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Abstract In the paper, we consider a queuing system with n types of customers.
We assume that each customer arrives at the queue according to a renewal process
and takes a random resource amount, independent of their service time. We write
Kolmogorov integro-differential equation, which, in general, cannot be analytically
solved. Hence, we look for the solution under the condition of infinitely growing
a service time, and we obtain multi-dimensional asymptotic approximations. We
show that the n-dimensional probability distribution of the total resource amounts
is asymptotically Gaussian, and we look at its accuracy via Kolmogorov distance.

Keywords Renewal arrival process · Different types of servers · Queueing
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1 Introduction

The globalization of modern managed systems sets new tasks at the hardware,
structural, and organizational level. Such systems include both global computer
and complex socio-economic relations. In addition to the fact that they are highly
heterogeneous, they can also comprise a large number of various objects by
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highly connected cooperations. For example, the actively developing conceptions
of Internet of Things (IoT), Internet of Everything (IoE), and Internet of Nano
Things (IoNT) involve the interaction of both objects and subjects of the social
environment [3, 9, 15]. In this regard, an integrated approach is needed to solve
multi-dimensional problems of managing complex technical and social objects in a
dynamically changing environment.

Cellular networks are transformed from a planned set of large base-stations to an
irregular deployment of heterogeneous infrastructure elements. In paper [2], authors
developed a tractable, flexible, and accurate model for a heterogeneous cellular
network consisting of K level of randomly located base-station, where each level
may differ in terms of average transmit power and supported data rate.

It should be noted that the number of publications has been devoted to modeling
of wireless communication systems by the resource queueing system [1, 4, 5].
However, the main results were obtained assuming that requests to resources is
deterministic. Thus, considering new models of heterogeneous resource queues is
currently relevant [7, 8, 12].

Important task of modeling connection networks is cost criterion, which defines
the quality of the system operation. A tandem queueing systems with heterogeneous
customers is analyzed in the paper [16]. The authors computated the stationary
distribution of the system states under the fixed set of the thresholds—the most
difficult part of solving the problem of minimizing the cost.

Similarly, in our article, the problem of finding a stationary probability distribu-
tion of the total volumes of occupied resources in a heterogeneous queue is solved.
The considered heterogeneous resource queue can be applied when analyzing the
performance indicators of radio resource separation schemes of next-generation
telecommunication [6, 14].

2 Problem Statement

2.1 Mathematical Model

Consider the queueing system (see Fig. 1) with unlimited number and n different
servers types, also assume that each customer carries a random capacity (or needed
some resource).

Customers arrive in the system according to a renewal arrival process, given
by distribution function A(z) of random variable between time point of customers
arriving, which has a finite mean and variance (a and σ 2).

Each arriving customer randomly selects its type according to the set of

probabilities pi (i = 1, . . . , n), and besides
n∑

i=1
pi = 1. Further, the customer goes

to the conforming server, staying there for a random time with distribution function
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Fig. 1 Queueing system with n servers types

Fig. 2 Dynamic screening of the arrival process

Bi(x), and also taking random resources amount vi > 0 with distribution function
Gi(y).

Queueing system with such service discipline was considered by the authors in
[13]. However, it does not take into account that each customer requires a random
amount of resources.

Denote by {V1(t), . . . , Vn(t)} the each type’s customers total capacity in the
system at time t . This process is non-Markovian, therefore, we use the dynamic
screening method for its investigation.

Let the system be empty at moment t0, and let us fix any time moment T in
the future as shown in Fig. 2. The set of dynamic probabilities S1(t), . . . , Sn(t)

represents that a customer arriving at time t have the i-type and it will be served
at the moment T , i.e. Si(t) = pi(1 − Bi(T − t)), for t0 ≤ t ≤ T .

Denote by {W1(t), . . . ,Wn(t)} the each type total customers capacities screened
before the moment t . It is easy to prove the property for the probability distribution
stochastic processes [10]:

P {V1(T ) < w1, . . . , Vn(T ) < wn} = P {W1(T ) < w1, . . . ,Wn(T ) < wn}, wi ≥ 0.

