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Abstract

An approach is proposed to generate random vectors using transformation with multiple roots.

This approach generalizes the one-dimensional inverse transformation with multiple roots method

to higher dimensions, i.e., to random vectors with or without densities. In this approach, multiple

roots of the transformation and probabilities of selecting each of the roots are derived. The

strategies for constructing such a transformation are discussed and several examples are presented

to motivate this simulation approach.
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1. Introduction

A general dynamical system can be mathematically represented by

V = g(X), (1)

where g denotes some transformation (or an operator), X is the input signal and V is the output

signal. When X and V are one-dimensional random variables and only V is observed, the

problems regarding the probability distribution of X have been heavily studied (see, for instance,

(Bonarini and Bontempi, 1994; Macháček, 1983; Rahman, 2009)). Nowadays, the interests of

multivariate dynamical systems have grown fast thanks to their complexity and flexibility in

practice. In this paper, we study the problem of generating X when both X and V are random

vectors of dimension n ≥ 2 and g : R
n → R

n is some transformation having a discrete set of

roots, namely, either of the following two conditions holds:

(a) The set of roots of Equation (1) is finite.

(b) The set of roots of Equation (1) contains infinite number of isolated points. Recall that

a point p ∈ R
n is called an isolated point in a set B ⊂ R

n if there exists an open

neighborhood of p, which does not contain any other point in B (the set of all rational

numbers in R is a counterexample.).

We call Model (1) a multivariate random dynamical system (e.g., (Bhattacharya and Majumdar,

2004; Bhattacharya and Majumdar, 2007)). Suppose that the output signal V can be observed

or it is easier to generate V than X, then an intuitively appealing idea to generate X would

be to first generate the random vector V , and then apply the inverse transformation of g to

determine X. This method is trivial when g is invertible (see (Devroye, 1986)), but less so when

g is a transformation with multiple roots (also called many-to-one transformation). To apply

the inverse transformation method, the key problem is to determine which root will be mostly

accepted. (Michael et al., 1976) introduced a general approach to generate one random variable

provided that the density is known, by using a transformation with multiple roots, i.e., the case

when the dimension n = 1.

We extend (Michael et al., 1976)’s approach to generate random vectors X (with or without

densities) in Sections 2 and 3. When applying the multiple roots transformation method, the

choice of g is crucial. Then Section 4 is devoted to discussing some strategies for constructing

such a proper transformation.

In Section 5, two applications are discussed in simulating general uniform random variables and

financial stochastic modeling respectively. In Example 4, we study the problem of generating

random variables uniformly distributed over irregular domains. While generating uniform random

variables over a convex polytope has received much attention in the literature, research on

uniform distributions over more irregular domains such as quadratic curves has been sparse.

We show in this example that transformation with multiple roots can reduce the complexity

of using conditional density methods, as the dimension of irregular domain increases. Example

5 is another excellent application of the generating method, where it is used to simulate first

2
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exit times of correlated Brownian motions. The simulation algorithm has particular interests in

describing the behavior of default time by n dependent firms in credit analysis, option pricing

and risk management (for more on this topic, see (Zhou, 2001; Packham et al., 2013; Fok, 2013;

Hashorva and Ji, 2014)).

2. Methodology and general result

Consider a probability space (Ω,F , P), in which the probability measure P is as general as

possible (i.e., its cumulative probability distribution function is not necessarily differentiable). For

example, P can be discrete, continuous with or without density, or some mixture. Assume that a

random vector X = (X1, . . . , Xn)’s joint distribution is given and further define a transformation

g : R
n → R

n, so that with probability 1,

g(X) =
(
g1(X), . . . , gn(X)

)
= V, (2)

where for i = 1, . . . , n, gi : X(Ω) → R is almost everywhere differentiable and V := (V1, . . . , Vn).

Assume that, for any specific observation V = v, the set of roots of Equation (2) is discrete.

Then we denote its cardinality by K ∈ N
∗ ∪ {+∞} and the roots by: {rk}k=1,...,K . Hence, the

key of our approach for generating the random vector X lies in determining the probability of

selecting each root rk. For a specific value x ∈ R, we denote by

P(X ∈ dx) := dP(X ≤ x),

the differential of the cumulative distribution function of X on x. Thus the probability of selecting

the kth root rk when V = v is observed is given by P
(
X ∈ drk|V = v

)
. Note that

P
(
X ∈ drk|V = v

)
=

P(X ∈ drk, V ∈ dv)

P(V ∈ dv)
. (3)

On the one hand, the fact that X ∈ drk implies V ∈ dv shows

P(X ∈ drk, V ∈ dv) = P(X ∈ drk). (4)

On the other hand, since {rk}k=1,...,K is a discrete set, then {X ∈ drk}k=1,...,K are disjoint events.

It follows that

P
(
V ∈ dv

)
= P

( K⋃

k=1

{
X ∈ drk

})
=

K∑

k=1

P(X ∈ drk). (5)

It results from (3), (4) and (5) that the probabilities of selecting each root behave as a multinomial

probability distribution: for k = 1, . . . , K,

P
(
X ∈ drk|V = v

)
=

P(X ∈ drk)
K∑

i=1

P(X ∈ dri)

. (6)

The generating method can be hence summarized as the following theorem.

Theorem 1 Assume that the transformation g has K ∈ N
∗ ∪ {+∞} distinct isolated roots, the

3
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following equality holds in distribution:

X ∼
K∑

k=1

Rk U∈Ik
,

where Rk is the kth distinct root of equation V = g(X); U denotes a uniform random variable

Unif([0, 1]) independent of V and the subintervals {Ik}k=1,...,K are chosen as any partition of

[0, 1] such that

P
(
U ∈ Ik|V = v

)
=

P(X ∈ drk)
K∑

i=1

P(X ∈ dri)

,

where {rk}k=1,...,K are all the distinct roots of equation v = g(x) for any specific observation

V = v.

