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Abstract 
 
The present work concerns the effects of the hematocrit and the permeability of the wall on 
blood flow characteristics due to the presence of a bell shaped stenosis in an artery. In this 
analysis, the flowing blood is represented by a macroscopic two-phase model, as a suspension of 
erythrocytes in plasma. The analytical expressions for the flow characteristics, namely, the flow 
resistance (impedance), the wall shear stress distribution in the stenotic region and the shearing 
stress at the stenosis throat have been derived. Results for the effects of permeability as well as 
of hematocrit on these flow characteristics are shown graphically and discussed briefly. 
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1.  Introduction 
 
The generic medical term stenosis or arteriosclerosis, is the narrowing of anybody passage, tube 
or orifice, stems from the Greek words arthero (gruel or paste) and sclerosis (hardness). It is a 
frequently occurring cardiovascular disease (an abnormal and unnatural growth in the arterial 
wall thickness) develops at the various locations of the cardiovascular system under diseased 
conditions and occasionally results in to serious consequences (cerebral strokes, myocardial 
infarction, angina pectoris, cardiac arrests, etc). Although, the etiology of the initiation of 
stenosis is not completely understood, it is believed that the disease occurs due to the deposits of 
the cholesterol, fatty substances, cellular waste products, calcium and fibrin in the inner lining of 
an artery. It is further known that once the constriction has developed, it brings about the 
significant changes in the flow field. With the knowledge  about cardiovascular disease, stenosis 
is closely associated with the flow conditions and other hemodynamic factors, a large number of 
researchers including Young (1968, 1979), Young and Tsai (1973), Caro et al. (1978), Shukla et 
al. (1980), Ahmed and Giddens (1983), Sarkar and Jayaraman (1998), Pralhad and Schultz 
(2004), Jung et al. (2004), Liu et al. (2004), Srivastava and coworkers (1996, 2009, 2010a,b,c), 
Mishra et al. (2006), Ponalagusamy (2007), Layek et al. (2009), Joshi et al. (2009), Mekheimer 
and El-Kot (2008), Tzirtzilakis (2008), Mandal and coworkers (2005, 2007), Politis et al. (2007, 
2008), Singh et al. (2010), Medhavi (2011), and many others have addressed the stenotic 
development problems under various flow situations since the first investigation of Mann et al. 
(1938). 
 
Barring a few, most of the studies conducted in the literature considered blood as a single-phase 
Newtonian or non-Newtonian fluid.  However, the experimental observations of Cokelet (1972) 
and theoretical investigation of Haynes (1960) indicate that blood cannot be treated as a single-
phase homogeneous viscous fluid while flowing through narrow arteries (of diameter   
1000 m ). Srivastava and Srivastava (1983) observed that the individuality of red cells (of 
diameter 8 m ) is significant even in such large vessels with diameter up to hundred cells 
diameter and concluded that blood can be suitably represented by a macroscopic two-phase 
model (i.e., a suspension of red cells in plasma) in small vessels (of diameter  2400 m ). 
Recently Srivastava (2007) has presented a brief discussion and survey on suspension modeling 
of blood. In addition, the endothelial walls are known to be highly permeable with ultra 
microscopic pores through, which filtration occurs. Cholesterol is believed to increase the 
permeability of the arterial wall. Such increase in permeability results from dilated, damaged or 
inflamed arterial walls. It is also known that stenosis may develop in series (multiple stenosis), 
overlapping, bell shaped, of composite nature or of irregular shape (Srivastava et al., 2010). 
Assuming that the flowing blood is represented by a macroscopic two-phase model (i.e., a 
suspension of erythrocytes in plasma), the research reported here is devoted to study the flow of 
blood through a bell shaped stenosis in an artery with permeable wall. The flow in the permeable 
boundary is described by Darcy law. The wall in the vicinity of the stenosis is usually solid when 
stenosis develops in living vasculature. To neglect the entrance, end and special wall effects the 
artery length is considered large enough as compared to its radius.  
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2.  Formulation of the Problem 
 
Consider the axisymmetric flow of blood through a bell shaped stenosis, specified at the location 
as shown in Figure1, in an artery with permeable wall.  The geometry of the stenosis, assumed to 
be manifested in the arterial wall segment, is described as 
 

2 2 2

2
0 0 0

( )
1 exp

R z m z

R R R

  
   

 
,                                                                                              (1)      

 
                Figure 1.  The geometry of a bell shaped stenosis with permeable wall. 

