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Abstract Abstract 
It is well known that the set of Mahler measures of single variable polynomial has limit points of which a 
list established by D. Boyd and M. Mossinghoff has been extended through approaches based on genetic 
algorithms. In this paper, we wish to further extend the list of known limit points by adapting a method of 
missing data restoration. 
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1. INTRODUCTION 
In 1962 K. Mahler defined (Mahler, 1962) what was later called the Mahler measure of a 

polynomial as follows: let 𝑃 be a polynomial with complex coefficients. 𝑃 can be written as 

𝑃(𝑋)=a0𝑋
𝑑+a1𝑋

𝑑−1 +⋯+a𝑑=a0∏(𝑋 − 𝛼𝑖)

𝑑

i=1

, 

where 𝑎0 ≠ 0 is the leading coefficient of P and the 𝛼𝑖’s are its complex roots. Then, the Mahler 

measure of 𝑃 is defined as 

𝑀(𝑃):= |𝑎0|∏max

𝑑

i=1

(1, |𝛼𝑖|). 

In the following, we summarize some important properties of the Mahler measure. For a 

complete overview of the classical and more recent results concerning the Mahler measure, we refer 

to (Smyth, 2008). Recall that the Mahler measure 𝑀(𝛼) of an algebraic number 𝛼 is simply defined 

as that of its minimal polynomial 𝑃𝛼 in 𝑍[𝑋].  

Proposition 1. If 𝛼 is an algebraic number, then 𝑀(𝛼) ≥ 1. Moreover, 𝑀(𝛼) = 1 if and only if 𝛼 is 

a root of unity. 

An algebraic number is said to be reciprocal if its minimal polynomial is reciprocal, i.e. if 

𝑃𝛼(𝑋)=X𝑑𝑃𝛼(1 𝑋⁄ ). 

In (Smyth, 1971), C. Smyth proves the following result: 

Proposition 2. Let 𝜃0 be the only real root of the equation 𝜃3 − 𝜃 − 1 = 0. If 𝛽 is an algebraic integer 

such that 𝑀(𝛽)<θ0, then 𝛽 is reciprocal. 

From Proposition 1, we know that an algebraic number is a root of unity if and only if its Mahler 

measure is 1. In (Lehmer, 1993), Lehmer then wonders whether one can approach 1 as closely as 

desired by Mahler measures of algebraic integers which are not roots of unity. This problem is, to 

date, an open problem. Lehmer gave the smallest known Mahler measure > 1, 𝑀(𝑃0) = 1.176280…, 

where 

𝑃0(𝑋)=X10+X9 − 𝑋7 − 𝑋6 − 𝑋5 − 𝑋4 − 𝑋3+X+1. 

M. Mossinghoff collected on a website (Mossinghoff) all known polynomials (monic, irreducible in 

𝑍[𝑋], with integer coefficients) of Mahler measure below 1.3, and the corresponding measures. Our 

purpose here is to deal with the problem of finding new limit points of Mahler measures. For this, let 

us first recall that the Mahler measure of a multivariable polynomial 𝑃 (in 𝑛 variables) is defined as 

𝑀(𝑃) = exp(∫ …
1

0

∫ log
1

0

|𝑃(exp(2iπt1),… ,exp(2iπt𝑛))|dt1… dt𝑛) . 

In one dimension, the previous definition  𝑀(𝑃):= |𝑎0|∏ max𝑑
i=1 (1, |𝛼𝑖|) is derived from this 

one by using Jensen’s formula. 

Now, the point is that measures of multivariable polynomial are limiting values of measures of 

polynomials in fewer variables (Boyd et al., 2005, Lawton, 1983, Boyd, 1981). In (Boyd et al., 2005), 

the authors give 48 irreducible polynomials in two variables with Mahler measures below 1.37. The 

Mahler measures of these polynomials are limit of Mahler measures of univariate polynomials. In (El 

Otmani et al., 2017), the authors add 11 new polynomials to the previous list using an approach based 

on genetic algorithms. 

In this work, our aim is to extend these lists by implementing a method based on the technics 

of missing data restoration, which are frequently used in different fields of mathematics, for example 

in tomographic reconstruction. 
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2. MISSING DATA RESTORATION ALGORITHM 

2.1 Motivation of The Approach 
The idea of this attempt is to try to discover new bivariate polynomials with Mahler 

measure below 1.37, not directly as in (Boyd et al., 2005) and (El Otmani et al., 2017), but by 

trying to exploit lists of already known polynomials. To summarize the approach in a few words, 

the principle of the method consists in assigning to a polynomial a small number of random 

coefficients, and in considering its other coefficients as missing data. These missing coefficients 

are then reconstructed by a restoration algorithm, which replaces them with the coefficients of 

the closest known polynomial in the sense of a distance to be defined. For the method to have a 

chance of success, it is necessary to have a sufficient number of polynomials of the same type, 

i.e., in particular, with the same degree. So we started by taking the 11 polynomials given in (El 

Otmani et al., 2017), because these polynomials are all of the same type, namely polynomials of 

the form 𝑃𝑎0,…,a35
(x,y)=a0+a1y+a

2
𝑦2+a3𝑦

3+a4𝑦
4+a5𝑦

5+a6x+a7xy+a
8
xy2+a9xy3 +

⋯+a34𝑥
5𝑦4+a35𝑥

5𝑦5, with 𝑎0,a1, … ,a35 in {−1,0,1}. It can be noted that for each of the 11 

polynomials in the list, only 6 of its 36 coefficients are non-zero. This is not particularly 

important for our approach. We then added to this list those polynomials provided in (Boyd, 

2005) with degrees low enough to be written in the form specified above simply by adding zeros 

for some coefficients. We have thus obtained a list of reference polynomials for use in our 

algorithm. 