Remark that, in Theorem 1, the partition {Ik}k=1,...,K is generally a set of random elements. They

depend on V and can be chosen as K subintervals of [0, 1] equal in size to the probabilities of

selecting each of the K distinct roots. The examples of explicitly constructing these intervals

will be provided in Sections 4 and 5. We also remark that, when applying Theorem 1, the K

roots don’t necessarily need to be distinct. Each root can be surplus.

When the random vectors X and V follow discrete probability distributions, the selection prob-

abilities in Theorem 1 can be straightforwardly expressed as multinomial probabilities:

P(U ∈ Ik|V = v) =
P(X = rk)

K∑
i=1

P(X = ri)

.

When the random vectors are absolutely continuous with a density, the problem of determining

selection probabilities becomes more complicated than in a discrete probability space. We consider

the probability on X = rk as that of X lying in an arbitrarily small sized rectangle (rk− dr, rk +

dr) in R
n. The ratio of discrete probabilities becomes the ratio of densities. In this way, we

derive the corresponding simulating approach in the next section.

3. Generate random vector with density

Assume that X is a continuous random vector and has joint density fX . Let g = (g1, . . . , gn) : R
n →

R
n be defined as: for i ∈ {1, . . . , n}, gi : R

n → R is an almost everywhere differentiable function

over X(Ω) and their derivatives verify: for the K distinct roots {rk}k=1,...,K of Equation (2) and

any k, l ∈ {1, . . . , K},
n∏

i=1

∣∣∣∂igi(rk)

∂igi(rl)

∣∣∣ < +∞, (7)

where ∂i denotes the partial derivative with respect to the ith coordinate. Let h = (h1, . . . , hn),

with hi > 0 for i ∈ {1, . . . , n}. Since the K distinct roots are isolated, when hi is very small, the

reciprocal image of the neighborhood of v, (v − h, v + h), consists of K disjoint neighborhoods

4
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of the K distinct roots. The neighborhood of v is hence given as:

(
v − h, v + h

)
:=
(
v1 − h1, v1 + h1

)
×
(
v2 − h2, v2 + h2

)
× . . . ×

(
vn − hn, vn + hn

)
.

Denote the part of reciprocal image including the kth root rk = (r
(k)
1 , . . . , r

(k)
n ) by

∏n
i=1

(
y

(k)

i,low
, y

(k)
i,up
)
.

Hence, for k = 1, . . . , K and i = 1, . . . , n,

gi

( n∏

l=1

(y
(k)

l,low
, y

(k)
l,up)

)
=
(
vi − hi, vi + hi

)
. (8)

Given that v is in the neighborhood (v − h, v + h), Theorem 1 entails that the chance that the

kth root is selected, ph
k(v), is

ph
k(v) :=

P

(
X ∈

n∏
i=1

(y
(k)

i,low
, y

(k)
i,up)

)

K∑
l=1

P

(
X ∈

n∏
i=1

(y
(l)

i,low
, y

(l)
i,up)

)

=


1 +

∑

l∈{1,...,K}\{k}

P

(
X ∈

n∏
i=1

(y
(l)

i,low
, y

(l)
i,up)

)

P

(
X ∈

n∏
i=1

(y
(k)

i,low
, y

(k)
i,up)

)




−1

. (9)

Notice that, in the sense of set-theoretic limit,

lim
h→0+

n∏

i=1

(
y

(k)

i,low
, y

(k)
i,up
)

= {rk}, and lim
h→0+

(
v − h, v + h

)
= {v}.

Therefore the kth root should be selected with probability pk(v) := lim
h→0+

ph
k(v). More precisely,

from (9) we have

pk(v) = lim
h→0+

ph
k(v)

=


1 +

∑

l∈{1,...,K}\{k}

lim
h→0+

P

(
X ∈

n∏
i=1

(y
(l)

i,low
, y

(l)
i,up)

)

P

(
X ∈

n∏
i=1

(y
(k)

i,low
, y

(k)
i,up)

)




−1

=




1 +
∑

l∈{1,...,K}\{k}

lim
h→0+

P

(
X∈

n
Q

i=1
(y

(l)

i,low
,y

(l)

i,up)
)

n
Q

i=1
(y

(l)

i,up−y
(l)

i,low
)

n∏
i=1

(y
(l)

i,up−y
(l)

i,low
)

2hi

P

(
X∈

n
Q

i=1
(y

(k)

i,low
,y

(k)

i,up)
)

n
Q

i=1
(y

(k)

i,up−y
(k)

i,low
)

n∏
i=1

(y
(k)

i,up−y
(k)

i,low
)

2hi




−1

.

(10)

Since gi’s are almost everywhere differentiable, the limit in (10) exists and can be expressed in

5
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terms of densities. To this end we observe that, on the one hand,

P

(
X ∈

n∏
i=1

(y
(l)

i,low
, y

(l)
i,up)

)

n∏
i=1

(y
(l)
i,up − y

(l)

i,low
)

−−−→
h→0+

fX(rl); (11)

on the other hand, for l ∈ {1, . . . , n}, using (8),

2hi

(y
(l)
i,up − y

(l)

i,low
)

=
λ
(
(vi − hi, vi + hi)

)

λ
(
(y

(l)

i,low
, y

(l)
i,up)

) =

λ
(
gi

( n∏
j=1

(y
(l)

j,low
, y

(l)
j,up)

))

λ
(
(y

(l)

i,low
, y

(l)
i,up)

)

−−−→
h→0+

∣∣∂igi(rl)
∣∣, (12)

where λ denotes the Lebesgue measure on R.