                                                                                                                                                                                    
where R0 is the radius of the arterial segment in the non-stenotic region, R(z) is the radius of the 
stenosed portion located at the axial distance z from the left end of the segment, δ  is the depth of 
stenosis at the throat and m is a parametric constant, ε  the relative length of the constriction, 

defined as the ratio of the radius to the half  length of the stenosis, i.e., 0 0/R L  . 
 
The equations describing the steady flow of a two-phase macroscopic model of blood may be 
expressed (Srivastava and Srivastava, 1983, 1989) as 
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with 2 = 2 2 2/ (1/ ) ( / ) /r r r z         as a two-dimensional Laplacian operator, r is the radial 

coordinate measured perpendicular to the axis of the tube. ( ,f fu v ) and ( ,p pu v ) are the (axial, 

radial) components of the fluid and particle velocities, respectively, andf p  are the actual 

density of the material constituting the fluid (plasma) and the particle (erythrocyte) phases, 
respectively, (1-C ) f  is the fluid phase and C p  is particle phase densities, C denotes the 

volume fraction density of the particles, p is the pressure, s (C) ~ s is the mixture viscosity 

(apparent or effective viscosity) , S is the drag coefficient of interaction for the force exerted by 
one phase on the other, and the subscripts f and p denote the quantities associated with the 
plasma (fluid) and erythrocyte (particle) phases, respectively. Others limitations of the present 
model are the same as discussed in Srivastava and Srivastava (2009). The expressions for drag 
coefficient of interaction, S and the viscosity of the suspension, s  for the present study are 

selected  (Srivastava and Srivastava, 2009; Charm and Kurland, 1974) as 
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s  (C) =  
1

o

mC




 ,  

 
m = 0.070 exp [2.49C+ (1107/T) exp (-1.69C)],                                                                (9) 
 

where T is the measure in absolute scale of temperature (K) , 0  is the constant plasma viscosity 

and 0a  is the radius of a red cell. 

 
Now following the reports of Young (1968), Srivastava and Rastogi (2009), the equations 
governing the laminar, steady, one-dimensional flow of blood in an artery in the case of a mild 
stenosis (i.e., 0/ 1)R   are derived from equations (2)-(7) as  
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The appropriate boundary conditions (Beavers and Joseph, 1967) for the problem are stated as 
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where 
porous

0

k dp
u

dz
  , porousu  is the velocity in the permeable boundary, Bu  is the slip velocity, 

0 is the plasma (fluid viscosity), k is Darcy number and α (called the slip parameter) is a 

dimensionless quantity depending on the material parameters which characterize the structure of 
the permeable material within the boundary region. 
 
3.  Analysis 
 
The expressions for velocities, fu and pu obtained as the solutions of equations (10)-(11), subject 

to the boundary conditions (12)-(13), are obtained as  
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where 0/s   . 

 
The volumetric flow rate, Q is now calculated as 
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with 2

08 (1 ) /sC C SR   ,  a non-dimensional suspension parameter.  

 
From equation (16), one now obtains 

5

Srivastava et al.: A Macroscopic Two-Phase Blood Flow through a Bell Shaped Stenosis

Published by Digital Commons @PVAMU, 2012



42                                                                                            V. P. Srivastava, Mala Tandon and Rupesh K. Srivastav 
 

 
                           

4

8(1 )
( ),s

o

C Qdp
z

dz R

 



                                                                                                       (17) 

 
where        
 

( ) 1/ ( )z F z  ,         
2

4 2 0
0 0 0 02

0

4( / )
( ) / / ( / ) 2 (1 ) .