The above n-dimensional process is non-Markovian, then we will add the
residual time from t to the next arrival z(t).
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2.2 Kolmogorov Integro-Differential Equation

For the probability distribution of (n + 1)-dimensional Markovian process
{z(t),W1(t), . . . ,Wn(t)}:

P(z,w1, . . . , wn, t) = P {z(t) < z,W1(t) < w1, . . . ,Wn(t) < wn} ,
z,w1, . . . , wn > 0,

we can write the following Kolmogorov integro-differential equation:

∂P (z,w1, . . . , wn, t)

∂t
= ∂P (z,w1, . . . , wn, t)

∂z

+ ∂P (0, w1, . . . , wn, t)

∂z
(A(z)− 1)+ A (z)

n
∑

i=1

Si (t)

×
⎡

⎣

wi∫

0

∂P (0, w1, . . . , wi − yi, . . . , wn, t)
∂z

×dGi (yi)− ∂P (0, w1, . . . , wn, t)

∂z

]

. (1)

We define the initial conditions in the form

P (z,w1, . . . ,n , t0) =
{

R(z), w1 = . . . = wn = 0,
0, otherwise,

where R(z) = 1

a

z∫

0
(1 − A(u)) du is the stationary probability distribution of the

values of the random process z(t).
To solve (1), we introduce the partial characteristic function:

h(z, v1, . . . , vn, t) =
∞∫

0

ejv1w1 . . .

∞∫

0

ejvnwnP (z, dw1, . . . , dwn, t),

where j = √−1 is the imaginary unit. Then, we obtain the following equation:

∂h(z, v1, . . . , vn, t)

∂t
= ∂h(z, v1, . . . , vn, t)

∂z
+ ∂h(0, v1, . . . , vn, t)

∂z

×
[

A(z)− 1 + A(z)
n
∑

i=1

Si(t)(G
∗
i (vi )− 1)

]

, (2)
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where

G∗
i (vi ) =

∞∫

0

ejviydGi(y),

with the initial condition

h(z, v1, . . . , vn, t0) = R(z). (3)

3 Asymptotic Analysis

In general, Eq. (2) cannot be solved analytically, but it is possible to find approxi-
mate solutions under suitable asymptotic conditions; in this paper we consider the
case that the service times of the different types of customers growth proportionally
to each other.

We state and prove the following theorem.

Theorem 1 The asymptotic characteristic function of the stationary probability
distribution of the process {V1(t), . . . , Vn(t)} has the form

h(v1, . . . , vn) ≈ exp

{

λ

n
∑

i=1

jvia
(i)
1 pibi + λ

n
∑

i=1

(jvi)
2

2
a
(i)
2 pibi

+κ
n
∑

i=1

n
∑

m=1

jvijvm

2
a
(i)
1 a

(m)
1 pipmKim

}

, (4)

where λ = (a)−1, κ = λ3(σ 2 − a2), (a and σ 2 being the mean and the variance of
the interval time, respectively), and

a
(i)
1 =

∞∫

0

ydGi(y), a
(i)
2 =

∞∫

0

y2dGi(y),

bi =
∞∫

0

(1 − Bi(x))dx; Kim =
∞∫

0

(1 − Bi(x))(1 − Bm(x))dx.

Proof At first, we prove a secondary statement.
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Lemma 1 The first-order asymptotic characteristic function of the process
{z(t),W1(t), . . . ,Wn(t)} is given by

h(z, v1, . . . , vn, t) ≈ R(z) exp

⎧

⎨

⎩
λ

n
∑

i=1

jvia
(i)
1

t∫

t0

Si(θ)dθ

⎫

⎬

⎭
.

Proof Let bi = bqi for some real values qi > 0 and b → ∞. Put

ε = 1

bqi
, vi = εyi, tε = τ, t0ε = τ0, T ε = T̃ , Si(t) = S̃i (τ ),

h(z, v1, . . . , vn, t) = f1(z, y1, . . . , yn, τ, ε).

Then, from the expressions (2) and (3), we get

ε
∂f1(z, y1, . . . , yn, τ, ε)

∂τ
= ∂f1(z, y1, . . . , yn, τ, ε)

∂z
+ ∂f1(0, y1, . . . , yn, τ, ε)

∂z

×
[

A(z)− 1 + A (z)
n∑

i=1

S̃i(τ )(G
∗
i (εyi)− 1)

]

,

(5)

with the initial condition

f1(z, y1, . . . , yn, τ0, ε) = R(z).