Finally, it follows from (10), (11) and (12) that, for k ∈ {1, . . . , K},

pk(v) =

(
1 +

∑

l∈{1,...,K}\{k}

fX(rl)

fX(rk)

( n∏

i=1

∣∣∣∂igi(rk)

∂igi(rl)

∣∣∣
))−1

. (13)

The sequence of probabilities in (13) together with Equation (1) yields the following result:

Proposition 1 Under the above assumptions on X, V and g, the following equality holds in

distribution:

X ∼
K∑

k=1

Rk U∈Ik
,

where {Rk}k=1,...,K are the multiple roots of equation V = g(X); U ∼ Unif([0, 1]) is indepen-

dent of V and conditional on V = v, {Ik}k∈{1,...,K} is a partition of interval [0, 1] satisfying

P
(
U ∈ Ik|V = v

)
=

(
1 +

∑

l∈{1,...,K}\{k}

fX(rl)

fX(rk)

( n∏

i=1

∣∣∣∂igi(rk)

∂igi(rl)

∣∣∣
))−1

.

4. Construction of transformation with multiple roots

When applying the multiple roots transformation approach, the main question is how to choose the

proper transformation g. In the following we mainly discuss random vectors with densities. The

strategies of choosing g for generating discrete random vectors are quite similar. We first present

a useful result. Given fX , the density of the random vector X, and a multiple roots transformation

g, the fundamental theorem (see (Papoulis, 1991)) below provides a representation of the density

of V = g(X).

Theorem 2 (An extension of the change of variable theorem) Let g be the transformation de-

fined in Equation (2), let fX be the joint density of X = (X1, . . . , Xn). Denote by r1, . . . , rK ∈ R
n

6
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the K isolated roots of equation v = g(x), then the joint density fV of V = g(X) is given as:

for v ∈ R
n,

fV (v) =
K∑

k=1

fX(rk)

|det(Jg(rk))|
,

where det(Jg(rk)) denotes the determinant of the Jacobian matrix of g on rk.

We note that this determinant det(Jg(rk)) does not vanish for any rk, since g is assumed to be

locally invertible in neighborhood of rk, for k = 1, . . . , K.

Now we introduce some situations, where the multiple roots transformation method could be

applied.

Case 1:V is uniformly distributed over a regular domain.

In this case we discuss two examples: the density fX is a linear transformation of symmetric

function and fX is periodic.

Case 1.1:fX is a linear transformation of some symmetric function.

Definition 1 A function S : R
n → R is said to be symmetric with respect to some point t ∈ R

n,

if S(x) = −S(2t− x) for all x ∈ R
n. For example, the mapping (x1, x2) 7−→ (cos(x1), cos(x2))

is symmetric with respect to (π
2
, π

2
).

Let D ⊂ R
n, t = (t1, . . . , tn) ∈ D and let X = (X1, . . . , Xn) be a random vector taking values

over D with joint density fX satisfying:

fX(x) = aS(x) + b, (14)

where a 6= 0, b > 0 and S is symmetric with respect to t over D.

In this case, we can apply the absolute value transformation for simulating X. The method

involves setting

V = g(X) =
(
|X1 − t1|, |X2 − t2|, . . . , |Xn − tn|

)
.

g verifies the conditions in Equation (2). Observe that the equation g(x) = v = (v1, . . . , vn) has

2n isolated roots {rk}k∈{1,...,2n}. Theorem 2 together with (14) entails that the joint density of V

can be written as: for v ∈ g(D),

fV (v) =
2n∑

k=1

fX(rk) = a
2n∑

k=1

S(rk) + 2nb.

By construction of g, if rk is a root of the equation g(x) = v, then 2t−rk is also a root. Therefore

by the property of symmetry of S, we get
2n∑

k=1

S(rk) = 0. It follows that

fV (v) = 2nb (15)

for v ∈ g(D), which turns out to be a uniform probability density with support g(D). This

7
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absolute value transformation is particularly useful when g(D) is a regular domain, such as

rectangle, triangle, disk, ....

Example 1 (The absolute value transformation for symmetric density)

Suppose the target density is given as: for x = (x1, . . . , xn) ∈ [0, π]n,

fX(x) =
1

nπn

(
n +

n∑

i=1

cos(xi)
)
,

fX(x) = 0 for x /∈ [0, π]n. Observe that the function S(x) =
n∑

i=1

cos(xi) is symmetric over [0, π]n

with respect to t = (π
2
, . . . , π

2
). Thus according to (15) with b = π−n, after transforming X to

absolute value

V = g(X) =
(∣∣X1 −

π

2

∣∣, . . . ,
∣∣Xn − π

2

∣∣
)
,

the density of V is given as: for v ∈ [0, π
2
]n, fV (v) =

(
2
π

)n
; fV (v) = 0 if v /∈ [0, π

2
]n. Therefore

V is a uniformly distributed random vector over g([0, π]n) = [0, π
2
]n. Applying Proposition 1, X

can be generated as:

X ∼
∑

k1,...,kn∈{1,2}

(
(−1)k1V1 +

π

2
, . . . , (−1)knVn +

π

2

)
U∈Ik1...kn

,

where V1, . . . , Vn ∼ Unif([0, π
2
]) and U ∼ Unif([0, 1]) are n + 1 independent uniform random

variables and {Ik1...kn}k1,...,kn∈{1,2} satisfy: for v ∈ [0, π
2
]n,

P
(
U ∈ Ik1...kn |V = v

)
=

1

n2n

(
n +

n∑

i=1

(−1)ki+1 sin(vi)
)
.

