University of Mississippi

eGrove

Annual Poster Session 2021

Annual Poster Session

10-19-2021

Abl Kinase Inhibitors from Egyptian Spinach Leaves in the Treatment of Chronic Myeloid Leukemia

Shimaa M. Abdelgawad University of Mississippi

Mona H. Hetta University of Mississippi

Mohamed A. Ibrahim University of Mississippi

Premalatha Balachandran University of Mississippi

Jin Zhang University of Mississippi

See next page for additional authors

Follow this and additional works at: https://egrove.olemiss.edu/pharm_annual_posters_2021

Recommended Citation

Abdelgawad, Shimaa M.; Hetta, Mona H.; Ibrahim, Mohamed A.; Balachandran, Premalatha; Zhang, Jin; Wang, Mei; Ospanov, Meirambek; Fawzy, Ghada A.; El-Askary, Hesham I.; and Ross, Samir A., "Abl Kinase Inhibitors from Egyptian Spinach Leaves in the Treatment of Chronic Myeloid Leukemia" (2021). *Annual Poster Session 2021*. 14.

https://egrove.olemiss.edu/pharm_annual_posters_2021/14

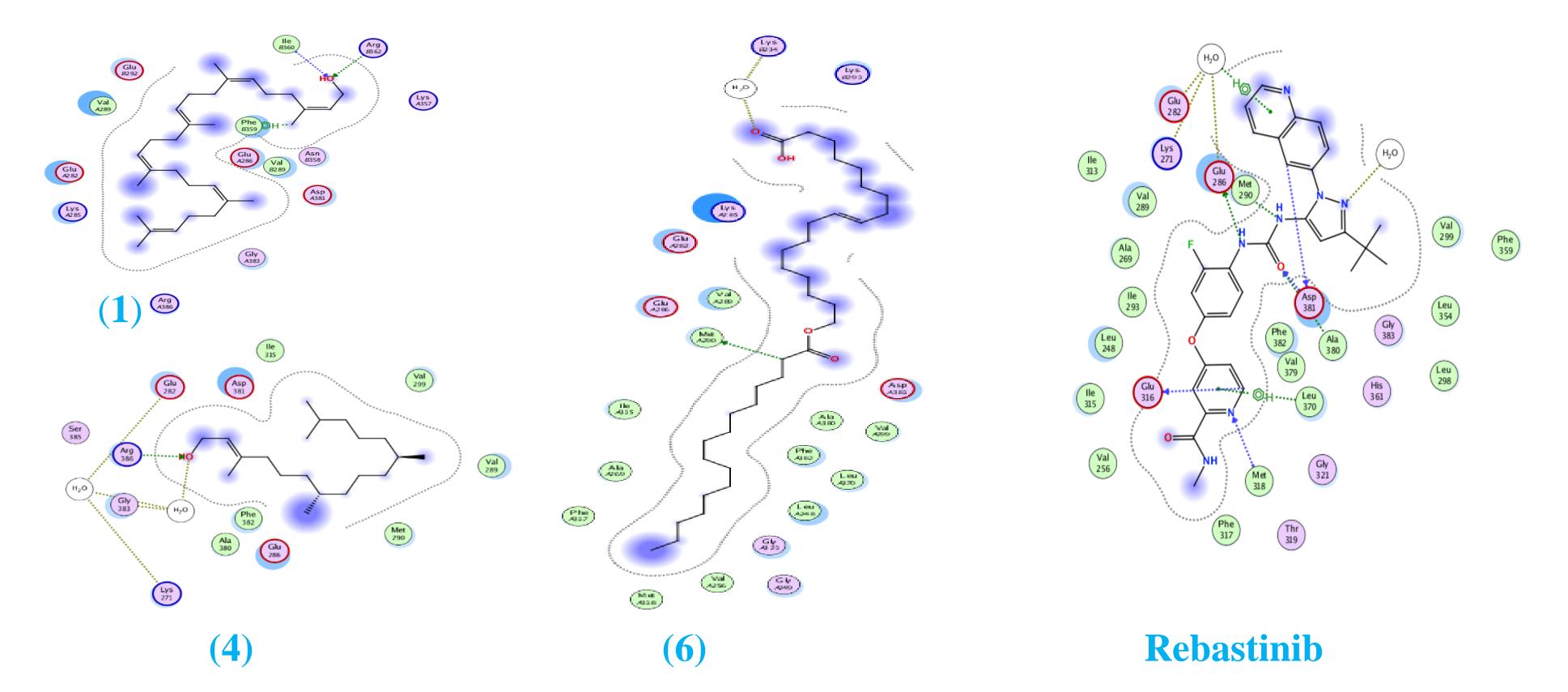
This Book is brought to you for free and open access by the Annual Poster Session at eGrove. It has been accepted for inclusion in Annual Poster Session 2021 by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

