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ABSTRACT
The abstract classification system Nature in Norway (NiN) has detailed ecological definitions of a
high number of ecosystem units, but its applicability in practical vegetation mapping is
unknown because it was not designed with a specific mapping method in mind. To investigate
this further, two methods for mapping – 3D aerial photographic interpretation of colour infrared
photos and field survey – were used to map comparable neighbouring sites of 1 km2 in Hvaler
Municipality, south-eastern Norway. The classification accuracy of each method was evaluated
using a consensus classification of 160 randomly distributed plots within the study sites. The
results showed an overall classification accuracy of 62.5% for 3D aerial photographic
interpretation and 82.5% for field survey. However, the accuracy varied for the ecosystem units
mapped. The classification accuracy of ecosystem units in acidic, dry and open terrain was
similar for both methods, whereas classification accuracy of calcareous units was highest using
field survey. The mapping progress using 3D aerial photographic interpretation was more than
two times faster than that of field survey. Based on the results, the authors recommend a
method combining 3D aerial photographic interpretation and field survey to achieve effectively
accurate mapping in practical applications of the NiN system.
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Introduction

Land cover maps provide spatially explicit information
about the physical cover of the Earth. As the human
population grows and the climate is changing, pressure
on nature is increasing (Vitousek et al. 1997; Erb et al.
2017), leading to degradation and loss of habitats and
ecosystem services (Foley et al. 2005). Land cover maps
provide information on relative frequencies of different
land cover classes and their spatial location, along with
properties related to the state of the land cover, thereby
forming the basis for knowledge-based nature manage-
ment and monitoring (Bunce et al. 2008).

A wide range of land cover classification systems for
naturemanagement exists (Ichter et al. 2014). For example,

the EcoVeg approach has several hierarchical classification
levels, from local to global scales (Faber-Langendoen et al.
2014). The European Union has developed several classifi-
cation systemswith different levels of detail that are used for
different purposes, including the LUCAS survey and
EUNIS habitat classification (European Commission
1992; 2015). Also, most countries have several national
classification systems that have been developed and
improved according to their societies’need for spatial infor-
mation (Bryn et al. 2010). Some classification systems have
been developed directly for practical mapping (e.g. Rekdal
& Larsson 2005), while others are theoretical constructions
generated without adapting the classes according to practi-
cal mapping considerations such as available material and
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methods but rather to describe a common framework
(Påhlsson 1998). The latter are often made with the inten-
tion of describing land cover in as much detail as possible
based on phytosociology or ecological gradient theory
(Whittaker 1967). An example is the recently developed
classification systemNature inNorway,NiN2.0 (Halvorsen
et al. 2015). The target of NiN is ecosystem units, which
comprise species composition as well as environmental fac-
tors such as humidity and nutrient composition. The sys-
tem is rooted in gradient theory (Whittaker 1967), and
the number of ecosystem units is calculated from species
turnover along complex gradients compiled in accordance
with available Norwegian research (Halvorsen et al. 2015).

However, the use of a theoretically sound classifi-
cation system does not per se ensure a smooth and effec-
tive production of maps that are reliable and consistent
(Ullerud et al. 2018). A prerequisite for consistent map-
ping is a detailed description and documentation of the
mapping system. Furthermore, the quality of the result-
ing map depends on the mapping method and material
by which the land cover is mapped. If the classification
system is predefined, the mapping method should be
chosen based on how the properties and qualities of
the classification system can be mapped (Käyhkö &
Skånes 2006; Takács & Molnár 2009).

Land cover mapping methods vary greatly, from field
surveys to remote sensing methods such as automatic
classifications of satellite or aerial imagery, as well as aerial
photographic interpretation. All mapping methods
depend on available material, as well as hardware, soft-
ware, knowledge, and experience (Takács & Molnár
2009). Coarse-scale mapping of large areas is often
based on automated image processing, frequently

employing satellite images (Wyatt 2000; Walker et al.
2005; Xie et al. 2008; Hussain et al. 2013; Fassnacht
et al. 2016). For detailed mapping of smaller areas,
especially for classes defined by specific species or species
groups, manual mapping methods such as visual 3D aerial
photographic interpretation (API) and field survey (here-
after abbreviated as FS) are common (Nämnden för sko-
glig fjärranalys 1993; Dramstad et al. 2002; Rekdal &
Larsson 2005; Ihse 2007; Andersson 2010; Guðjónsson
2010; Morgan et al. 2010; Ståhl et al. 2011; Janssen et al.
2017). According to the review by Fassnacht et al.
(2016), challenges with remote sensing of land cover
classes defined by different tree species still exist and
therefore most inventories are still field-based.

API, in its most evolved form, is mapping performed
using 3D photogrammetric computer systems, with
trained interpreters. Classification and delineation of
polygons is carried out, typically in a GIS environment
linked to a photogrammetric system where a database
is superimposed in the 3D window, allowing for a seam-
less data capture (Skånes et al. 2007). Colour, texture,
topographic position, vegetation density, altitude, and
object form are amongst the criteria used to recognize
ecosystem units in API (Ihse 2007). Colour infrared
(CIR) photographs are most commonly used due to
their enhanced information content on vegetation
qualities (Ihse & Wastenson 1975; Ihse 1978; 1995;
2007; Solheim 1978; Ihse & Lindahl 2000).