Here is an example to explicitly construct the intervals Ik1...kn . One defines a bijection:

H : {1, 2}n −→ {1, 2, . . . , 2n}.

Also define, p0 = 0, and for k ∈ {1, . . . , 2n}, the random variable

pk =
1

n2n

(
n +

∑

i∈{1,...,n}, (k1,...,kn)=H−1(k)

(−1)ki+1 sin(Vi)
)
.

Finally one can set, for (k1, . . . , kn) ∈ {1, 2}n,

Ik1...kn =
[H(k1,...,kn)−1∑

k=0

pk,

H(k1,...,kn)∑

k=0

pk

)
.

Case 1.2:fX is periodic.

Definition 2 A density fX is called periodic over D if there exists p ∈ R
n such that fX(x) =

fX(x + p) for all x satisfying x, x + p ∈ D.

The problem of simulating random variables from a periodic density is motivated in the study of

8
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directional statistics (we refer to (Mardia, 1972; Bahlmann, 2006)). It also has a wide range of

applications in engineering such as physical modeling, harmonic oscillator diffusion systems and

signal processing. For example, (Brenner et al., 1988) showed there exists a unique time-periodic

probability density distribution arising in a sedimentation-diffusion problem, provided that the

initial spatial distribution recurs after one complete period of the flipping motion; (Bishop and

Legleye, 1994) used a mixture of the Von Mises distributions to model the distribution of a

velocity vector in two dimensions; in modern dynamic signal and FFT-analyzers the frequency

response function of a system can be measured using periodic excitations (see (Pintelon et al.,

2003)). We remark that, by the multivariate Fourier analysis, any periodic probability density

fX with support D has the following n-dimensional trigonometric form Fourier series expansion

(see (Hsu, 1967; Tolstov, 1962)): there exist sequences of strictly positive values (αk,n)k≥1 and

real numbers (aik)k≥1,1≤ik≤n, (bik)k≥1,1≤ik≤n, so that for x = (x1, . . . , xn) ∈ D ⊂ R
n,

fX(x) =

+∞∑

k=1

αk,n

n∏

ik=1

sin(aikxik + bik).

Take βn =
+∞∑
k=1

α2
k,n. βn is strictly positive, thanks to Parseval’s formula. Then set γk,n =

α2
k,n

βn
and

ck,n = βn

αk,n
for k ∈ N

∗, one gets

fX(x) =
+∞∑

k=1

γk,n

(
ck,n

n∏

ik=1

sin(aikxik + bik)
)
.

Then observe that the above density can be further written under the form

fX(x) =
+∞∑

k=1

γk,nf̃k(x),

with the coefficients γk,n summing up to 1:
+∞∑
k=1

γk,n = 1. Then X can be simulated by applying

the composition approach, provided that data from densities f̃k(x) = ck,n

n∏
ik=1

sin(aikxik + bik)

can be generated for all k ≥ 1. In the following example, without loss of generality, we only

discuss generating random vectors from the densities of the type

fX(x) = cn

n∏

i=1

∣∣ sin
(
fi(x)

)∣∣
x∈D,

where cn > 0 and the Jacobian matrix of (f1, . . . , fn) is non-singular.

If one takes g(·) =
(
cos(f1(·)), . . . , cos(fn(·))

)
, then using Theorem 2 and the chain rule:

|Jg(x)| = |J(f1...,fn)(x)|
n∏

i=1

| sin(fi(x))|, for x ∈ D,
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one gets

fV (v) =

K∑

k=1

cn

n∏
i=1

∣∣sin
(
fi(rk)

)∣∣

|J(f1...,fn)(rk)|
n∏

i=1

∣∣ sin(fi(rk))
∣∣

rk∈D

= cn

K∑

k=1

|J(f1...,fn)(rk)|−1
rk∈D. (16)

We remark that when fi’s are polynomials of degree 1, the Jacobian |J(f1...,fn)(rk)| reduces to

some constant, thus V follows a uniform distribution over g(D): V ∼ Unif(g(D)).

Example 2 (Periodic incomplete density function)

In an n-dimensional harmonic oscillator diffusion system, one assumes the probability density

has been observed as: for x ∈ [0, 2π)n,

fX(x) = cn

n∏

i=1

sin(aixi + bi) Qn
i=1 sin(aixi+bi)≥0,

where ai ∈ N
∗, bi ∈ R are observed constants and cn > 0 is an unknown constant which only

depends on the dimension n.

Let D := {x ∈ [0, 2π)n :
n∏

i=1

sin(aixi + bi) ≥ 0}. Now let’s take, for i = 1, . . . , n, fi(x) =

aixi + bi and g(x) =
(
cos(f1(x)), . . . , cos(fn(x))

)
. Observe that |J(f1,...,fn)(x)| =

n∏
i=1

ai and the

transformation g has all the isolated roots as:

rk1...kn :=
(arccos(v1) − b1 − 2k1π

a1
, . . . ,

arccos(vn) − bn − 2knπ

an

)
,

where, for i = 1, . . . , n, the index ki takes all the possible integer values such that
arccos(vi)−bi−2kiπ

ai
∈

[0, 2π); the period of the function xi 7→ cos(aixi + bi) is 2π
ai

, thus it has ai distinct roots over

[0, 2π). It results that the total number of rk’s is K =
n∏

i=1

ai. It follows from (16) that the density

of V = g(X) is:

fV (v) = cn

n∏

i=1

ai

ai
v∈g(D) = cn v∈g(D).