Authors

Shimaa M. Abdelgawad, Mona H. Hetta, Mohamed A. Ibrahim, Premalatha Balachandran, Jin Zhang, Mei Wang, Meirambek Ospanov, Ghada A. Fawzy, Hesham I. El-Askary, and Samir A. Ross

Abl Kinase Inhibitors from Egyptian Spinach Leaves in the Treatment of Chronic Myeloid Leukemia

Shimaa M. Abdelgawad¹, Mona H. Hetta, Mohamed A. Ibrahim¹, Premalatha Balachandrana¹, Jin Zhang¹, Mei Wang¹, <u>Ospanov Meirambek¹</u>, Ghada A. Fawzy, Hesham I. El-Askary and Samir A. Ross^{1,2}


¹National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS 38677, USA ²Biomolecular Sciences, Division of Pharmacognosy, School of Pharmacy, University of Mississippi, 38677, United States

ABSTRACT

Based on our previous biological screening of certain Egyptian edible leafy vegetables against leukemia K562 cell line, Spinacia oleracea (SO) leaves demonstrated a potential antileukemic activity. Thus, the aim of this study is to carry out detailed phytochemical and biological investigations of SO leaves cultivated in Egypt. Bio-guided study of the nhexane fraction using GC/MS analysis (Table 1 and 2) resulted in the identification of twenty-five compounds in the saponifiable matter and the isolation of twelve compounds (1-12) from the unsaponifiable matter. Phytochemical study of SO ethyl acetate fraction resulted in the isolation of two new flavone C-glycosides: Isoswertisin -3''-O-xyloside (13) and Vitexin 3''-O-xyloside (14), alongside with three known compounds. The biological study revealed that compounds (1, 4, and 6) exhibited a remarkable antiproliferative activity against K562 cells invitro. In Silico mechanistic study showed that compounds (1, 4, and 6) exhibited a strong binding affinity towards Abl Kinase (docking score = -8.5523, -7.6724 and -9.6475 Kcal/Mole, respectively). Moreover, compound (1) showed a strong binding affinity towards topoisomerase (docking score = -8.4926 and Kcal/Mole). As a result of our findings, we recommend the incorporation of spinach leaves in the food regimen for chronic myeloid leukemia (CML) patients.