FS are based on in situ observations of physiognomic
structures, characteristic species and topographic vari-
ation during fieldwork. Orthophotos and GPS are com-
monly used to aid classification, location, and
delineation during FS (Rodwell 2006). Although both

Table 1. Aerial photographic interpretation and field survey by parameters most often used to define an applicable method for a given
project
Defining parameter API (aerial photographic interpretation) FS (field survey)

Purpose of mapping (end users’ needs) Overview of land cover content or detailed knowledge of local
area, monitoring of land cover distribution and changes

Detailed knowledge of species distribution
and land cover state of local area

Available classification systems (ecological
resolution and information complexity)

Typically coarser systems that focus on spectral properties, vertical
structure and texture indirectly assessing species composition

Detailed systems with focus on indicator
species and species composition

Spatial resolution (the intended map scale
and minimum mapping area, mma)

Coarser mapping (scales 1:5000–1:50,000, mma from 0.01–4 ha) Detailed mapping (scales 1:500–1:25,000,
mma from 0.0001–2 ha)

Available economic resources for mapping
(budget)

Small budget (given available photographs and equipment) or
large area

Large budget or small area

The time schedule versus size of the area
intended for mapping

Fast mapping progress Slow mapping progress

Human resources and competence Experience of API and geographic information system (GIS)
methods, good computer skills, and basic photogrammetry skills
Knowledge of land cover, land use, and vegetation in region
Knowledge of species ecology improves interpretation

Experience of field survey methods
Knowledge of species, ecology, edaphic
conditions, and land use in the study area

Limiting factors of the study area (context-
dependent variation)

Shadow effects in steep areas
Tree-coverage, mosaic features

Accessibility, infrastructure

Available technical solutions and material
(equipment, software and material)

Aerial photographs
3D photogrammetric computer station, digitizing software

Orthophotos in GIS on a field computer or
printed orthophotos and digitizing
software

Scientific point of departure Geosciences, resource management, and planning Biosciences, nature management and
conservation
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API andFS can be used for detailedmapping, themethods
are often applied for different purposes (Table 1).

In 2015 the Norwegian parliament, Storting, passed
an Act specifying that the classification system NiN
should be used in all publicly financed, detailed, land
cover mapping (Meld. St. 14 (2015–2016). The NiN sys-
tem defines ecosystem units based on species turnover
along ecological complex gradients (Halvorsen et al.
2015). The system therefore implies a high focus on
field-layer and bottom-layer indicator species and com-
position of vascular plants, lichens and bryophytes. As
a consequence, it has been taken for granted that the
best mapping method is FS. However, to our knowledge,
no research has focused on the applicability of API for
different aspects of NiN mapping.

The aim of the study on which this article is based was
to compare the success of two common mapping
methods in implementing Nature in Norway, NiN 2.0,
a theoretically constructed classification system. The
two methods were field survey (FS) and 3D aerial photo-
graphic interpretation (API). Both methods have been
implemented at a mapping scale and generalization
scale of 1:5,000. Success was measured by the accuracy
of the classification (producer’s accuracy), defined as
the degree to which the land cover of a map agreed or
corresponded with a reference land cover classification.

The study was designed to answer the following
questions:

. Which ecosystem units are classified accurately by
using FS and by using API?

. What characterizes the ecosystem units that either are
or are not classified accurately by either method?

. What is the optimal method for land cover mapping
of ecosystem units based on the NiN system when
relating classification accuracy to resources spent on
mapping?

Materials and methods

Study area

The study area was situated in south-eastern Norway,
on two islands in Hvaler Municipality, Østfold County
(Fig. 1). The area was within the boreonemoral zone
and in a slightly oceanic vegetation section (Moen
1999; Bakkestuen et al. 2008), with an elevation in
the range 0–72 m a.s.l. The bedrock consists of acidic
granite. The landscape is dominated by rounded hills
with thin soil coverage, broken up by abrupt fissure
valleys formed in weaker lines of the bedrock (Eriksen
et al. 2019). The valleys are covered with fine-grained
marine sediments containing remains of calcareous
shells (NGU n.d.). This gives a characteristic landscape

with large areas of bare rock and sparse trees, inter-
rupted by narrow valleys with productive forests.

The vegetation in the study area is structured partly by
natural processes and partly by cultural influence (Eriksen
et al. 2019). Scattered and shallow soils, exposure to sea-
water and strong winds have generated large open areas.
Bare rock is often found in a mosaic with a thin soil
layer dominated by heather (Calluna vulgaris). In convex
land forms with slightly deeper soils, though still exposed
to drought, Scots pine (Pinus sylvestris) dominates the
sparse tree layer (Eriksen et al. 2019). Due to poor drainage,
small patches of wetland dominated by bog myrtle (Myrica
gale) occur in local depressions in the otherwise convex
bedrock. Most of fertile land was utilized for agriculture
during the 1850–1930 population peak but most agricul-
tural areas were later abandoned, allowing spontaneous
regrowth of forest (Eriksen et al. 2019).

Currently, Norway spruce (Picea abies) dominates the
valley forests, with patches of ash (Fraxinus excelsior),
pedunculate oak (Quercus robur), hazel (Corylus avel-
lana), and aspen (Populus tremula). Grey alder (Alnus
incana) dominates recently abandoned land, while
alder (Alnus glutinosa) occurs in wet depressions. The
flora varies with level of basicity, from bilberry (Vacci-
nium myrtillus) and red-stemmed feather moss (Pleuro-
zium schreberi) in acidic areas to basophilic herbs such as
dropwort (Filipendula vulgaris) and yellow bedstraw
(Galium verum) in calcareous areas.

Within the study area, four rectangular study sites
were selected, each measuring 1 × 0.5 km and matching
the standard Norwegian 0.5 km statistical grid (Strand
& Bloch 2009). Sites API1 and API2 (centre coordi-
nates 6557250 and 265000/263500 WGS 1984 UTM
Zone 32N, respectively) were mapped by aerial photo-
graphic interpretation. Sites FS1 and FS2 (centre coor-
dinates 6556250 and 263000/266000 WGS 1984 UTM
Zone 32N, respectively) were mapped by field survey
(Fig. 1). A topographic map (AR5) (Tenge 2016) on
a scale of 1:5000, depicting land cover in 11 classes,
was used to select study sites with similar land cover
composition. The sites were located within a 4 ×
1.5 km rectangle to minimize natural variation between
the sites. In order to avoid large parts of the study area
consisting of houses and roads, densely populated areas
were avoided.