As a consequence, V ∼ Unif(g(D)). Moreover, since ai ≥ 1, then xi 7→ cos(aixi + bi) has

period less than 2π. Therefore, for any vi ∈ [−1, 1], there always exist two xi (one entails

sin(aixi+bi) ≥ 0, the other one entails sin(aixi+bi) < 0) such that cos(aixi+bi) = vi. It follows

that g(D) = [−1, 1]n. Now we are in position to simulate X. First, simulate V = (V1, . . . , Vn)

from distribution Unif([−1, 1]n). Then by using Proposition 1,

X ∼
∑

for i=1,...,n, ki∈
(

arccos(Vi)−bi
2π

−ai,
arccos(Vi)−bi

2π

]
∩Z

Rk1...,kn U∈Ik1...kn
,
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where

Rk1...kn :=
(arccos(V1) − b1 − 2k1π

a1
, . . . ,

arccos(Vn) − bn − 2knπ

an

)

and

{Ik}k=1,...,K :=
{
Ik1...kn

}
i=1,...,n, ki∈

(
arccos(Vi)−bi

2π
−ai,

arccos(Vi)−bi
2π

]
∩Z

.

This partition of [0, 1] verifies for k = 1, . . . , K,

P
(
U ∈ Ik|V = v

)
=

(
1 +

∑

l∈{1,...,K}\{k}

fX(rl)

fX(rk)

( n∏

i=1

∣∣∣∂igi(rk)

∂igi(rl)

∣∣∣
))−1

=
1

K
.

Therefore the chance of selecting each root rk is equally likely. It suffices to define an arbitrary

bijection

H : Z
n
⋂ n∏

i=1

(arccos(Vi) − bi

2π
− ai,

arccos(Vi) − bi

2π

]
−→

{
1, . . . , K

}

and take, for all possible (k1, . . . , kn),

Ik1...kn =
[H(k1, . . . , kn) − 1

K
,
H(k1, . . . , kn)

K

)
.

Remark 1 In Example 2, a straightforward computation based on the fact that
∫

[0,2π)n fX(x) dx =

1 shows the normalizing constant cn = 2−n. However, one does not necessarily need this

information for simulation.

Case 2:fX is product of independent blocks.

Now assume that the joint density fX verifies: for any x ∈ R
n,

fX(x) =
n∏

i=1

fi(gi(x)),

where for k = 1, . . . , n, gk denotes a function from R
n to R and fk from R to R. Denote by

g = (g1, . . . , gn). Note that g is not necessarily invertible. We also assume that

0 < |det(Jg(x))| =
n∏

i=1

Hi(gi(x)).

By such a choice as V = g(X), one can see that all the Cartesian components of V are

independent. To show this fact we rely on Theorem 2. The density of V , denoted by fV , is

given as: for any v = (v1, . . . , vn) ∈ R
n,

fV (v) =
K∑

k=1

fX(rk)

|det(Jg(rk))|
=

K∑

k=1

n∏

i=1

fi(gi(rk))

Hi(gi(rk))
.
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Observe that gi(rk) = vi for any i = 1, . . . , n and any k = 1, . . . , K. Then one can write

fV (v) = K
n∏

i=1

fi(vi)

Hi(vi)
.

Therefore the marginal distributions of V = (V1, . . . , Vn) are independent. One can simulate V by

generating Vi, respectively for i = 1, . . . , n. The problem of simulating random vectors reduces

to univariate simulations.

Example 3 (Transformation to independence)

Consider a random vector X = (X1, X2) having the probability density below:

fX(x1, x2) = 3(x1 + x2)x
2
2 x1∈[−x2,1−x2],x2∈[−1,1].

In order to simulate X, one sets

g(x1, x2) =
(
g1(x1, x2), g2(x1, x2)

)
=
(
3(x1 + x2) x1+x2∈[0,1], x

2
2 x2∈[−1,1]

)
.

Observe that fX(x1, x2) = g1(x1, x2)g2(x1, x2) and for x2 ∈ [−1, 1], x1 + x2 ∈ [0, 1],

|det(Jg(x1, x2))| = 6|x2|.

Let V = g(X), using Theorem 2, one gets: for v ∈ R
2, the density of V is

fV (v) =
1

3
v1

√
v2 v1∈[0,3],v2∈[0,1].

fV is product of two marginal densities. Hence one can easily simulate V by independently gen-

erating marginal variables V1, V2 respectively with densities fV1(v1) = 2
9
v1 v1∈[0,3] and fV2(v2) =

3
2

√
v2 v2∈[0,1]. Using the inverse transform sampling method,

V ∼
(
3
√

U1, U
2/3
2

)
,

where U1, U2 are two independent uniform random variables following the distribution Unif([0, 1]).

Then by Proposition 1,

X ∼
(√

U1 − U
1/3
2 , U

1/3
2

)
U∈I1 +

(√
U1 + U

1/3
2 ,−U

1/3
2

)
U∈I2,

where the uniform random variable U ∼ Unif([0, 1]) is independent of U1, U2 and the partition

{I1, I2} of [0, 1] verifies, for any observation V = v ∈ [0, 3] × [0, 1],

P
(
U ∈ I1|V = v

)
= P

(
U ∈ I2|V = v

)
=

1

2
.

One option is to take: I1 = [0, 1
2
) and I2 = [ 1

2
, 1].

5. Applications

The generating method using multiple roots transformation has the potential to expose a large
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number of applications in multivariate statistics and finance. In this section, we introduce two of

them.