        In the following lines, we outline the principle of restoring missing data. 

2.2 The Principle of The Restoration Algorithm 
In our case, the principle of the restoration algorithm is to consider the polynomials of the 

reference list as vectors with 36 coefficients. To evaluate how these vectors, relate to each other, 

a distance is introduced. We have a wide choice of distances available (Mahalanobis distance, 

Minkowski distance, Hamming distance, Chebychev distance...) among which we choose the 

most usual one, namely the euclidean distance dist(𝑃1,P2) = √∑ (𝑥𝑖
2 − 𝑥𝑖

1)
236

𝑖=1
, where 𝑃𝑘 =

(𝑥1
𝑘 , … ,x36

𝑘 ), k=1,2. We can set the leading coefficient of the unknown polynomial to 1, so there 

are still 335 = 5003154509899999707 coefficients to find, which makes it impossible to try all 

the possibilities, or to try to find them by random draws. 

Our algorithm works as follows: 

1. We randomly draw an integer 𝑁 between 1 and 10. 

2. 𝑁 coefficients are randomly selected among the 36 coefficients of a polynomial which is of 

the type specified in section 2.1. 

3. Each of these 𝑁 coefficients are assigned a random value selected from {−1; 0; 1}. 
4. The distances between this polynomial with missing data and each of the polynomials in the 

reference list are computed. Only the assigned coefficients are used to compute the distances. 

5. The missing coefficients of the polynomial are replaced by the corresponding coefficients of 

the nearest polynomial (for the Euclidean distance). 

6. We control the Mahler measure and the irreducibility of the obtained polynomial. If its Mahler 

measure (or that of one of its factors) is less than 1.37, it is compared to that of already known 

polynomials, and kept if it is not listed. 

7. Back to 1. 
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3. IMPLEMENTATION AND RESULTS 
For the concrete implementation of our restoration algorithm, we have used the Matlab Statistic 

Optimization Toolbox (Coleman) which even allows, in a broader way, to rely on reference vectors 

that themselves have missing data. In the case we deal with, of course, we only use a list of fully 

known vectors. As in (El Otmani et al., 2017), the irreducibility of the polynomials in two variables 

was verified using the symbolic-based mathematical software Maxima, and the accurate calculation 

of the measures of two-variable polynomials was performed using GNU Octave. 

The calculations, which have lasted for 2 weeks, were performed on a Dell Precision M6700 

(processor: Intel Core i7-3940XM CPU @ 3.00 Ghz x 8, memory: 15.6 Gio). 

Note that our algorithm gave us limit points already provided in (Boyd et al., 2005), whose 

corresponding polynomials did not appear among our reference polynomials because their degrees 

did not allow them to be written in the form  

𝑃𝑎0,…,a35
(x,y)=a0+a1y+a

2
𝑦2+a3𝑦

3+a4𝑦
4+a5𝑦

5+a6x+a7xy+a
8
xy2+a9xy3 +⋯+a34𝑥

5𝑦4+a35𝑥
5𝑦5.  

For example, the point 1.358545590 of (Boyd et al., 2005) which corresponds to polynomial 

𝑃(4,1)=x6+x5+x4+x3𝑦2+x3y+x3+x2𝑦2+xy2+y2 is found by our algorithm via polynomial 𝑥2𝑦4 −
𝑥2 − xy3 − xy2 − 𝑦5+y. The point 1.366145966 of (Boyd et al., 2005) which corresponds to 

polynomial 

 𝑃(5,3)=x6+x5+x4𝑦2+x4y+x4+x3𝑦2+x3y+x3+x2𝑦2+x2y+x2+xy2+y2 is found by our algorithm via 

polynomial 𝑥2𝑦5+x2+xy4+xy+y5 + 1. The point 1.366807889 of (Boyd et al., 2005) which 

corresponds to polynomial 𝑃(5,1)=x8+x7+x6+x5+x4𝑦2+x4y+x4+x3𝑦2+x2𝑦2+xy2+y2 is found by 

our algorithm via polynomial 𝑥2𝑦5 − 𝑥2 − xy3+xy2+y5 − 1. Of course, these polynomials were 

immediately added to our list of reference polynomials to help find still unknown limit points. 

The table below gives the new limit points provided by our algorithm. 

 

Mahler measures                                                                 Polynomials 

1.359375641  1 − 𝑦 − 𝑥2 − 𝑥3𝑦3 − 𝑥5𝑦2 + 𝑥5𝑦3 

1.368922213 𝑦 − 𝑦3 − 𝑥2 − 𝑥3𝑦4 − 𝑥5𝑦 + 𝑥5𝑦3 

4. FINAL REMARKS 
Data recovery algorithms may be criticized for not being able to produce new results without 

starting from a sufficient number of already known results. On the other hand, they offer the 

possibility to quickly extend an already existing list by exploiting the polynomials of this list, which 

is an alternative approach that has proved effective in practice. 
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