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Abstract: The effects of non-ionic Triton X-100 (TX) surfactant and Tetraethylorthosilicate binder agent for preparing the TiO2 

(TO) thin film were investigated. TO thin film was prepared using tetra chloride titanium as a precursor via an acid catalyzed sol-

gel process. The morphology and surface structure of the films were studied by scanning electron microscopy (SEM) and atomic 

force microscopy (AFM). The structure and surface of films obtained by a dip-coating technique were found to depend strongly on 

the use and type of additive molecules added. The results show that, the film from titania sol without various additives molecules 

consists of agglomerated titania particles and ill-defined surface, which may cause the surface to be non-uniform, whereas Titania 

/TX-100 (TO-TX) sols resulted in the homogeneous and crack-free TO anatase films. Thin film deposited on SiO2-coated glass 

substrate indicate a packed and dense structure of the TO film. Many fine pores with different sizes existed in the TiO2-SiO2 films 

(TO-SO). Dense structure with conformal coverage on SO is observed for TO film. A cross-sectional morphology of the thin films 

by one and six times of coating is investigated. It can be observed, grain size and thickness increase with increasing the number of 

coating times. It should be mentioned that film thickness for the one and six times of coating are 181nm and 205 nm respectively. 

Furthermore the photocatalytic decomposition of MCB for TO, TO-TX, TO-SO and TO-TX-SO thin films was measured as 13.2%, 

53.72%, 86.02% and 97.45%, respectively. The results indicated that SO and TX had a significant effect on the morphology and 

photocatalytic properties of TO thin film. 

 

Keywords: Thin film, Triton X100, Tetraethylorthosilicate, photocatalytic activity, Monochlorobenzene 

 

1. Introduction 

 

The photocatalytic properties of titanium oxide (TiO2) may result in a promising reactive technique for 

the removal of pollutants from air or water as self-cleaning surfaces and anti-algal coatings can be 

produced because of the biological and chemical stability, high photoactivity, low-toxicity and low cost of 

TiO2 [1-2]. The ability of TiO2 nanoparticles to destabilize cell membrane after in vitro exposure of cell 

lines has already been noted by some authors [3-5]. Nanosized TiO2 is known to disrupt cell membrane 

stability as a result of its photocatalytic properties [6]. Destabilization of the cell membrane is 

undoubtedly among the primary effects of nano-TiO2 and, therefore, suitable as a measure of the 

biological potential of such nanoparticles. Although the preparation of nano-TiO2 is well established, one 

problem still generally exists during production: commercial TiO2 usually consists of small particles 

while it is difficult and expensive to separate and recover these ultrafine particles from the suspension 
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after purification [7] especially when it coexists with multi-charged ions. For example, separation of the 

insoluble catalyst from the suspension is difficult because the suspended particles tend to aggregate 

especially at high concentration. In addition, application of suspended TiO2 (slurry) in purification system 

requires post-treatment for removal of the excessive turbidity of the treated samples, especially since 

there are recent concerns of TiO2 nanoparticle toxicity [8]. Filtration and precipitation are the most 

common post treatment processes for removal of the titania particles. The immobilization of the TiO2 in 

the form of a thin film not only provides an advantage over the drawbacks encountered with powder 

suspension, but could also endow the surface with photoinduced hydrophilicity [9]. Currently, the 

supporting technologies include preparing dense porous TiO2 films or coatings by different processes 

such as the sol-gel process [10], hydrothermal methods [11-13], reactive methods [14], sputtering [15], 

chemical vapor deposition [16] pulsed laser deposition [17] or fibers as a carrier medium. Among them, 

the relatively simple sol gel method is the most widely used technique due to the advantage of particles 

production in a relatively shorter processing time at lower temperatures [18]. In the sol gel process, there 

are different methods for sol deposition on the substrate such as spraying, electrophoresis, inject printing, 

dip coating and spin coating. Dip coating technique offers many advantages over other deposition 

techniques due to the use of very simple equipment. In addition, the stoichiometry and the high 

homogeneity of the final film can be controlled. In this method, the substrate to be coated is immersed in 

a liquid and then withdrawn at a well-defined speed under controlled temperature and atmospheric 

conditions [19]. However, controlling the synthesis and deposition is difficult, making it difficult to 

produce a thick crack free and homogeneous coating. In addition, the derived TiO2 films or coatings often 

have low reactive surface areas, low photocatalytic efficiency and high cost. A number of researchers 

have found ways to stabilize the anatase phase at high temperature and to optimize the photoactivity of 

titania by doping with different additives. Liu et al. also used the optimized Ti (OC4H9)4–P123–EtOH–