Classification system

The land cover classification implemented in the study
followed NiN version 2.0 (Halvorsen et al. 2015;
Ullerud et al. 2018; Eriksen et al. 2019). The NiN sys-
tem divides terrestrial Norway into 59 major ecosystem
types and 444 basic ecosystem types. The system has
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been adapted for mapping at different geographical
scales by aggregating basic types into ecosystem units
and by providing mapping rules for each scale in a
hierarchical system (Bryn & Halvorsen 2015). At the
lowest hierarchical level, the basic ecosystem types are
applied for mapping at a scale of 1:500, whereas for
mapping at a scale of 1:5000 the basic types are aggre-
gated into 277 ecosystem units. Of these, 41 NiN eco-
system units are defined by other characteristics than
species composition, such as land use or properties of
applied surface materials. The ecosystem unit defines
the polygons but a number of supplementary

registrations can be added. Examples of supplementary
registrations include tree coverage, occurrence of inva-
sive species and a variety of management regimes (Hal-
vorsen et al. 2015).

Mapping methods

The four study sites (Fig. 1) were all mapped following
the rules and units for mapping at 1:5000 scale (Bryn
& Halvorsen 2015). Two sites were mapped by 3D aerial
photographic interpretation (API), while the other two
sites were mapped by field survey (FS).

Fig. 1. Study area with four rectangular study sites on Hvaler Municipality, south-east Norway (Maps from Geonorge (N2000 maps and
AR5 area cover), WGS 1984 UTM Zone 32N, rotation -5.1 degrees)
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All mapping was carried out by the first author. The
most important NiN standard guidelines for mapping
were followed for both methods. The minimummapping
area (mma) was 250 m2 for all ecosystem units. When
two ecosystem units occurred intermixed, with patch
sizes below 250 m2, both ecosystem units were registered
as parts of a mosaic polygon.

For aerial photographic interpretation, both classifi-
cation and delineation were done in June 2015. Digital
CIR aerial photographs with 0.2 m resolution acquired
on 5 August 2011 (Appendix 1) were used with 3D-
vision technology and photogrammetric software Sum-
mit Evolution TM version 7.5 (DAT/EM Systems Inter-
national® connected) to ArcMap 10.2.2 (Esri, 2014).

Before API was done, calibration of classification and
delineation was done in a neighbouring area (Svarteber-
get in Hvaler Municipality) mapped with FS by others in
2010 (Halvorsen et al. 2011). To optimize systematic API
of details not directly visible in the photographs, specific
aerial photo characteristics, such as colour composition,
vertical structure, texture, and terrain position were
denoted and described for all ecosystem units present
on the maps. The characteristics were used to describe
proxies enabling API assessment of all ecosystem units,
including units defined by species composition. Terrain
form was used as a proxy to determine risk of severe
drought stress, while terrain position was used to indi-
cate level of soil nutrients. As the bedrock of the area
is mainly acidic and weathers slowly, forests with low
crown coverage and situated at higher terrain with shal-
low soils were interpreted as low-productive and acidic.
Due to the presence of marine sediments, grasslands
and forests with high crown coverage on valley floors
were interpreted as productive and calcareous from
their position in the terrain.

After sites API1 and API2 were mapped, one day was
spent in field at the adjacent test sites. Some classifications
were corrected based on field observations. The time spent
actively interpreting the aerial photographs and producing
the maps was recorded and no post-production work was
needed. The time needed to organize the interpretation
environment and combine characteristics into ecosystem
units was not recorded, as this was considered methodo-
logical development and the time spent would not have
been representative of routine work.

The field survey included mapping in the field fol-
lowed by digitization of the maps. Classification and deli-
neation on orthophotos identical to those acquired for
API, printed at a scale of 1:2500 with a 15.8 m grid,
were conducted in situ in July and August 2015. Knowl-
edge of the ecosystem units in the study area was based
on the same test day as for the API method. Ecosystem
units were classified based mainly on field-layer and

bottom-layer plant species composition. Delineation
was based on a combination of characteristics in ortho-
photos and field observations of the patch borders. A
handheld GPS (Garmin eTrex30) was used to confirm
geographical position. The progress in field depended
on terrain and vegetation. Subsequently, the orthopho-
tos, with delineated polygons, were scanned and manu-
ally digitized using Q-GIS (Version 2.12). The time
spent actively mapping in the field was recorded and
the transport between the study sites was included in
the registered time. Time spent digitizing the maps
after fieldwork was not included as currently most field
surveys are carried out using digital platforms.

Evaluation dataset

An evaluation dataset of ecosystem units for 40 plots for
each study site (160 plots in total) was gathered in situ
in June 2016 by a team of surveyors. For each site, 20
plots were mapped individually by six surveyors. For
these plots, the ecosystem unit that was registered by
the highest number of surveyors was included in the
evaluation dataset. In cases when several ecosystem
units had the same number of registrations, the unit regis-
tered by the most experienced surveyor was included. A
further 20 plots for each site were mapped by consensus
among 11 surveyors and the consensus ecosystem unit
was registered. Plot registration followed NiN, with the
same minimum mapping area (250 m2). The plots were
identified by points, which were expanded by the sur-
veyors to plots of uniform nature and larger than the
minimum mapping area. The minimum size ensured
that ecosystem units appearing in small patches would
not dominate the evaluation dataset. To ensure represent-
ability, the evaluation plots were distributed randomly
withinfive different types of terrain as defined by topogra-
phy. For each plot, the surveyors also noted the ecosystem
unit at a given point, without enforcing a minimummap-
ping area. The applicability of plot data was compared
with the applicability of the point data for evaluation.

Analysis of results

All spatial analyses were performed using ArcMap 10.3.1
(Esri, 2015). The ecosystem units present in each map
were counted and land cover statistics for each mapping
method were calculated. Landscape-level metrics were
calculated using FragStats Version 4.2.1.603 to explore
and understand the differences between the maps
made by different methods (Table 2).

