgs equation. 

  

 0,=322 unumuu xxtt   (5.1) 

 

where m  and n  are real constants [Hu et al. (2009)]. It possesses the same solution by 

considering 2 2= , =m n   and 2c  to be replaced by 12 c .  

 

In summary we have succeeded in recovering solutions for the coupled integrable 

dispersionless system when it was connected with the extended Duffing equation, so 

roughly speaking, there are many nonlinear physical models that possess the same class 

of solutions. 
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