HCl system for the preparation of nano-crystalline TiO2 thin films [20]. Zhang et al. studied the effect of 

the molecular weight of ethylene glycol (PEG) and the molar ratio of the structure-directing agent in the 

sol–gel method [21], which is similar to our hydrothermally assisted sol–gel method by using P123 [22] 

and PEG [23] as templates. Cernigoj et al. utilized several commercially available, non-ionic surfactants 

(Brij 56, Pluronic F-127, and Triton X-100) with polyether chains of different lengths by applying them 

in the sol gel process with the titanium isopropoxide precursor to induce nanocrystallinity in the resulting 

inorganic films in an attempt to increase their photocatalytic activity for degradation of organic pollutants 

in waste water. In all the above cases, Ultra violet light and Visible light were used to activate TiO2 [24]. 

The mixed oxides Al2O3 /TiO2, ZrO2 /TiO2, SnO2 /TiO2 and SiO2 /TiO2 with different dosage rates and 

various preparation methods have been investigated and reported [25-28]. The most common way to 

produce SiO2/TiO2 materials is through a sol-gel process where the preparation of titania sol and silica sol 

is carried out separately and then they are mixed at various ratios to achieve the desired outcome [29-32] 

or they are prepared by direct formation. A second method is to introduce TiO2 into a presynthesized or 

commercial silica-containing material such as honeycomb ceramics [33], pillared clays [34], Y-zeolite 

[35], c-zeolite [36], MCM-41 [37], SiC [38], polymers [39] or ordered SiO2 materials in a post 

modification method. To obtain a high quality of TiO2 thin film used in photocatalysis processes for 

contaminant removal from air and water purification, it is necessary to investigate in detail the factors 

which may have important effects on the film properties [40]. Up to now, much work has been devoted to 

investigate the influence of different conditions on growth and structure of titania particles in the sols. For 

example it was found that complex agents (such as acetylacetone, diethanolamine and polyethylene 
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glycol) have different influences on the sols prepared in a sol gel dip coating process [41-45]. Other 

investigations have studied more factors such as the effect of calcination temperature which usually 

affects film structure [45-47] and adhesion strength between the films and the substrates [43, 46]. In this 

research, TiO2 thin film was deposited on the glass substrates using a dip coating technique. The 

morphology and photocatalytic properties of the thin film were investigated by addition of non-ionic 

(Triton X-100) surfactant and Tetraethylorthosilicate binder agent. Since these parameters affect films 

morphology leading to variation of photocatalytic activity, decomposition of monochlorobenzene was 

selected as a model reaction in order to evaluate photocatalytic activity of the films. 

 

2. Experimental details 

 

2.1. Preparation of titania sol 

 

For preparation of preliminary TiO2 sol, the following materials were used: Tetra chloride titanium 

(TiCl4, M=189.79 gmol-1, 99%, Merck ), Nitric Acid (HNO3, M=63 gmol-1 , 63%, Merck), Ammonia 

(NH3, M=17 gmol-1, 25%, Merck), polyoxyethylene isooctyl phenyl ether (Triton X-100, 99.5%, 

Merck), Ethanol (C2H5OH2 M=46 gmol-1, 99.5%, Merck ), Triethanolamine (TEA, N(C2H5OH)3, 

M=149.10 gmol-1,98%, Merck) and Tetraethyleorthosilicate (TEOS, Si(OC2H5)4, M=208.33 gmol-1, 

98%,Merck.)1000 ml of deionized water was added to 2 ml TiCl4 as starting material to form a 

suspension. Then, 45 ml of HNO3 ([H
+
]/[Ti

+
]=0.5) was added to 500 ml of the suspension, including 12 

mol of titanium and the suspension stirred for about 7 h. Subsequently, in order to produce a stable sol, 

this sol was placed in an 80 °C bath for 24 h. Therefore, a stable titanium oxide sol was formed. All of the 

above procedure for sol production was performed in the room temperature. The resulting sol is denoted 

as TO. 