The plot data were used to evaluate the classification
accuracy within and between ecosystem units, as well
as within and between maps and mapping methods.
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As the plots were randomly distributed, several evalu-
ation plots could be located within one polygon, while
other polygons did not contain any plots. The position
of the plots and information about the ecosystem type
in each plot was used to determine the number of map
polygons and type of ecosystem units that could be eval-
uated. The ecosystem unit registered for the plot was
compared with the ecosystem unit on the map at the
same spatial location. After comparison, the plots were
partitioned into three categories: ‘match’, ‘match with
small delineation variation’ and ‘different classification’
(Table 3). The percentage of plots in the different cat-
egories was calculated. Classification accuracy was quan-
tified as the sum of the two match categories. Producer’s
accuracy above 80% was considered as ‘high’, in line with
The Nature Conservancy & Environmental Systems
Research Institute (1994), Skånes et al. (2007) and
Robertson & Grieve (2010).

For plots classified as different, the ecological distance
between themap and plot unit was estimated. The ecologi-
cal distance quantifies the theoretical magnitude of devi-
ation between the recorded ecosystem units (Eriksen
et al. 2019). Since ecosystem units within the NiN system
are separatedbasedon species turnover alongdefined com-
plex gradients, the ecological distance between units can be
estimated as steps along the same gradients. Hence, a com-
parison of positions along the gradients indicates the eco-
logical distance between the unit in the plot and the unit

on the map (Fig. 2). The ecosystem units for forest in
NiN 2.0 (i.e. those not influenced by spring water) are
defined by the gradients ‘Risk of severe drought’ and ‘Basi-
city’. There are many different gradients in the NiN system
applicable for differentmain types, but the aforementioned
two are among the most common gradients.

Figure 2 shows two examples of ‘different classifi-
cation’ for forest. Plot 1 was classified as Sparse low-
herb forest, while the map at the same geographical
location had a polygon classified as Heather-bilberry for-
est. These types on forest are one step apart on each gra-
dient and therefore the ecological distance between the
plot and the map is two steps. Plot 2 was classified as
Lichen forest, while the map at the same geographical
location had a polygon classified as Calcareous low-
herb heather-bilberry forest. These types are three steps
apart on the gradient Basicity and two steps apart on
the gradient Risk of severe drought, thus the ecological
distance between the plot and the map is five steps.

To detect what characterizes ecosystem units mapped
accurately by the two methods, the units were grouped
according to basicity and agricultural management.
Both groups were binary and the classification accuracy
was calculated for each group (Table 4).

The total number of hours spent making each map
was recorded and the total number of hours for each
mapping method was summarized. The number of accu-
rate classifications was divided by the number of hours
used for making the maps to quantify accuracy relative
to the resources invested in the mapping.

Results

Map statistics

In the two sites mapped by API, 27 ecosystem units were
registered. In the two sites mapped by FS, 34 units were
registered (Fig. 3) (Supplementary Appendix 2; for unit
names, see Supplementary Appendix 3). We selected
areas that resembled each other in composition of area
cover, to enable comparison of different methods. The
total unit count for all four sites was 40. Of these, 25
were recorded in both API sites and FS sites.

Table 2. FragStats metrics used to describe differences between the vegetation maps, and the meaning of each metric
Metric (FragStats code) Explanation

Number of polygons (NP) Count of number of polygons
Edge density (ED) Metres of edge per hectare (m/ha)
Mean polygon area (A_MN) Mean polygon size (ha)
Median polygon area (A_MD) Median polygon size (ha)
Standard deviation of area (A_SD) Standard deviation of polygon area (ha)
Area of largest polygon (LPI) Percentage of map area covered by the largest polygon in each map
Connectance index, threshold distance set to
10 m (CONNECT)

Functional connection on a scale from 0 to 100, where 100 means that all patches are connected

Shannon’s diversity index (SHDI) Diversity of ecosystem units quantified by the probability of encountering new units in the map, recorded on a
scale from 0 to infinite. The probability of encountering new ecosystem units increases with larger numbers.

Table 3. Criteria used for partitioning plot and map relations into
three categories
Category Criteria

Match Plots where the
. map and the plot had corresponding

ecosystem units
. primary ecosystem unit in a mosaic polygon

matched
. mosaics matched but the order of

ecosystem units was switched
Match with small
delineation variation

. plots closer than 5m to delineation and that
matched the ecosystem unit on the other
side of the polygon border

. plots that matched with a secondary
ecosystem unit in a mosaic

Different classification Plots with different classification (DC) than
given by the polygon

6 H.A. Ullerud et al.



The FragStats results show that the largest polygons
were found in the API sites (Table 5). The maps for
these sites had fewer polygons compared with the maps
for the FS sites and hence fewer metres of edge and larger
mean polygon size. The median polygon size was 0.11 ha
for API and 0.09 ha for FS, while the standard deviation of
polygon size was 0.96 for API maps and 0.52 for FS maps.
The Shannon diversity index value was 1.86 in the FS sites
and 1.73 in the API sites.

Three ecosystem units made up 81.2% versus 75.3%
of the area of the API and FS sites respectively:

Drought-prone acidic rock (45.0% versus 29.5%),
Heather forest (23.5% versus 31.5%) and Heather-bil-
berry forest (12.7% versus 14.3%). No other ecosystem
units covered more than 2% of the mapped area in
both sites mapped by API and FS (Table 6).

Evaluation of maps

The 160 evaluation plots covered a total of 18 ecosystem
units, of which 14 units were found in the API sites and
12 in the FS sites (Table 6). Eight ecosystem units were
represented by at least one plot in both the API sites
and the FS sites. In the API sites, three ecosystem units
were registered in plots without being present on the
map, and one further unit was only present as the sec-
ondary unit in mosaic polygons. In the FS sites, all eco-
system units registered in plots were present as primary
units on the maps. The three most frequent ecosystem
units in the evaluation plots were also the most frequent
on the maps: Heather forest (17.5%), Drought-prone
acidic rock (12.5%) and Heather-bilberry forest (10%).
In addition, Open acidic shallow-soil heath, Bilberry for-
est and Acidic wetland forest were represented by at least
three plots in either API sites or FS sites.