MOLECULAR DOCKING

GC/MS ANALYSIS

	Compound Name	RT (min)	Mol Weight	Peak area
Comp. No.			(amu)	(%)
1.	Methyl myristate	27.8	242.225	0.70
2.	Methyl pentadecanoate	30.4	256.24	0.57
3.	Phytone	30.7	268.277	0.47
l.	(Z)-9-Hexadecenoic acid, methyl ester	32.7	268.24	0.51
5.	Methyl palmitate	33.1	270.256	24.09
).	(Z)-Methyl hexadec-11-enoate	33.3	268.24	2.40
7.	7,10,13-Hexadecatrienoic acid, methyl ester	33.4	264.209	0.77
8.	Palmitic acid	34.2	256.24	0.28
).	Methyl margarate	35.4	284.272	0.51
l 0.	Hexadecanoic acid, 2-hydroxy-, methyl ester	36.4	286.251	1.00
1.	Methyl isostearate	36.7	298.287	0.28
12.	Methyl oleate	37.5	296.272	8.70
13.	Methyl lineoleate	37.7	294.256	13.99
l 4.	11,14-Octadecadienoic acid, methyl ester	37.9	294.256	0.61
15.	Methyl linolenate	38.2	292.24	17.43
l 6.	Methyl 9-cis,11-trans-octadecadienoate	40.2	294.256	0.56
l 7.	cis-13-Eicosenoic acid, methyl ester	41.9	324.303	0.55
l 8.	Methyl arachidate	42.0	326.318	0.65
l 9.	Methyl behenate	46.1	354.35	1.46
20.	Methyl tricosanoate	48.0	368.365	0.49
21.	Methyl lignocerate	49.9	382.381	1.60
22.	Methyl 2-hydroxy-tetracosanoate	52.8	398.376	1.65
23.	Methyl hexacosanoate	53.4	410.412	0.66
24.	Methyl montanate	57.3	438.444	0.66
25.	Stigmasta-3,5-diene	58.9	396.376	0.83
Saturated Fatty acids		35 %		
Unsaturated fatty acids		46.4 %		
Unidentified compounds		18.6	%	

Fig.1.Binding affinity of compounds (1, 4, and 6) isolated from SO leaves compared to Rebastini against Abl kinase