 

2.2. Preparation a mixture of acid titania and TX100 

 

In order to prepare acid sol (pH=2), 10 ml preliminary titania sol described in the previous section was 

added to water (5 ml) and nitric acid (1 ml) , and they were stirred at room temperature for about 9 h 

while the sol was under reflux. The sol formed was dissolved in the mixture containing 35 ml of ethanol 

and 35 ml of water. Finally, three solutions of TO-TX were prepared separately by adding different 

amounts of triton X100 (1, 3 and 5 drops) as a surfactant. The resulting sol is denoted as TO-TX. 

 

2.3. Preparation of Silica film 

 

Silica sol was prepared from a 20ml tetraethylorthosilicate (TEOS, Aldrich) precursor, ethanol (Si/ EtOH 

= 0.15), HNO3 (HNO3/ Si= 0.265) and water (H2O/Si= 8.1). After two hours of mixing, the resulting 

solution was used for silica film deposition by the dip-coating technique with pulling speeds up to 5 cm 

min-1. The resulting film is denoted as SO. The sol was unstable and therefore, was always freshly 

prepared. All silica films were produced by a single dipping. The silica films on soda–lime glass were 

used as substrates for the preparation of thin films that will be described in next section. 
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2.4. Thin film preparation and coating process 

 

TO thin films were deposited at room temperature on soda lime glass by dip coating method (20ml of sol, 

dip- speed of 10 cm min-1). In the dip-coating method the substrate is slowly dipped into and withdrawn 

from a tank containing the sol, with a uniform velocity, in order to obtain a uniform coating. The dip-

coating process can be separated into five stages [48, 49]  

1- Immersion: the substrate is immersed in the solution of the coating material at a constant speed.  

2- Start-up: the substrate has remained inside the solution for a while and is starting to be pulled up.  

3- Deposition: the thin layer deposits itself on the substrate while it is pulled up. The withdrawing is 

carried out at a constant speed to avoid any jitters. The speed determines the thickness of the coating 

faster withdrawal gives thicker coating material.  

4- Evaporation: the solvent evaporates from the liquid, forming the thin layer. For volatile solvents, such 

as alcohols, evaporation starts already during the deposition step.  

5- Drainage: Excess liquid will drain from the surface.  

Prior to deposition the substrates were washed with detergent and then washed with oxidant solution 

composed of H2SO4 (96% v/v) and H2O2 (29.6% v/v) at 3:1 ratio for 30 minutes. After washing with 

oxidant solution, all the substrates were rinsed with deionized water. At first, 2 substrates (soda-lime 

glass) were immersed into the TO sol and TO-TX sol for 10 minutes separately. Furthermore, 2 

supporting soda–lime glass plate coated with SO (section 2.3) were immersed into the TO sol and TO-TX 

sol for 10 minutes. The films were naturally dried in the air and the coating operation was repeated again. 

The resulting films are denoted as TO, TO-TX, TO- SO and TO-TX-SO. The coated samples were then 

heat treated at 600 ºC for 3 h. furthermore, in order to select the optimum crystallization temperature of 

TiO2 film, TO films are calcined at 400 ºC and 600 ºC for 3h ,separately .  

The thickness of the films was increased by repeating the cycles from withdrawing to heating. This 

procedure carried out six times. According to the Guan method, the average thickness of the films is 

calculated by means of the weight increase of the films. According to the weight, square and density of 

the deposited films, the average thickness of each dipping cycle can be calculated [50, 51]. The average 

thickness of the film was estimated to be ~205 nm. 

 

2.5. Characterization of TiO2 thin films  

 

The crystalline structures of the resulting samples were assessed and characterized by X-ray 

diffractometer (D4-BRUKER and Cu-Kα radiation at 30kv and 20 mA). The chemical structure of the 

prepared thin film was examined using Fourier Transform Infrared Spectrophotometer (Bio-Rad FTS-165 

spectrometer) in the region of 4000 250cm-1. Spectra of 300 scans were recorded in room atmosphere 

under dry air sweeping. Morphological studies were carried out using a scanning electron microscope 

(SEM) PhilipseXLF30 model and Atomic Force Microscope (AFM, Shimadzu SPM-9500 J2 model. The 

UV-Vis diffuse reflectance spectra (DRS) of thin films were recorded by UV-Vis spectrophotometer 

(Shimadzu-2550). 