The overall classification accuracy was 62.5% for API
and 82.5% for FS (Fig. 4). However, the accuracy varied
from 0% to 100% for the six ecosystem units that were
evaluated by three or more plots for both methods.
Both methods included comparisons of plots and maps
(producer’s accuracy) of 100% for the most common
ecosystem unit, Drought-prone acidic rock. The second
most common type, Heather forest, had an accuracy of
81% for API and 100% for FS (Table 6). There was
greater variation in less common units, indicating
lower mapping robustness with increasing rarity. The
average ecological distance for different classifications
was 1.37 for API and 1.07 for FS. The map and plot

Fig. 2. The ecosystem units for forest in NiN 2.0 as defined by the gradients ‘Risk of severe drought’ and ‘Basicity’; two examples of
‘different classification’ with ecological distances of two and five

Table 4. Grouping of ecosystem units present in study areas,
with ecosystem unit codes and names
Binary group Unit codes Unit names

Basicity T32-C3−5 Intermediate and moderately calcareous
grasslands with low and moderate
management intensity

T4-C2 Sparse low-herb forest
T4-C6 Sparse low-herb heather-bilberry forest
V2-C2 Intermediate wetland forest

Acidity All other
units

Agriculture T32-C3−5 Intermediate and moderately calcareous
grasslands with low and moderate
management intensity

T44-C1 Ploughed field
No
agriculture

All other
units

Table 5. Landscape metrics given as average results for the two
aerial photographic interpretation (API) sites and the two field
study (FS) sites
Metric and FragStats code API Field study

Number of polygons (NP) 148 209
Edge density (ED) 609 831
Mean polygon area (A_MN) 0.34 0.24
Median polygon area (A_MD) 0.11 0.09
Standard deviation of area (A_SD) 0.96 0.52
Area of largest polygon (LPI) 18.1 7.8
Connectance index (CONNECT) 2.09 2.37
Shannon diversity index (SHDI) value 1.73 1.86
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Fig. 3. Ecosystem unit maps for sites API1 and FS1N; with different sites (coordinates WGS 1984 UTM Zone 32N, rotation -5.1 degrees)
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Table 6. Area covered by the primary ecosystem units, given for units evaluated by a minimum of one plot, including the number of plots for each ecosystem unit, the percentage accuracy in
plot and map comparisons (producer’s accuracy), and the percentage accuracy of map and plot comparison (user’s accuracy)

Ecosystem unit API (aerial photographic interpretation) FS (field survey)

Name Code
Land cover

(%)
Number of

plots
Plot & map
accuracy

Number of plots
on map

Map & plot
accuracy

Land cover
(%)

Number of
plots

Plot & map
accuracy

Number of plots
on map

Map & plot
accuracy

Drought-prone acidic rock T1-C2 45 17 100.0 30 90.0 29.5 24 100.0 27 100.0
Heather-bilberry forest T4-C5 12.7 13 61.5 18 38.9 14.3 13 53.8 9 77.8
Heather forest T4-C9 23.5 21 81.0 19 68.4 31.5 22 100.0 23 73.9
Open acidic shallow-soil heath T2-C1 - 5 80.0 - - 6.2 4 75.0 5 80.0
Bilberry forest T4-C1 0.1 9 11.1 - - 1.7 3 0.0 - -
Acidic wetland forest V2-C1 0.5 4 25.0 1 100.0 2.4 5 80.0 4 50.0
Intermediate grasslands with low
management intensity

T32-C3 0.8 1 0.0 - - 0.1 1 0.0 - -

Arable field T44-C1 0.3 2 50.0 1 100.0 0.6 1 0.0 - -
Sparse low-herb forest T4-C2 1.3 2 0.0 2 50.0 0.1 - - - -
Sparse low-herb heather-bilberry forest T4-C6 0.4 1 0.0 1 0.0 0.5 - - 2 100.0
Lichen forest T4-C13 2.9 - - 1 0.0 0.8 - - - -
Upper rock/gravel beaches with pioneer
vegetation

T29-C1 0.1 - - - - 0.3 1 0.0 - -

Upper rock/gravel beaches with
established vegetation

T29-C2 - - - - - 0.6 - - 1 0.0

Intermediate grasslands, moderate
management intensity

T32-C4 1.8 - - 5 0.0 0.6 1 100.0 2 0.0

Moderately calcareous grasslands, low
management intensity

T32-C5 - 1 0.0 - - - - - - -

Plantation forest T38-C1 - - - - - 0.2 1 100.0 1 100.0
Stone heap T39-C1 - - - - - 4.2 4 100.0 5 100.0
Meadow-like ploughed field T41-C1 1.0 - - - - 0.4 - - 1 100.0
Lawns, parks, etc. T43-C1 1.2 1 100.0 1 0.0 1.3 - - - -
Very acidic mire V1-C1 - 1 0.0 - - 0.2 - - - -
Fairly acidic mire V1-C2 0.7 - - 1 0.0 - - - - -
Intermediate wetland forest V2-C2 - 2 0.0 - - 0.1 - - - -
Total 87.7 80 62.5 80 62.5 93.8 80 82.5 80 82.5
Count selection 15 14 11 20 15 11
Count total 41 27 14 34 12
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classification accuracy portrayed the same trends as the plot
andmap classification accuracy for the threemost common
units. Plot data were more suitable than point data for
evaluation of polygon classification (Appendix 4).

When all calcareous units were combined, the produ-
cer’s accuracy was 0% in the API maps and 50% in the FS
maps. Acidic units had an accuracy of 68% in the API
maps and 83% in the FS maps. Calcareous units were
used in the API maps, but five of the eight plots placed
in polygons labelled calcareous were classified as acidic
in the validation plots (Table 6) (Appendix 4). For agri-
cultural units, which included semi-natural grasslands,
the classification accuracy was 25% in the API maps
and 33% in the FS maps. Units not affected by agriculture
had an accuracy of 64% in the API maps and 84% in the
FS maps.