R R k
F z R R R R R R R k C

R
  


 

     
    

 

The pressure drop, ( at - , at )p p z L p z L     across the stenosis in the tube of length, 2L is 
obtained as 
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The first and the third integrals in the expression for   obtained above are straight forward 
whereas the analytical evaluation of second integral is a formidable task and therefore shall be 
evaluated numerically. Following now the reports (Young, 1968; Srivastava and Rastogi, 2009), 
one derives the expressions for the impedance (flow resistance), λ , the wall shear stress 
distribution in the stenotic region, wτ  and shearing stress at the stenosis throat, sτ  in their non-

dimensional form as                
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where  
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0 0 04 /  Q R     are the flow resistance and shear stress, respectively for a 

Newtonian fluid in a normal artery (no stenosis), and  , wτ and sτ  are the impedance, wall shear 
stress and shearing stress at stenosis throat, respectively in their dimensional form obtained from 

the definitions: /p Q   , ( / 2) /w R dp dz   ,  
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.s w
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 
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4.  Numerical Results and Discussion 
 
To discuss the results of the study quantitatively, computer codes are developed to evaluate the 
analytical results obtained in equations (20)-(21) numerically in a tube of radius 0.01cm at the 
temperature of 370C. The values of the parameters are selected (Young, 1968; Srivastava, 1996; 
Beavers and Joseph, 1967) as 00; ( ) 1d L cm  . 

  

( ) 1, 2, 5; 0, 0.2, 0.4, 0.6; 0.1, 0.2, 0.3, 0.4, 0.5L cm C    ; k (square root of Darcy number, k 

and hereafter referred as Darcy number) 0.4,0.50.3,0.2,0.1, ; 20.0,15.0,10.0,05.0,0δ/R 0  .  
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For any given set of other parameters, the impedance (resistance to flow), λ increases with 
hematocrit, C as well as with the stenosis height, 0/ R  (Figure 2). The flow characteristic, λ 

increases with increasing Darcy number, k  for any given set of other parameters (Figure 3). 

One observes that the blood flow characteristic, λ increases with the slip parameter, α for other 
given parameters (Figure 4). The impedance, λ decreases with the increasing value of the   
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parameter, L (tube length/2) which in turn implies that λ increases with stenosis length, L0 

(Figure 5). The resistance to flow, λ steeply increases with the hematocrit, C for any given value 

of α, k  and 0/ R  (Figure 6). For other given parameters, that the blood flow characteristic, λ 

decreases from its maximal magnitude at 0k   to its asymptotic value at 0.15k   (Figure 

7). One notices that flow resistance, λ increases with the slip parameter, α from its minimal value 
at 0.1α   and achieves an asymptotic magnitude at about 0.5α   (Figure 8).  
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The wall shear stress in the stenotic region, wτ  increases rapidly in the upstream of the stenosis 

throat from its approached value at 0/ -1z L   and achieves its maximal magnitude at stenosis 

throat (i.e., at 0/ 0z L  ), it then decreases rapidly in the downstream of the throat to its 

approached value at the end point of the constriction profile (at 0/ 1z L  ). The blood flow 

characteristic, wτ  increases with the hematocrit, C and the stenosis height, 0/ R  at any axial 

location in the stenotic region (Figure 9). At any axial location, the wall shear stress wτ  increases 

with the Darcy number, k (Figure 10) and also with the slip parameter, α (Figure 11). 
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The shear stress at stenosis throat sτ increases with the hematocrit, C as well as with the stenosis 

height, 0/ R  (Figure 12). sτ  also increases with Darcy number, k  (Figure 13) and  with the 

slip parameter, α (Figure 14). The blood flow characteristic sτ  possesses characteristic similar to 

that of the flow resistance, λ with respect to any parameter (Figures 2 and 13). 
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5.  Conclusions 
 
To discuss the effects of the wall permeability and the hematocrit, the flow through a bell shaped 
stenosis in an artery with permeable wall; a macroscopic two-phase blood model has been used. 
The flow resistance increases with the hematocrit, stenosis size (height and length both), Darcy 
number and as well as with the slip parameter. The wall shear stress at any axial location in the 
stenotic region possesses variations similar to that of the impedance with respect to any 
parameter. The shear stress at stenosis throat possesses the characteristic similar to that of the 
impedance.  
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