 

2.6. Photocatalytic experiments  

 

The photocatalytic activities of films under UV irradiation were evaluated by the decomposition rate of 

MCB (C6H6O) as a model organic compound. All the photocatalytic reactions were carried out in 

photochemical reactor equipped with 200W quartz lamp which had a maximum power output at 300 nm 

was used. Also the average intensity of the UV-light is about 3.5mWcm−2. 4 samples of thin film (TO, 

TO-TX, TO- SO and TO-TX-SO) were horizontally placed at the bottom of the testing cell containing 
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100 mL (100ppm) MCB solution separately. The solution was irradiated with a quartz lamp under 

ultrasonic stirring. After irradiation, the light absorbance of the MCB solution was measured using a UV-

Visible spectrophotometer at 261nm, which is the maximum absorption of MCB. 

 

 

3.  Results  

3.1 Assessment of crystalline phase 

Figure 1(a,b) show the X-ray diffraction pattern of TO film after firing at 400 ⌷C and 600⌷ C for 3 

hours. As can be seen from the figure 1a, TiO2 film is almost amorphous because no diffraction peaks 

assignable to its present [42]. The relative peak intensity of the TiO2 thin film is weaker than those of the 

TiO2 powder [52]. This result showed that the growth of the crystallites of the TiO2 thin films was not 

grown well as that of TiO2 powder [53]. As it is shown in fig1b an anatase phase and a quite good 

crystallization of the films were apparent at 600 °C. We found that the crystallized direction was different 

for calcination temperatures. In the diffraction pattern of thin film, only wide peak at 2⌷=25.116  

corresponding to (101) is observed [54]. It is strongly proposed that such a broad XRD pattern is due to 

poor crystallization and /or the small size of the TO particles. It should be noted that the crystallite size 

calculated by Scherrer's formula [55] was 10 nm.   

 

 

 

3.2. Mechanism of films formation (TO-TX and TO-SO)  

 

Triton X-100 was used as non-ionic surfactant. TX contains linear alkyl ether chains. At low 

concentration of TX, probably due to the formation of TO–TX complex, the repulsion between chains is 

increased leading to slight increase in free volume and further permeation. At higher concentrations of 

TX, the ether groups in linear alkyl chains of TX can form attraction and binding force between TO chain 

functional groups. The interaction between alkyl ether and TO chains diminishes the free volume of TO 

Figure 1: X-ray diffraction pattern of TiO2 thin film on soda lime glass after firing at: (a) 400 

°C and (b) 600 °C. 
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chains, resulting in permeation diminishment. In the presence of TX, the negative surface charge of the 

thin layer is decreased, probably due to the formation of a dense and compressed surface, and therefore, 

Donnan exclusion would be less effective (Fig2). 

 

 

 

Fig. 3(a-c) shows the light microscopy images of TO–TX film. As can be seen from the figure 3b, the 

dense and compressed layer is enhanced by adding TX surfactant concentration from 1 to 3 drops. 

However, with the increase of surfactant concentration to 5 drops, sol viscosity and film thickness 

increased which lead to destroy Uniformity of the film. As a result, the TX can clearly influences the TO 

thin layer and changes the morphology of thin layer. 

 

 

Furthermore, in the presence of water, ethoxy groups of the TEOS precursor are partially hydrolyzed according to 

the simplified reaction: 

4 2 2( ) ( )Si OR H O OR Si OH ROH         (1) 

Where R is an ethyl group, and thus OR an ethoxy group and ROH ethanol. This reaction describes equilibrium 

between the hydrolysis of ethoxy groups and the reverse reaction (reesterification). Then, the hydrolyzed groups can 

react by condensation to form [Si–O–Si] bridging bonds according to the following reactions: 

Figure 2: The mechanism of TiO2-TX100 film formation. 

Figure 3: The light microscopy images of TiO2 film: (a) 1 drop of TX100 and (b) 3 drop of TX100 and (c) 5 

drop of TX100. 
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  2 2 2 2 2( ) ( ) ( ) ( )OR Si OH OH Si OR OR Si O Si OR H O                 (2) 

2 2 2 2( ) ( ) ( ) ( )OR Si OH OR Si OR OR Si O Si OR ROH                (3) 

 

TiO2 crystallites are diluted in ethanol, ethoxy groups are probably fixed on their surface. Consequently, 

[– (O–Si) n–] chains diluted in the mixed sol can link on crystallites through a condensation reaction, 

taking place in the sol or during deposition in liquid phase, according to the simplified reaction (4): 

 Ti OR OH Si Ti O Si ROH                                       (4) 

 