The total time spent making the maps was 21.2 hours
for the API sites and 48.7 hours for the FS sites. The
number of accurate classifications for the API sites was
50, while the same number for the FS sites was 66. The
number of accurate classifications per hour spent making
the maps was 2.4 for API and 1.4 for FS.

Discussion

Pros and cons of API and FS as separate methods

The practical part of a land cover mapping process, the
delineation of polygons and the assignment of associated
land cover units can be performed using different
methods. We tested two methods, namely field survey
(FS) and aerial photo interpretation (API), and the
results showed that the two methods had different
advantages and challenges. API is considerably faster
than FS (Vesterbukt et al. 2013); we found it was more
than two times faster. However, the classification accu-
racy of the NiN classification system was lower when
using API compared with when using FS. Previous
studies have found that the classification accuracy for
land cover mapping by API varied between 60% and
77% (Barr et al. 1993; Prosser & Wallace 1999; Strand
et al. 2002; Engan 2012). The overall API classification

accuracy found in our study was at the lower end of
that range (62.5%) and probably indicates compatibility
issues with the tested classification system, which is
based on several definitions that are not directly detect-
able in aerial imagery.

Classification systems specifically tailored for success-
ful API must be adapted to the mapping method and all
mapping units need to be recognizable from 3D
interpretation of CIR aerial photography. This has
been implemented in, for example, the National Inven-
tory of Landscapes in Sweden (NILS) (Ståhl et al. 2011)
and the Natura 2000 base inventory (Skånes et al.
2007), both of which use 3D CIR aerial photography,
as well as the 3Q programme in Norway (Engan 2004;
2012), which uses 3D colour aerial photography. Since
the tested classification system (NiN) (Halvorsen et al.
2015) has not been adapted for mapping by API, we
could not have expected any better results than those
supported by previous studies (Barr et al. 1993; Prosser
& Wallace 1999; Strand et al. 2002; Engan 2012).

The overall classification accuracy documented by FS
in our study was 82.5%. Therefore, FS is currently a more
reliable mapping method than API when implementing
the NiN classification system for land cover mapping.
Although more reliable classifications exist, errors are
still frequent with FS (Eriksen et al. 2019). Further,
since the mapping progress is slow, the related costs of
FS mapping are considerably higher than mapping
done using API. This implies that the FS method is not
optimal for NiN classification. With ongoing climate
changes and increasing loss of biodiversity (Bellard
et al. 2012), the need for an improved and faster mapping
process is pressing.

Implications of mapping according to the NiN
system

The NiN land cover classification system was estab-
lished without any pre-adaptations regarding mapping
method, with many classes purely separated by field-
layer and bottom-layer species turnover along defining
ecological complex gradients (Bryn & Halvorsen 2015;

Fig. 4. Evaluation results in three categories, with the sum of ‘Match’ and ‘Match with small delineation variation’ used as a measure for
classification accuracy
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Eriksen et al. 2019). Therefore, it is probably a lack of
representation of several key object characteristics
within the aerial photography that causes the low
classification accuracy obtained by API (Käyhkö &
Skånes 2006).

The overarching aim of NiN is to characterize ecologi-
cal gradients in nature, but the system still confines vari-
ation into discrete classes. The approach intended to
solve this challenge is to incorporate many classes that
each include a narrow part of the ecological space. The
result is a classification system with many classes, even
along short ecological gradients. This proves to be par-
ticularly difficult to handle by API. Details such as the
abundance of specific indicator species or detailed state
condition variables cannot be directly identified with
API. The method is therefore dependent on a systematic
use of spectral characteristics, topography, tree species
composition, crown cover, or other proxies (Käyhkö &
Skånes 2006; Ihse 2007; Skånes et al. 2007) to separate
the predefined NiN classes.

Three major gradients, which in many cases are inter-
woven, stand out as particularly challenging when using
API for mapping of NiN land cover classes. The three
gradients are described in the following three
subsections.

Challenge 1: the gradient in the soil from acidic to
calcareous
Land cover classification of areas by varying levels of soil
basicity or acidity is common (Ichter et al. 2014 and refer-
ences therein). Classes separated by such characteristics,
which lead to multiple within-class spectral responses,
are genuinely challenging to capture with any optical
remote sensing (Xie et al. 2008). Furthermore, recent
studies have shown that these characteristics are difficult
to assess, even by FS (Eriksen et al. 2019). Since almost all
classes in NiN reflect soil basicity and acidity differences
(Bryn&Halvorsen 2015), this also poses amajor problem
for the implementation of API.

In our study, calcareous conditions were mapped with
low accuracy by both API and FS. The low result for API
was expected because nutrient level is mapped based on
presence of certain basophilic species that are not visible
from aerial photographs and thus cannot be mapped by
API (Ihse 2007). Accuracy can only be improved if the
interpreter has access to additional material, such as
high-resolution maps of bedrock, soil or geochemistry,
showing lime content in detail (Engan 2013). As such
maps are either not currently available or are not at a
sufficiently detailed scale, most edaphic properties of
potential interest to users cannot be registered without
extensive field survey (Rapp et al. 2005; Pancer-Koteja
et al. 2009).

The heavy dependency on soil basicity and acidity
differences in the NiN system is probably a major
reason behind the low classification accuracy for both
the API method and the FS method with regard to
agricultural land, including semi-natural grasslands.
As major carriers of biodiversity, these have many
classes to choose from (Bryn & Halvorsen 2015),
including a number of classes with different levels of
basicity that are difficult to separate from aerial photo-
graphs (Aune et al. 2018). Another factor influencing
classification success of agricultural classes is dispro-
portionately high number of units related to different
agricultural practices of a varying intensity (a total of
48 units in NiN). Information on land use, as required
for certain semi-natural units, needs a good definition
and an experienced interpreter (Ihse 2007; Norderhaug
et al. 2012). Furthermore, Engan (2012) found that
agricultural areas under encroachment, which thus
included different state conditions, were mapped with
low accuracy.