Let ε → 0; then Eq. (5) becomes:

∂f1(z, y1, . . . , yn, τ )

∂z
+ ∂f1(0, y1, . . . , yn, τ )

∂z
(A(z)− 1) = 0.

and hence f1(z, y1, . . . , yn, τ ) can be expressed as

f1(z, y1, . . . , yn, τ ) = R(z)Φ1(y1, . . . , yn, τ ), (6)

where Φ1(y1, . . . , yn, τ ) is some scalar function, satisfying the condition

Φ1(y1, . . . , yn, τ0) = 1.

Now let z→ ∞ in (5):

ε
∂f1(∞, y1, . . . , yn, τ, ε)

∂τ
= ∂f1(0, y1, . . . , yn, τ, ε)

∂z

n
∑

i=1

S̃i (τ )(G
∗
i (εyi)− 1).
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Then, we substitute here the expression (6), take advantage of the Taylor expansion

ejεs = 1 + jεs +O(ε2), (7)

divide by ε and perform the limit as ε → 0. Since R′(0) = λ, we get the following
differential equation:

∂Φ1(y1, . . . , yn, τ )

∂τ
= Φ1(y1, . . . , yn, τ )λ

n
∑

i=1

S̃i(τ )jyia
(i)
1 . (8)

Taking into account the initial condition, the solution of (8) is

Φ1(y1, . . . , yn, τ ) = exp

⎧

⎨

⎩
λ

n
∑

i=1

jyia
(i)
1

τ∫

τ0

S̃i (θ)dθ

⎫

⎬

⎭
.

By substituting Φ1(y1, . . . , yn, τ ) from (6), and then we can write

h(z, v1, . . . , vn, t) = f1(z, y1, . . . , yn, τ, ε) ≈ f1(z, y1, . . . , yn, τ )

= R(z)Φ1(y1, . . . , yn, τ )

= R(z) exp

⎧

⎨

⎩
λ

n
∑

i=1

jyia
(i)
1

τ∫

τ0

S̃i (θ)dθ

⎫

⎬

⎭

= R(z) exp

⎧

⎨

⎩
λ

n
∑

i=1

jvia
(i)
1

t∫

t0

Si(θ)dθ

⎫

⎬

⎭
.

	

Let h2(z, v1, . . . , vn, t) be a solution of the following equation:

h(z, v1, . . . , vn, t) = h2(z, v1, . . . , vn, t) exp

⎧

⎨

⎩
λ

n
∑

i=1

jvia
(i)
1

t∫

t0

Si(θ)dθ

⎫

⎬

⎭
. (9)
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Substituting this expression into (2) and (3), we get the following equivalent
problem:

∂h2(z, v1, . . . , vn, t)

∂t
+ λh2(z, v1, . . . , vn, t)

n
∑

i=1

jvia
(i)
1 Si(t)

= ∂h2(z, v1, . . . , vn, t)

∂z
+ ∂h2(0, v1, . . . , vn, t)

∂z

×
[

A(z)− 1 + A(z)
n
∑

i=1

Si(t)
(

G∗
i (vi )− 1

)

]

, (10)

with the initial condition

h2(z, v1, . . . , vn, t0) = R(z). (11)

By performing the following changes of variable

ε2 = 1

bqi
, vi = εyi, tε = τ, t0ε = τ0, T ε = T̃ , Si(t) = S̃i (τ ),

h2(z, v1, . . . , vn, t) = f2(z, y1, . . . , yn, τ, ε).

(12)

In (10) and (11), we get the following problem:

ε2 ∂f2(z, y1, . . . , yn, τ, ε)

∂τ
+ f2(z, y1, . . . , yn, τ, ε)λ

n
∑

i=1

jεyia
(i)
1 S̃i (τ )

= ∂f2(z, y1, . . . , yn, τ, ε)

∂z
+ ∂f2(0, y1, . . . , yn, τ, ε)

∂z

×
[

A(z)− 1 + A(z)
n
∑

i=1

S̃i (τ )(G
∗
i (εyi)− 1)

]

, (13)

with the initial condition

f2(z, y1, . . . , yn, τ0, ε) = R(z).

As a generalization of the approach used in the previous subsection, the
asymptotic solution of this problem

f2(z, y1, . . . , yn, τ ) = lim
ε→0

f2(z, y1, . . . , yn, τ, ε).
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Letting ε → 0 in (13), we get the following equation:

∂f2(z, y1, . . . , yn, τ )

∂z
+ ∂f2(0, y1, . . . , yn, τ )

∂z
(A(z)− 1) = 0.