Where [Ti–OR] is an ethoxy group at the TO crystallite surface and [OH–Si] a silanol group at the end of 

a [–(O–Si) n–] chain. This fixation mechanism is expected to efficiently stabilize silica chains within 

composite films, whatever the reactivity of the silica sol is. As Fig. 4(a ,b) shows FTIR spectra of TO 

films deposited on Soda lime glass and SO film respectively. Observed peaks at 1070, 950 and 460 cm−1 

indicate asymmetric stretching bands of [Si• • •O• • •Si] near 1070 cm−1, asymmetric stretching bands of 

[Ti• • •O• • •Si] around 950 cm−1 and stretching bands of [Ti• • •O] near 460 cm−1. The absorption band 

at about 950 cm−1 is associated with titanium in four fold coordination with oxygen in the SiO4 4− 

structure. This absorption band confirms the distribution of titanium atoms in [Si• • •O• • •Si] chains. The 

broad absorption peak appearing near 3400cm−1 is related to stretching vibrational aspect of [Ti• • •OH] 

bands, while the absorption peak at 1620 cm−1 represents [H• • •OH] (water) group. It should be 

mentioned that the intensities of absorption peaks near 1620 and 3400 cm−1 which appear due to 

existence of OH group, increased with increasing of silica amount. 

 

 
 

 

Figure 4: The FT-IR spectra of (a) TiO2 film and (b) TiO2-SiO2 film. 
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3.3. Surface morphological and topographical analysis  

3.3.1. SEM observations  

 

The surface morphology of the TO thin films in the presence and absence of TX and SO are shown in 

figure (5a-c). It is found that surface structure of the films is greatly dependent on the sols. As it can be 

seen in Fig. 5a, the film from the TO sol consists of agglomerated titania Particles and ill-defined surface, 

which may cause the surface to be non-uniform. As a result of agglomeration and non uniform surface, 

the parcticle size of this film increased and the surface area decreased which made that unsuitable for 

photocatalytic degradation of MCB. whereas TO films made with surfactant addition in the sol exhibit a 

rougher, but still moderately flat texture and well-structured granular nano-surface with clear interstices 

between the particles /aggregates (Fig. 5b). The TO film deposited on the SO-Coated glass substrate has 

uniform spherical and narrowly- dispersed particles (Fig 5c). As it can be seen, the accumulation of 

particles in Fig. 5c indicates packed and dense structure of the TO film. Dense structure with conformal 

coverage on SO is observed for TO film, whereas in the case of TO films deposited on the bare glass 

substrate, is not uniform and aggregated TO particles distribute randomly on the surface of soda lime 

glass. Also, there are many cracks on its surface (Fig. 5a). 

 

 
 

 

A cross-sectional morphology of the thin films by one and six times of coating is shown in Fig. 6(a, b). It 

can be observed, the number of coating times influences thickness and grain size. Indeed, grain size and 

thickness increase with increasing the number of coating times [56, 57]. It should be mentioned that film 

thickness for the one and six times of coating are 181 and 205 nm respectively. 

 

Figure 5: The SEM patterns of the surface morphology of: (a) TiO2 film (b) TiO2-TX100 film (c) and TiO2-SiO2 

film. 

 

Figure 6: The Cross-sectional micrograph for TiO2 thin film :(a) one time of coating and  

(b) six times of coating 
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3.3.2. AFM analysis  

 

AFM was used to characterize the surface morphology, particle size, and surface roughness of pure and 

composite films. As it can be seen from the 2D topographic image in Fig. 7a, the surface of the film 

deposited from the TO sol is composed of agglomerated titania particles while distribution of the particles 

on the surface is non-uniform. Furthermore, 3D topographic image also shows the roughness of the 

surface, which is about 58 nm (Fig.8a). 

 

 
 

 

However, the film from the TX sol is dense and its surface is smooth and uniform, as shown in the 2D 

topographic image in Fig. 7b. In this case, the roughness profile of the film is 10 nm (Fig.8b). Moreover, 

in the case of using TX, accumulation of nanoparticles on the thin films is high, while in the absence of 

TX it is rather low. These results are in good agreement with the above SEM observation in Fig.5. 

According to figure7c, accumulation of nanoparticles on the surface TO-SO is high and it is clear that the 

film is uniform and substrate surface is well covered by fine spherical or elliptical grains. While in the 

film deposited on the bare glass substrate, accumulation of nanoparticles is low (Fig7a). 3D topographic 

image also shows the roughness of the surface to be about 7.72 nm (Fig8c). The root mean square (rms) 

surface roughness was determined by using the software which was provided with the microscope.  