Challenge 2: the gradient in light availability for the
different layers of vegetation, or indirectly the
coverage of trees and bushes
Land cover classification systems based on vegetation,
are often dependent on species characteristics in the
field layers and bottom layers or moisture conditions
(Ichter et al. 2014 and references therein). Clearly, this
poses a problem for mapping by API in all areas where
a dense tree canopy obscures the visibility of key charac-
teristics below trees or bushes. This is a common chal-
lenge with API (Ihse 2007; Skånes et al. 2007), but is
also a general challenge for most remote sensing
methods.

In our study, high classification accuracy for both the
API method and the FS method was mainly related to
dry and open areas such as Drought-prone acidic rock,
Heather forest (sparse tree crown cover) and Open acidic
shallow-soil heath. This indicates that some areas can be
classified equally well with API and FS. The good API
results for acidic environments were not due to the
interpreter being able to sense the lack of basicity, but
rather to the fact that acidic bedrock is more typical
for the area.

By contrast, Bilberry forest (dense tree crown cover)
was mapped with low accuracy and Heather-bilberry
forest (intermediate tree crown cover) was mapped
with medium accuracy for both the API method and
the FS method. The accuracy for forest types thus
decreases with increasing crown coverage for both
methods. For API, this is logical because dense canopy
prevented the interpreter from identifying pivotal
characteristics of the forest floor. The poor FS results

Norsk Geografisk Tidsskrift–Norwegian Journal of Geography 11



for forest were less intuitive, but have been documented
in other studies (e.g. Mõisja et al. 2018). Since our
study was based on work by one mapper only, and
between-mapper inconsistency is high, even in FS
(Cherrill & McClean 1999), the results might have
been due to misconceptions and errors made by that
mapper. Eriksen et al. (2019) came to a similar result
after using the same ecosystem units as in our study.
Their results, like ours, indicated lower accuracy for
Bilberry forest. Low accuracy might therefore be an
effect of unclear definitions of the specific ecosystem
units or the deviant nature in the study area, where
the bilberry cover is lower than a more typical inland
forest and not a property related to mapping method
or mapper.

Challenge 3: the soil moisture gradient
The soil moisture gradient is often visible from aerial
photos in areas without dense cover of trees and bushes,
but as the tree canopy cover increases, this important
factor is partly obscured from the AP interpreter. In
our study, all plots of wetland forests except one were
by API registered as non-wetland forests, Heather-
bilberry forest or Heather forest. Moreover, we observed
that wetland forests in the studied region constituted
small patches that dried up during summertime. In the
field, these patches are often identified by bog myrtle
(Myrica gale), a fragrant bush that dominates the bush
layer of wetland forest, but which for API is hidden
below a dense tree layer.

Implications of mapping according to the NIN
system – summary

As illustrated by the three challenges discussed above,
the NiN classification system per se restricts full
implementation of API as a methodological framework
for increasing the rate of progress when mapping at a
regional or national level. Several solutions are possible,
but the most appropriate would probably be to general-
ize the classification system in accordance with the
findings of this study and previous studies (e.g. Skånes
et al. 2007; Ullerud et al. 2018; Eriksen et al. 2019). Eco-
logically and physiognomically neighbouring land cover
classes that are challenging to separate with high accu-
racy using API could be merged into more robust classes
that are more easily separated by interpretation of aerial
photography. However, this would increase the ecologi-
cal space embraced within each class and decrease the
ecological precision of the map, leading to a loss of
potentially important information compared with the
information potentially present in a NiN map made by
FS. To guide such decisions, the mapping purpose, the

expected progress, available funding, and equipment, as
well as access to trained interpreters and field workers
should be taken into consideration.

Advantages of combined mapping methods
including both API and FS

Tools available for land cover mapping have improved
greatly in recent years, and combination methods can
benefit from new technology (Allard 2007; Skånes et al.
2007; Gallegos Torell & Glimskär 2009; Takács & Mol-
nár 2009; Nilsen et al. 2013; Santangelo et al. 2015).
The resolution and availability of both aerial photo-
graphs and orthophotos have improved greatly. A stan-
dardized aerial photographic campaign started in
Norway in 2006 aims at covering 15% of the country
every year (Kartverket n.d.). Digital photogrammetric
3D vision and GIS software is continuously developing
(e.g. DAT/EM 2019), while adapted applications and
portable field computers enable digitized FS (Nilsen
et al. 2013).

From our point of view, traditions within a country
are strong drivers for the choice of mapping method.
For example, Norway has a long tradition of land
cover mapping based on FS (Bryn et al. 2018). However,
the results of our study show that a workflow that inte-
grates API and FS could become a more optimal map-
ping methodology for the NiN classification system.
Both API and FS require specialized hardware and soft-
ware, as well as trained and experienced personnel
(Takács & Molnár 2009). Experience of FS is an
asset also for API, but most mappers are either field map-
pers or interpreters (Morgan et al. 2010). The initial cost
of implementing a combination method is therefore
high. Currently in Norway, where land cover mapping
is traditionally carried out by FS, including API in the
mapping process would require investments in equip-
ment and extensive training of interpreters. Any new
workflow should be standardized and described in detail
to ensure that it is understandable and accessible for all
mappers.