Hence, we can express f2(z, y1, . . . , yn, τ ) as

f2(z, y1, . . . , yn, τ ) = R(z)Φ2(y1, . . . , yn, τ ), (14)

where Φ2(y1, . . . , yn, τ ) is some scalar function that satisfies the condition

Φ2(y1, . . . , yn, τ0) = 1.

The solution f2(z, y1, . . . , yn, τ ) can be represented in the expansion form

f2(z, y1, . . . , yn, τ ) = Φ2(y1, . . . , yn, τ )

×
[

R(z)+ f (z)
n
∑

i=1

jεyia
(i)
1 S̃i (τ )

]

+O(ε2), (15)

where f (z) is a suitable function, and besides f (∞) = const , let be f (∞) = 0. By
substituting the previous expression and the Taylor–Maclaurin expansion (7) in (13),
taking into account that R′(z) = λ(1 − A(z)), it is easy to verify that

f (z) = κ

2

z∫

0

(1 − A(u)) du+ λ
z∫

0

(R(u)− A(u)) du.

Letting z → ∞ in (13), by the definition of the function f2(z, y1, . . . , yn, τ, ε),
we obtain

lim
z→∞

∂f2(z, y1, . . . , yn, τ, ε)

∂z
= 0,

and, taking into account the expansion

ejεs = 1 + jεs + (jεs)
2

2
+O(ε3),

we can write

ε2 ∂f2(∞, y1, . . . , yn, τ, ε)

∂τ
+ f2(∞, y1, . . . , yn, τ, ε)λ

n
∑

i=1

S̃i(τ )jεyia
(i)
1

= ∂f2(0, y1, . . . , yn, τ, ε)

∂z

n
∑

i=1

S̃i (τ )

(

jεyia
(i)
1 + (jεyi)

2

2
a
(i)
2

)

+O(ε3).
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By substituting here the expansion (15) and taking the limit as z→ ∞, we get

ε2 ∂Φ2(y1, . . . , yn, τ )

∂τ
+ Φ2(y1, . . . , yn, τ )λ

n
∑

i=1

jεyia
(i)
1 S̃i (τ )

= Φ2(y1, . . . , yn, τ )λ

n
∑

i=1

S̃i (τ )

(

jεyia
(i)
1 + (jεyi)

2

2
a
(i)
2

)

+Φ2(y1, . . . , yn, τ )f
′(0)

n
∑

i=1

S̃i (τ )jεyia
(i)
1

×
n∑

m=1

S̃m(τ )

(

jεyma
(m)
1 + (jεym)

2

2
a
(m)
2

)

+O(ε3).

After simple remakes, and taking into account that κ = 2f ′(0), we get the
following differential equation for Φ2(y1, . . . , yn, τ ):

∂Φ2(y1, . . . , yn, τ )

∂τ
= Φ2(y1, . . . , yn, τ )

[

λ

n
∑

i=1

(jyi)
2

2
a
(i)
2 S̃i (τ )

+κ
n
∑

i=1

n
∑

m=1

jyijym

2
a
(i)
1 a

(m)
1 S̃i (τ )S̃m(τ )

]

,

whose solution (with the given initial condition) can be expressed as

Φ2(y1, . . . , yn, τ ) = exp

⎧

⎨

⎩
λ

n∑

i=1

(jyi)
2

2
a
(i)
2

τ∫

τ0

S̃i(θ)dθ

+κ
n
∑

i=1

n
∑

m=1

jyijym

2
a
(i)
1 a

(m)
1

τ∫

τ0

S̃i(θ)S̃m(θ)dθ

⎫

⎬

⎭
.
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Substituting this expression into (14) and performing the inverse substitutions
of (12) and (9), we get the following expression for the asymptotic characteristic
function of the process {z(t),W1(t), . . . ,Wn(t)}:

h(z, v1, . . . , vn, t) ≈ R(z) exp

⎧

⎨

⎩
λ

n
∑

i=1

jvia
(i)
1

t∫

t0

Si(θ)dθ

+ λ
n
∑

i=1

(jvi)
2

2
a
(i)
2

t∫

t0

Si(θ)dθ

+κ
n
∑

i=1

n
∑

m=1

jvijvm

2
a
(i)
1 a

(m)
1

t∫

t0

Si(θ)Sm(θ)dθ

⎫

⎬

⎭
,

For z → ∞, t = T and t0 → −∞ we get the characteristic function of the
process {V1(t), . . . , Vn(t)} in the steady state regime

h(v1, . . . , vn) ≈ exp

{

λ

n
∑

i=1

jvia
(i)
1 pibi

+λ
n
∑

i=1

(jvi)
2

2
a
(i)
2 pibi + κ

n
∑

i=1

n
∑

m=1

jvijvm

2
a
(i)
1 a

(m)
1 pipmKim

}

.