 

 

 

Figure 7: The AFM micrograph (2D surface analysis) of the thin films: (a) TiO2 (b) TiO2-TX100 and (c) TiO2-

SiO2. 

 

Figure 8: The AFM micrograph (3D surface analysis) of thin films: (a) TiO2 (b) TiO2-TX100 and (c) TiO2-SiO2. 
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3.4. Diffuses reflection spectrum (DRS)  

 

It is necessary to mention that during annealing of films at 600 ºC, it is possible that some ions (sodium 

or calcium) penetrated from glass substrate to the thin films and the effect on film properties. To resolve 

this problem, before thin film preparation, a thin layer of SO was deposited on glass substrates. This 

layer was acted as barrier layer. UV-Vis transmittance spectra of TO films deposited on bare and SO-

Coated glass substrates are shown in Fig 9. 

 

 
 

 

 

It is clearly seen that TO film deposited on bare glass produced a red-shift of the absorption edge of the 

film. The shift has been described to differences in the size of the crystallites. The slightly larger anatase 

grains of films deposited on bare glass substrates may be a consequence of the higher concentration of 

Na+ ions diffused from the substrate. Na+ ions have been found to act as a flux material for crystal 

growth. It has been also suggested that diffusion of sodium ions from the substrate during thermal 

treatment could stimulate the recrystallization of the anatase to rutile .Negative solvatochromism 

corresponds to hypsochromic shift (blue shift) with increasing solvent polarity. Polarity of thin film is 

related to their chemical structure. Films resulting from interaction of TEOS with TO in film deposited 

on the SO-Coated glass substrates in comparison to TO films deposited on the bare glass substrate 

exhibit higher polarity effect. The polarity of films of TO- SO is due to the Ti-O-Si bands. Moreover, 

addition of TEOS decreases crystal size and crystallinity in TO films particles by inhibiting the growth 

of particles in the crystalline network. The reduced particle size leads to increased light scattering (an 

increase in reflectance) and, hence, would result in a decrease in the absorbance .Furthermore, partial 

hypsochromic shifts indicate the formation of bands between metal (Ti) and binder agent (TEOS) and 

increasing their polarity. 

 

4. Photocatalytic activity  

 

As mentioned in section (2.6), in order to determine was examined while the pH was set on 2, 6 and 9. 

The obtained results showed that the 1.25 g lit-1 of TO-TX- SO thin films at pH=2 had the best 

conditions for degradation of MCB at room temperature (below 40ºC) under UV light. Figure (10a-d) 

shows abatement performances of TO, TO-TX, TO- SO and TO-TX-SO thin films on MCB degradation 

under UV light. As can be seen from the figures, the maximum absorption peak of MCB at λ=207 nm 

Figure 9: The diffuse reflection spectra of TiO2 films deposited on bare and SiO2-Coated glass 

substrates. 
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gradually decreases during the illumination. The illumination time for complete degradation doubles if 

TO-TX-SO film is compared with TO-TX film, but the difference between TO-TX film and TO- SO film 

is quite small. After 90 min of illumination, the MCB concentration in case of the TO-TX film is only 

slightly higher than the TO- SO film. The TO film behave different, the degradation is much slower. 

Compared with the TO-TX-SO, it takes about additional 2.5 h until complete degradation of the dye 

according to UV–vis spectroscopy. As could be observed, degradation reaction on TO-TX- SO performs 

in a shorter time (i.e. 90 min) in comparison with TO film (i.e. 240 min) , TO- TX film (i.e. 180 min) and 

TO- SO (i.e. 120 min). Although the absorbance peak area of MCB is decreased for all samples, the 

largest change arises when TO-TX- SO is used as a photocatalyst. In the case of TO-TX- SO film, It was 

indicated that when the photocatalytic degradation time reached 30 min, the photocatalytic degradation 

rates reached more than 60%; as the degradation time increased to 90 min, the photocatalytic degradation 

rates approached 100%. 

 

 
 

 

 

The quantitative analysis of the MCB concentration change after the irradiation of uv light is shown in 

Table (1). 

 

 

Photocatalyst Degradation (%) 

TiO2=TO 13.2 

TiO2-TX100=TO-TX 53.72 

TiO2-SiO2=TO-SO 86.02 

TiO2-TX100-

SiO2=TO-TX-SO 

97.45 

Figure 10: Abatement performance of films on MCB degradation under UV light (a) TiO2 film (b) 

TiO2-TX100 film (c) TiO2- SiO2 films (d) TiO2-TX100 - SiO2. 