Example 4 (Uniform random variable over irregular domain)

Many special techniques have been used to tackle the problem of generating uniform random

variables over an irregular domain. We refer to (Devroye, 1986) for the special approaches to

generate uniform variables over some convex polytope. In the latter approaches, the key idea is to

introduce some linear transformation. This algorithm fails whenever the domain is not a convex

polytope (saying a convex closed curve). We note in this paper that non-linear transformations

together with conditional density method can be applied in this case. As an example, consider

an irregular closed domain D = {(x1, x2) ∈ R
2 : x2

2 ≤ −x1(x1 − 1)}, our goal is to generate

X = (X1, X2) ∼ Unif(D). The density of X has the form

fX(x1, x2) = c (x1,x2)∈D,

where c > 0 is the normalizing constant.

Let V = g(X1, X2) = (−X1(X1 − 1), X2
2 ), therefore, by Theorem 2, the density of V can be

obtained:

fV (v1, v2) =
c√

(1 − 4v1)v2
0≤v2≤v1≤1/4.

Observe that the component V1 has density:

fV1(v1) =
2c
√

v1√
1 − 4v1

v1∈[0,1/4].

Equivalently, 4V1 follows a Beta distribution with parameters (3/2, 1/2): 4V1 ∼ Beta(3/2, 1/2).

Moreover, given V1, the conditional distribution V2/V1 ∼ Beta(1/2, 1). Thus conditional density

method can be easily applied to generate V = (V1, V2).

The equation v = g(x) has 4 roots

r1 =

(
1 +

√
1 − 4v1

2
,
√

v2

)
, r2 =

(
1 −√

1 − 4v1

2
,
√

v2

)
,

r3 =

(
1 +

√
1 − 4v1

2
,−√

v2

)
, r4 =

(
1 −√

1 − 4v1

2
,−√

v2

)
.

By Proposition 1, the probability of selecting the kth root is

pk(v) =

(
1 +

∑

l∈{1,...,4}\{k}

fX(rl)

fX(rk)

( 2∏

i=1

∣∣∣∂igi(rk)

∂igi(rl)

∣∣∣
))−1

=
1

4
.

Finally, X can be generated as

X ∼
4∑

k=1

rk U∈Ik
,
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with

P(U ∈ Ik|V = v) =
1

4
.

It is worth noting that, in Example 4, an alternative is to apply conditional density method to

generate X straightforwardly. However, multiple roots transformation method shows its advantage

when simulating high dimensional random vectors, since it allows to reduce the computational

complexity. Let X be uniformly distributed over a closed domain with finite volume in R
n:

D = {(x1, . . . , xn) ∈ R
n : h1(x1) + . . . + hn(xn) ≤ 0} .

If all hk are almost everywhere differentiable and some hk(xk) = vk have multiple roots, then it

is complicated to apply conditional density method on the simulation of X directly. However by

Theorem 2, a prior transformation

V = g(X1, . . . , Xn) = (h1(X1), . . . , hn(Xn))

implies the density of V is necessary of the form

fV (v1, . . . , vn) =
∑

g(r)=v

c r∈D∏n
i=1 h′

i(r
(i))

,

where c > 0 is the normalizing constant, r(i) is the ith component of r. Moreover if one assumes

that for i = 1, . . . , n, there exists θi : R → R such that |h′
i(x)| = |θi(hi(x))| (this is satisfied by

most of the elementary functions) for all x ∈ R, then

fV (v1, . . . , vn) =
c v1+...+vn≤0, (v1,...,vn)∈g(Rn)∏n

i=1 |θi(vi)|
.

Since g(Rn) is union of disjoint rectangles in R
n, then applying the conditional density method

to generate V turns out to be much easier than to generate X. In addition, when the set of roots is

finite, all the selection probabilities are equal: for k = 1, . . . , K with K ∈ N
∗ being the number

of distinct roots of g(x) = v, then pk(v) = 1
K

.

Example 5 (Joint first exit times of correlated Brownian motions)

We provide a new approach to simulate the joint first exit times of Brownian motions, using

multiple roots transformation and NORTA approach. The simulation of the joint first exit times

of Brownian motions has attracted the interests of both researchers in probability, statistics and

financial mathematics. In this example we only consider a bivariate first exit time vector, since

its explicit joint probability density function is currently known. Recall that (Iyengar, 1985;

Metzler, 2010) have given an approach to find the density of the bivariate first exit times of

correlated drifted Brownian motions (where they supposed x > 0, b = 0 in Definition 3 as

below). However, neither author has given the explicit form of the joint density. We complete

their work and generalize it to x, b ∈ R here.

Definition 3 Let {X(t)}t≥0 be a Brownian motion with drift µ ∈ R and variance σ2 > 0. The
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first exit time τ starting from x ∈ R to the barrier b ∈ R, b 6= x is defined as

τ = inf
{
t ≥ 0 : X(t) = b|X(0) = x

}
.

Through the remaining part of this example we suppose that µ
b−x

≥ 0, so that the density of τ

is not defective (if µ
b−x

< 0, this density of first exit time is defective, i.e., P(τ < +∞) < 1 (see

for example (Karlin and Taylor, 1981)).

Now let us consider (τ1, τ2) as the bivariate first exit times of the correlated two-dimensional

Brownian motion {(X1(t), X2(t))}t≥0. The following proposition provides an explicit joint den-

sity of (τ1, τ2), which will be useful to compute the selection probabilities.