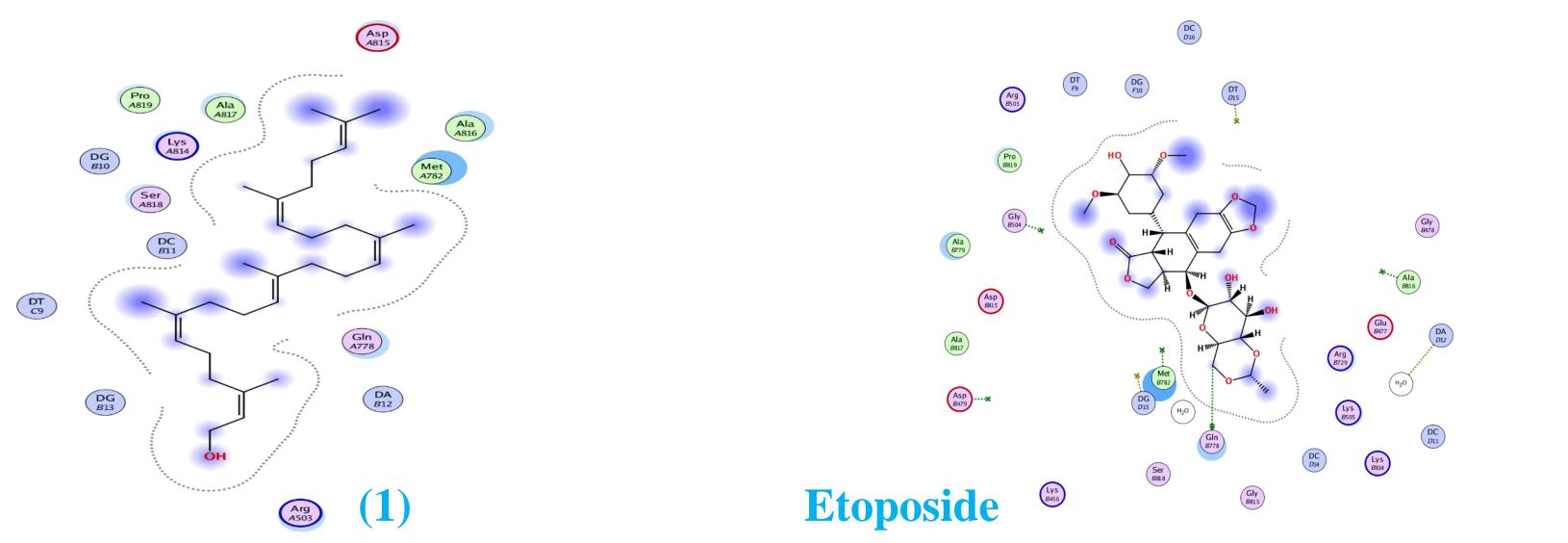
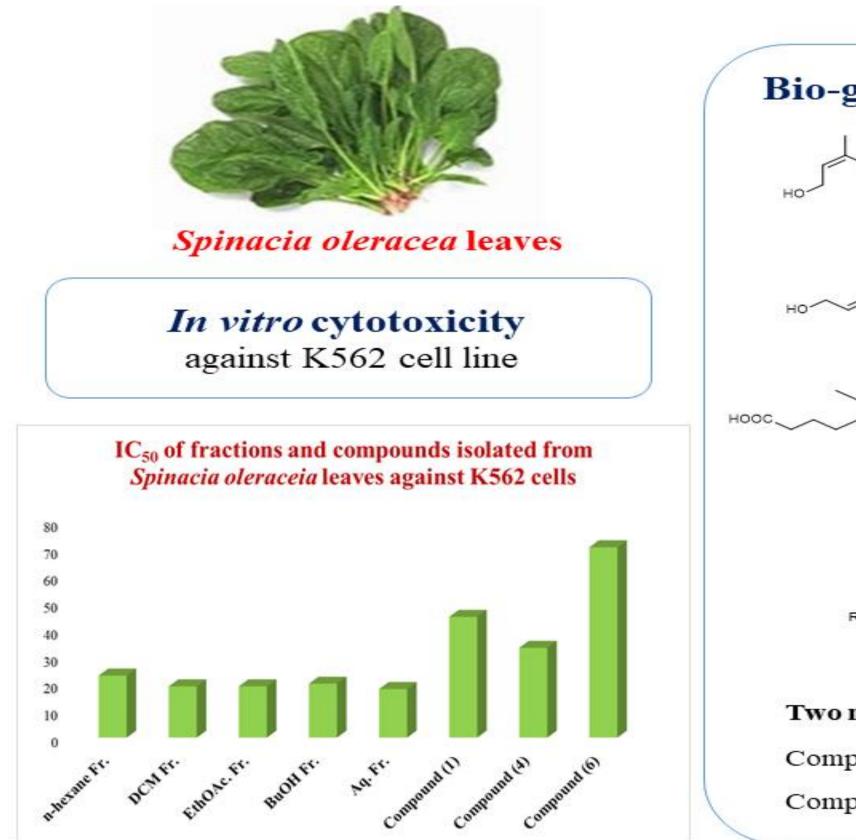
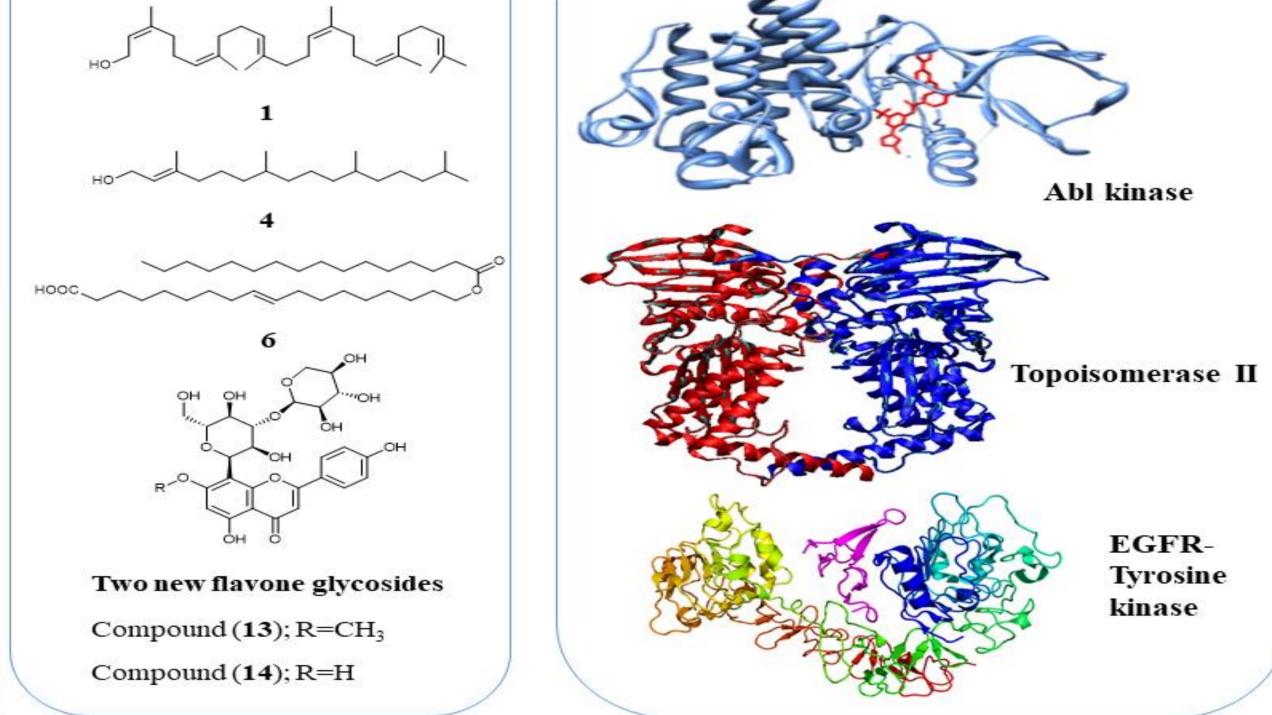