 

Table 1: Degradation of MCB after irradiation of visible light for 90 min with different photocatalysts. 
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As could be seen, degradation percentage of MCB after the irradiation of uv light for 90 min are 13.2%, 

53.72%, 86.02 and 97.45% for TO, TO-TX, TO-SO and TO-TX-SO thin films, respectively. It implies 

that the photocatalytic property of TiO2 under the uv light improves when TO is react with SO. In the 

case of TO-TX- SO film, however, a certain amount of SO in the TO-TX film can lead to an increase of 

activity in comparison with pure TO or TO-TX films. It should be mentioned that partial changes 

observed in the absorption intensity of MCB in initial times, are due to the adsorption of MCB on the 

surface of TO. It is also observed that by using TO-TX- SO photocatalyst, absorption peaks of MCB 

have been diminished and disappeared after 90 min, whereas in the case of TO film the absorption peaks 

diminished after 240 minute. 

 

Figure (11) shows the GC analysis of MCB extracted by CH2Cl2 and indicates that by using TO-TX-SO 

under UV light, there are not any intermediates or byproducts after 90 min of irradiation. 

 

 
 

 

 

 

 

 

Figure 11: The GC analysis of MCB degradation by TiO2-TX100 - SiO2 films under UV light in 

different times (0, 30 & 90 min). 
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Concentration changes in photocatalytic degradation of MCB by using TO and TO-TX- SO films are 

shown in Figures (12) and (13). In these figures variations of (C/C0) and ln (C0 /C) are presented versus 

time where C0 and C are concentrations of the primal and remaining MCB, respectively. It was found 

that all curves were linear and accordingly the kinetic data of the MCB photocatalytic photodegradation 

might fit well to the first-order reaction kinetic model. The rate constants of the apparent first-order 

reactions rate were estimated from the slopes of the curves. It was demonstrated that the apparent rate 

constant values of the MCB photocatalytic degradation were 0.019 (min-1) and 0.045 (min-1) for TO 

and TO-TX- SO photocatalysts, respectively. 

 

 
 

 

 

 

 
 

 

 

 

Figure 12: Photocatalytic degradation kinetics of MCB using TiO2 and TiO2-TX100 - SiO2 

(photocatalysts loading, 1.25 g lit-1; initial MBC concentration 100 mg lit-1; pH=2). 

Figure 13: The ln(C0/C) vs. time curves of MCB photocatalytic degradation using TiO2 and TiO2-TX100 - SiO2 

(photocatalysts loading, 1.25 g lit-1; initial MBC concentration 100 mg lit-1; pH=2). 



258                                      Hamideh Jahromi : Effects of Tritonx100 and Tetraethylorthosilicate... 

 

5.    Conclusions  

It can be concluded that the various additive molecules TX as a surfactant and TEOS as binder agent are 

the ways to adjust a nano-porous structure of titana films. The film from the TO sol consists of 

agglomerated titania particles and ill-defined surface, which may cause the surface to be non-uniform, 

whereas TO films made with surfactant addition in the sol exhibit a rougher, but still moderately flat 

texture and well-structured granular nanosurface with clear interstices between the particles/aggregates. In 

fact, the TEOS has an important role to prevent severe cracks on the films during the annealing process at 

a high temperature. Dense structure with conformal coverage on SO is observed for TO film, whereas in 

the case of TO films deposited on the bare glass substrate, is not uniform and aggregated TO particles 

distribute randomly on the surface of soda lime glass. Furthermore, there are many cracks on its surface. 

Addition of TEOS decreases crystal size and crystallinity in TO films particles by inhibiting the growth of 

particles in the crystalline network. The reduced particle size leads to increased light scattering (an 

increase in reflectance) and, hence, would result in a decrease in the absorbance .Furthermore, partial 

hypsochromic shifts indicate the formation of bands between metal (Ti) and binder agent (TEOS) and 

increasing their polarity. It can be observed, the number of coating times influences thickness and grain 

size. Indeed, grain size and thickness increase with increasing the number of coating times. It implies that 

the photocatalytic property of TO under the uv light improves when TO is react with SO. In the case of 

TO-TX- SO film, however, a certain amount of SO in the TO-TX film can lead to an increase of activity 

in comparison with pure TO or TO-TX films. 
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