Proposition 2 Let (X1(t), X2(t)) be a two-dimensional Brownian motion respectively with drifts

µ1, µ2 ∈ R and variances σ2
1, σ

2
2 > 0. Denote by ρ ∈ (−1, 1) the correlation coefficient of

X1(t), X2(t) for t > 0. Then starting from (x1, x2) ∈ R
2, the joint density of the first exit times

(τ1, τ2) to the barriers (b1, b2) ∈ R
2 with b1 6= x1, b2 6= x2 is given as

(1) Let (γ1, γ2) = (σ2µ1−σ1µ2ρ

σ1σ2

√
1−ρ2

, µ2

σ2
), and (µ̃1, µ̃2) =

(
(sgn(x1 − b1))γ1, (sgn(x2 − b2))γ2

)
. For

0 < s < t,

f(s, t) =

√
π

2

sinα

α2s
√

(t − s)3
e−r0(

r0
2s

+µ̃1 cos θ0+µ̃2 sin θ0)−
µ̃1

2s+µ̃2
2t

2

×
+∞∑

n=1

n sin
(nπ(α − θ0)

α

) ∫ +∞

0

e
rµ̃1 cosα−r2( t−s cos2 α

2s(t−s)
)
Inπ/α(

rr0

s
) dr.

(2) For 0 < t < s,

f(s, t) =

√
π

2

sinα

α2t
√

(s − t)3
exp

(
− r0(

r0

2t
+ µ̃1 cos θ0 + µ̃2 sin θ0)

−(µ̃1
2 + µ̃2

2)t

2
− (µ̃1 sinα − µ̃2 cos α)2(s − t)

2

) +∞∑

n=1

n sin
(nπθ0

α

)

×
∫ +∞

0

e−r
(
µ̃1 cos2 α+µ̃2 sinα cos α

)
−r2
(

s−t cos2 α
2t(s−t)

)
Inπ/α(

rr0

t
) dr,
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where

ρ̃ =
(
sgn
(b1 − x1

b2 − x2

))
ρ with sgn(·) being the sign function,

α =





π + tan−1
(
−

√
1−ρ̃2

ρ̃

)
if ρ̃ > 0,

π
2

if ρ̃ = 0,

tan−1
(
−

√
1−ρ̃2

ρ̃

)
if ρ̃ < 0,

r0 =
1

σ1σ2

√
(b1 − x1)2σ2

2 + (b2 − x2)2σ2
1 − 2|(b1 − x1)(b2 − x2)|ρ̃σ1σ2

1 − ρ̃2
,

θ0 =





π + tan−1
(

σ1|b2−x2|
√

1−ρ̃2

|b1−x1|σ2−ρ̃|b2−x2|σ1

)
if |b1 − x1|σ2 < ρ̃|b2 − x2|σ1,

π
2

if |b1 − x1|σ2 = ρ̃|b2 − x2|σ1,

tan−1
(

σ1|b2−x2|
√

1−ρ̃2

|b1−x1|σ2−ρ̃|b2−x2|σ1

)
if |b1 − x1|σ2 > ρ̃|b2 − x2|σ1,

and Iβ denotes the modified Bessel function of the first kind of order β > 0.

Notice that in Proposition 2, we derive the idea from the seminal work by (Iyengar, 1985).

Unfortunately, this work contains errors. (Metzler, 2010) provided the correct formula, however

the formula for joint density with drift is not explicitly given. Proposition 2 extends the joint

density in (Metzler, 2010) of first exit times to the case where the barriers could be any real

values, due to a shift operator.

The following lemma is the key to the construction of g in the simulation approach. It provides

an exact relationship between the first exit times (τ1, τ2) and some bivariate Chi-squared random

vector. Note that this result can be easily extended to n > 2 dimensions.

Lemma 1 ((Shuster, 1968)) Let τ1, τ2 be two first exit times with the same parameters as in

Proposition 2. Then there exists a bivariate Chi-squared random vector (χ2
1, χ

2
2) such that

g(τ1, τ2) =
((µ1τ1 − (b1 − x1)

)2

σ2
1τ1

,

(
µ2τ2 − (b2 − x2)

)2

σ2
2τ2

)
∼
(
χ2

1, χ
2
2

)
.

It seems impossible to generate accurately the random vector (χ2
1, χ

2
2) since its exact distribution

is difficult to compute and moreover its copula is not Gaussian (see (Metzler, 2008)). Instead,

we consider an approximating simulation by conserving its marginal distribution and covariance

matrix, i.e., the so-called NORTA method (see for example (Ghosh and Henderson, 2002; Ghosh

and Henderson, 2003; Yuan et al., 2006)). Let us introduce some definitions.

Definition 4 Two second order (i.e. with finite variance) random vectors (X1, X2) and (Y1, Y2)

are said to be approximately identically distributed if for i ∈ {1, 2}, Xi ∼ Yi and their covariance

matrices are equal:

Cov
(
(X1, X2)

)
= Cov

(
(Y1, Y2)

)
.
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We denote this relationship by

(X1, X2)
approx∼ (Y1, Y2).

First, by using the exact relationship between Spearman correlation and Bravais-Pearson corre-

lation (see (Hotelling and Pabst, 1936) the following lemma holds:

Lemma 2 Let U1, U2 be two uniform random variables following the distribution Unif(0, 1)

with correlation ρU , then there exists a normal random vector (Z1, Z2) with standard normal

marginal distributions and correlation ρZ satisfying

ρZ = 2 sin
(π
6
ρU

)
,

and

(U1, U2)
approx∼

(
ϕ(Z1), ϕ(Z2)

)
,

where ϕ is the cumulative distribution function of the standard normal random variable.

By using Lemma 2, we can generate approximately the joint distribution of (χ2
1, χ

2
2) starting from

(Z1, Z2).