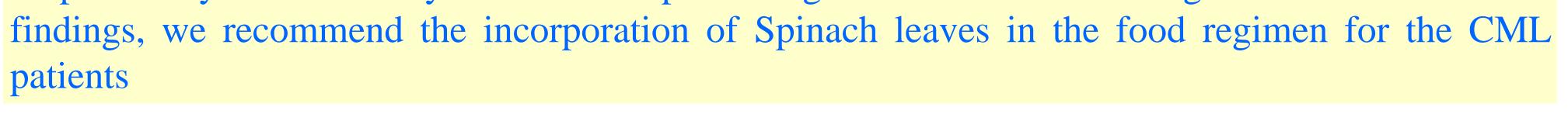
Fig.2. Binding affinity of compound (1) isolated from SO leaves compared to Etoposide against topoisomerase

GENERAL SCHEME



Bio-guided isolation

In silico molecular docking


 Table 2 Results of GC/MS analysis of unsaponifiable matter of the n-hexane fraction of SO leaves

Comp. No.	Compound Name	RT (min)	Mol Weight (amu)	Peak area (%)	
1	Dihydroactinolide	26.9	180.115	0.55	
2	Phytone	30.7	268.277	0.83	
3	Palmitic acid	34.2	256.24	11.07	
4	Loliolid	34.8	196.11	1.64	
5	Phytol	37.3	296.308	33.37	
6	Oleic Acid	38.7	282.256	3.24	
7	Linoelaidic acid	39.0	280.24	10.12	
8	Linolenic acid	39.5	278.225	24.79	
9	Nonacos-1-ene	45.4	406.454	0.22	
10	1-Tetracosene	49.3	406.454	0.57	
11	Stigmasterol	66.1	412.371	2.56	
12	gamma-Sitosterol	68.6	414.386	1.79	
Cotal hydrocarbons			83 %		
Sterols		4.35 %			
U nidentified co r	npounds		12.65 %		

CONCLUSIONS

The n-hexane fraction of Egyptian Spinach leaves as well as its isolated compounds; Hexaprenol (1), Phytol (4) and 18-[(1-Oxohexadecyl) oxy]-9-octadecenoic acid (6) showed remarkable antiproliferative activity against leukemia K562 cell line. The molecular docking study revealed that this activity is supposed to be through targeting Abl kinase and topoisomerase, and this still needs to be proved by in vitro assay of these compounds against the mentioned targets. As a result of our

This work was supported by the Egyptian Ministry of Higher Education Missions Sector (grant no. JS-3770). Support from National Center for Natural Products research (NCNPR), University of Mississippi is gratefully