	

The structure of this characteristic function implies that the n-dimensional

process {V1(t), . . . , Vn(t)} is asymptotically Gaussian with mean

a = λ
[

a
(1)
1 p1b1 a

(2)
1 p2b2 . . . a

(n)
1 pnbn

]

and covariance matrix

K =
[

λK(1) + κK(2)
]

,

where

K(1) =

⎡

⎢
⎢
⎢
⎣

a
(1)
2 p1b1 0 . . . 0

0 a
(2)
2 p2b2 . . . 0

. . . . . . . . . . . .

0 0 . . . a
(n)
2 pnbn

⎤

⎥
⎥
⎥
⎦
,
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K(2) =

⎡

⎢
⎢
⎢
⎣

a
(1)
1 a

(1)
1 p1p1K11 a

(1)
1 a

(2)
1 p1p2K12 . . . a

(1)
1 a

(n)
1 p1pnK1n

a
(2)
1 a

(1)
1 p2p1K21 a

(2)
1 a

(2)
1 p2p2K22 . . . a

(2)
1 a

(n)
1 p2pnK2n

. . . . . . . . . . . .

a
(n)
1 a

(1)
1 pnp1Kn1 a

(n)
1 a

(2)
1 pnp2Kn2 . . . a

(n)
1 a

(n)
1 pnpnKnn

⎤

⎥
⎥
⎥
⎦
.

4 Simulation Results

The result (4) was obtained under the asymptotic condition for an unlimited increase
of the service time (bi → ∞). We conducted several simulation experiments [11],
changing all the systems parameters (i.e., the laws that characterize the incoming
flow, the service time, and the customers resource, as well as the probabilities pi),
in order to investigate their practical applicability. Since the different values of the
source data show similar results, for example, we present only one of them.

Thus, we assume that the arrival renewal process is characterized by a uniform
distribution of the interval time in the [0.5, 1.5], corresponding to a fundamental
rate of arrivals λ = 1 customers per time unit. The remaining distribution laws and
their parameters are presented in Table 1, according to the customers type.

We compared the asymptotic distributions with the empiric ones by Kolmogorov
distance:

Δ = sup
x

|Fem(x)− Fas(x)| ,

where Fem(x) is the distribution function built on the basis of simulation results,
and Fas(x) is the Gaussian approximation given by (4).

Table 2 shows the results for the marginal distributions of the total resource
amount for each customers types (Δ1 andΔ2, respectively) and for two-dimensional
distributions (Δ).

As expected, the asymptotic results become more precise when the service time
parameter b increases. This conclusion is also confirmed by Figs. 3 and 4, which
compare the asymptotic approximations with the empirical histograms for the total
resource amount of each type of customers for two different values of b.

Table 1 Types of customers and their distribution laws

Distribution laws

Type Probability Service time Resources

First p1 = 0.7 Gamma (0.5b, 0.5) Exponential (2)

Second p2 = 0.3 Gamma (1.5b, 1.5) Exponential (1)
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Table 2 Kolmogorov
distance

b 10 20 50 100 200

Δ1 0.136 0.072 0.035 0.024 0.017

Δ2 0.041 0.027 0.020 0.014 0.010

Δ 0.136 0.072 0.035 0.024 0.017
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Fig. 3 Distributions of the total resource amount for the first type of customers. (a) b = 20. (b)
b = 200
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Fig. 4 Distributions of the total resource amount for the second type of customers. (a) b = 20. (b)
b = 200

5 Conclusion

In this work we considered a queue with n customers types under the assumption
that arrival points correspond to a renewal process and each customer occupies a
random resource amount. At first we constructed the system of Kolmogorov differ-
ential equations, which in the general case cannot be solved analytically. Hence, we
obtained the approximations of probability distributions in case of infinitely growing
service time by asymptotic analysis method, and we noticed that the n-dimensional
probability distribution of the total resource amount is asymptotically Gaussian.
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Finally, by discrete-event simulation we tested the approximation reliability, by
considering the Kolmogorov distance as accuracy measure.
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