Practical mapping of land cover in Norway, following
the NiN classification system, is currently solely based on
FS (Bryn & Halvorsen 2015). The mapping is expensive
and the progress is slow, even compared with traditional
vegetation mapping based on FS (Bryn et al. 2018;
Ullerud et al. 2018). Provided the fact that mapping tai-
lored for API enables a much higher rate of progress than
FS (Vesterbukt et al. 2013), and that Norway is a country
with large remote or inaccessible areas for which API has
an advantage (Ståhl et al. 2011; Johansen 2013), it should
be a general goal to phase in more API in the mapping
process based on NiN in Norway.
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A high rate of progress combined with high classifi-
cation accuracy is likely to be achieved if the methods
combining API and FS are optimally organized (Skånes
1997; Sickel et al. 2004; Bunce et al. 2006; Groom et al.
2006; Wehn et al. 2015). Combined methods starting
with API and followed by FS reduce the amount of
work to be done in field, thus reducing the cost of land
cover mapping (Lewis et al. 2013). According to Fox
et al. (2000), API gives a better overview of the study
area and enables more precise delineations than FS.
Wehn et al. (2015) found that the probability of detect-
ing abandoned semi-natural land cover classes is higher
with API than with FS. However, in our study, not all
ecosystem units present in the mapped sites were
detected using API. Furthermore, the larger polygons
and the lower connectivity in the API maps, highlighted
in the FragStats metrics, showed that some polygons
were missed by the API method. The same result for
API mapping was found by Rapp et al. (2005). By con-
trast, the evaluation plots for the FS sites only identified
ecosystem units that were already present on the maps.
This shows that API can be applied for mapping of
some NiN ecosystem units, while FS is needed for
others.

Another solution would be to combine API and FS
in such a way that API would only be used for classes
with high classification accuracy, such as API for first
stage mapping of classes at a higher hierarchical level
of the NiN classification system. This indicates poten-
tial for the increased use of API in practical
applications of the NiN classification system.

Some modification in certain parts of the NiN system
would enable further use of API.

However, mapping exclusively by FS cannot be rec-
ommended, as the mapping progress with API was
found to be more than two times higher than the map-
ping progress with FS, a difference expected to increase
as the area to be mapped is increased. Similar results
were found in previous studies (Fox et al. 2000; Benz
et al. 2004; Ihse 2007; Wehn et al. 2015). A high rate of
progress combined with high classification accuracy is
likely to be achieved by methods that combine API
and FS (Skånes 1997; Sickel et al. 2004; Bunce et al.
2006; Groom et al. 2006; Wehn et al. 2015).

For optimal API, interpreters should be subjected to
training and calibration that enables comparison of the
visual signature of land covers in aerial photographs
with the actual land cover in the field (Takács & Molnár
2009; Morgan et al. 2010; Wehn et al. 2015). In our study,
a field trip was taken to the test sites adjacent to the API
sites after the main part of the API. Efficient calibration
of polygon delineations and classifications was ensured
by taking the field trip after initial API. Based on these
experiences, a possible workflow for a combination
method should include two rounds of API and FS (Fig.
5). The workflow in Fig. 5 is very similar to the procedure
recommended by Nämnden för skoglig fjärranalys
(1993) and Ihse (2007). A simplified FS-API-FS pro-
cedure is recommended by Rapp et al. (2005) for map-
ping in USA and by both Sickel et al. (2004) and
Wehn et al. (2015) for mapping semi-natural nature in
Norway.

Fig. 5. The mapping process and use of aerial photographic interpretation (API) (grey boxes) and field survey (FS) (green boxes) both as
single methods tested in the study and as combinations suggested by the study
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Improving classification accuracy

The field trip carried out before the API maps was
finalized and before the start of the FS mapping did
not target specific ecosystem units. At the point of depar-
ture, no studies had yet revealed any need to focus on
particular NiN ecosystem units. In the future, ecosystem
units conditioned by agriculture, separated by the basi-
city–acidity gradient, or that for other reasons have low
classification accuracy, should be targeted specifically
when improving the documentation of the classification
system or, as proposed by Mõisja et al. (2018), during
additional training of fieldworkers and interpreters.
Other efforts to improve the classification accuracy
could be to redefine the troublesome classes or to use a
higher level of classification, as suggested by Rapp et al.
(2005) and Xie et al. (2008). The lowest loss of map
information would probably result from merging the
most troublesome units (i.e. to generalize the classifi-
cation system). This would also lower the number of
available units and system complexity, which several
studies have documented as being more accurate and
robust to misclassifications than diverse systems (Cher-
rill & McClean 1999; Halvorsen et al. 2011; Hearn
et al. 2011; Ullerud et al. 2018). It should come as no
surprise that it is easier to hit a larger target than to hit
small ones.

All mapping, regardless of method, should be sub-
jected to evaluation as a means to report and eventually
take action to improve the accuracy (Strand et al. 2002;
Bunce et al. 2008; Stehman 2009). Evaluation plots or
other methods for evaluating classification should be
included for all ecosystem units. In addition, polygon
delineation uncertainty should be evaluated, including
an evaluation of omission and commission (Mõisja
et al. 2018). This could, for example, be implemented
in mapping programmes by introducing a small but con-
sistent overlap in mapping areas between different map-
pers, companies or methods, and would enable a
structured consistency.

Conclusions

The ecosystem units Drought-prone acidic rock, Heather
forest and Open acidic shallow-soil heath are classified
with high accuracy by both 3D aerial photographic
interpretation (API) and field survey (FS). These ecosys-
tem units are acidic and found in dry, open terrain. Cal-
careous ecosystem units, wetlands and areas with dense
tree coverage are mapped with higher accuracy by FS
than by API. The rate of mapping progress by API is
higher than by FS and can therefore be applied for eco-
system units that can be delineated and classified

correctly by API. A standardized workflow for mapping
following the NiN system would preferably include both
API and FS. As accurate API mapping results are
enhanced by field calibration, a two-round API-FS pro-
cedure is recommended.

We recommend that API should be included in the
mapping process when it would be the most efficient
method. To facilitate this, the NiN system should be
updated with decision trees, whereby several mappers
could contribute to different parts of the mapping pro-
cess. Also, API should be primarily used to delineate
the 59 main classes and not primarily aim for the more
detailed mapping units. By using the strengths of each
method in combination, theory and implementation
might be bridged.
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