Proposition 3 Let (τ1, τ2) be the first exit times corresponding to the bivariate Brownian motions

(X1(t), X2(t)) with correlation ρ ∈ (−1, 1). Set (Z1, Z2) as a Gaussian vector of two standard

normal random variables with:

Corr(Z1, Z2)

= 2 sin
(π

6
Corr

(
2ϕ
( |µ1τ1 − (b1 − x1)|

σ1
√

τ1

)
− 1, 2ϕ

( |µ2τ2 − (b2 − x2)|
σ2
√

τ2

)
− 1
))

.

Let (
χ̃1

2, χ̃2
2) =

((
ϕ−1(

ϕ(Z1) + 1

2
)
)2

,
(
ϕ−1(

ϕ(Z2) + 1

2
)
)2)

, (17)

then, (χ̃1
2, χ̃2

2)
approx∼ (χ2

1, χ
2
2).

Finally, the simulation of the first exit times for two correlated Brownian motions with non-zero

drifts are given in the following theorem.

Proposition 4 Suppose for i = 1, 2, µi

bi−xi
≥ 0, hence the densities of first exit times are not

defective. Let the bivariate Chi-squared vector (χ̃1
2, χ̃2

2) verify (17).

For i = 1, 2,

• if µi 6= 0, set

(Ri1, Ri2) =

(
bi − xi

µi
+

σ2
i χ̃i

2

2µ2
i

− σi|χ̃i|
2µ2

i

√
4µi(bi − xi) + σ2

i χ̃i
2,

(bi − xi)
2

µ2
i Ri1

)
(18)

17

Peng et al.: Generating Random Vectors Using Transformation

Published by Digital Commons @PVAMU, 2015



AAM: Intern. J., Vol. 10, Issue 1 (June 2015) 67

• if µi = 0, set

Ri1 = Ri2 =
(bi − xi)

2

σ2
i χ̃i

2 . (19)

For u, v ∈ {1, 2}, define

puv =

(
1 +

∑

(i,j)∈{1,2}2\{(u,v)}

∣∣∣R1iR2j

R1uR2v

∣∣∣
2 f(R1i, R2j)

f(R1u, R2v)

2∏

l=1

∣∣∣(µlXlu)
2 − (bl − xl)

2

(µlXli)2 − (bl − xl)2

∣∣∣
)−1

,

where f is the joint density of (τ1, τ2). Therefore a random partition of interval [0, 1] can be

constructed as:

I11 = [0, p11), I12 = [p11, p11 + p12),

I21 = [p11 + p12, p11 + p12 + p21),

I22 = [p11 + p12 + p21, 1]. (20)

Under this choice of {Iij}i,j∈{1,2}, (τ1, τ2) can be generated by

∑

i,j∈{1,2}

(
R1i, R2j

)
U∈Iij

, (21)

in the sense that

g(τ1, τ2)
approx∼ g

( ∑

i,j∈{1,2}

(
R1i, R2j

)
U∈Iij

)
, (22)

where U ∼ Unif(0, 1) is a uniform random variable independent of χ2
1 and χ2

2.

Proof. The multiple roots in (18) and (19) of (τ1, τ2) are deduced from (17). Then by using

Theorem 1 and the construction of the partition as in (20), allows us to generate (τ1, τ2) starting

from joint Chi-squared distribution defined by (17). Finally relation (22) follows from (21). �

It is worth noting that, although the simulation of the bivariate first exit times is approximate,

(Overbeck and Schmidt, 2005) and (McLeish, 2004) have proved that the accuracy of approxi-

mation is good enough for practical purpose, since the true copula of (χ2
1, χ

2
2) is quite similar to

that of (χ̃1
2
, χ̃2

2
). Compared to the Monte Carlo simulation, the Kolmogorov-Smirnov test also

shows the two samples are not different in distribution at significant level α = 5%. The following

illustration is a comparison of (τ1, τ2)’s joint density simulated by methods respectively using

transformations with multiple roots and its true density (since the true density has singularities

on s = t, in order to clearly compare with the estimator we set f(s, s) = 0 instead.). One can

see from Figure 1 that they fit very well, which supports the result by this method.
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Fig. 1: Numerical estimate of the density of (τ1, τ2) and the exact density of (τ1, τ2) with

parameters (µ1, µ2, σ1, σ2, x1, x2, b1, b2, ρ) = (0, 0, 1, 1, 0, 0, 0.5, 0.5, 0.7).

6. Conclusions

Our work extends the inverse multiple roots transformation approach from one dimensional to

high dimensional and multiple roots transformations. We also discuss some strategies of choosing

such a transformation. The inverse transformation approach can be widely used. It may not be as

fast as some particular approaches for special classical distributions such as multivariate normal,

multivariate Gamma, etc. However it is the fastest and the most accurate one among the existing

general simulation approaches. The reason is, to apply inverse transformation approach, most of

the work such as constructing transformation, inverting it, determining probabilities of selection,

can be done off line. The algorithm’s speed mainly depends on the number of multiple roots and

the complexity of the selecting probabilities. It is almost independent of the dimension of the

target random vector (one only needs to simulate n + 1 independent uniform random variables).

We compare this approach to some existing classical methods, such as conditional distribution

approach and NORTA approach (see for example (Devroye, 1986)). We see that, the conditional

distribution approach is a completely general approach, but it has at least two inconveniences:

at each step, it could be hard to find the inverse marginal cumulative distribution function; and

it requires much more input information than inverse transformation approach. Indeed, the CPU

running time of the former approach increases as the dimension of random vector increases. For

NORTA approach, it is quite general and attractive for simulating multivariate data, however, it

is at most time an approximation.
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