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A B S T R A C T

Fibre rope used in cranes for offshore deployment and recovery has significant potential to perform lifts with
smaller cranes and vessels to reach depths limited by weight of steel wire rope. Current condition monitoring
methods based on manual inspection and time-based and reactive maintenance have significant potential for
improvement coupled with more accurate remaining useful life (RUL) prediction. Machine learning has found
use as a condition monitoring approach, coupled with vast improvements in data acquisition methods.

This paper details data-driven RUL prediction methods based on machine learning algorithms applied on
cyclic-bend-over-sheave (CBOS) tests performed on two fibre rope types until failure. Data extracted through
computer vision and thermal monitoring is used to predict RUL through neural networks, support vector
machines and random forest. Random forest and neural networks methods are shown to be particularly adept
at predicting RUL compared to support vector machines . Additionally, improved RUL predictions can be
achieved by combining data from distinct rope types subject to different test conditions.
1. Introduction

Fibre ropes are increasingly used for lifting operations, however
there are still issues related to the implementation. The material ad-
vantages of fibre rope are well documented (Foster, 2002; Faria et al.,
2017), as well as issues inhibiting their immediate implementation
connected to creep, thermal response during cyclic-bend-over-sheave
and lack of available data regarding their implementation in offshore
construction cranes. To be able to exploit this potential fully, more
advanced maintenance routines must be established to challenge the
status quo of manual inspection established by DNVGL (2017). There
is significant potential and benefits with regards to avoiding premature
retirement and reducing the chance of failure during operation through
the development of intelligent maintenance methods for fibre ropes.
Automation of manual processes and structured data-driven approaches
to quantify historical health data, damage progression and physical
measurements can lead to more informed decisions regarding rope
condition and remaining useful life (RUL) through more frequent doc-
umented state observation. Establishing and verifying these methods
would also signal a shift from time-based maintenance and reactive
maintenance strategies to condition-based and predictive maintenance
approaches. Positive implications of this include: preventing failure of
rope during operation from an undetected fault; decreasing operation
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downtime for routine inspections; and avoiding retiring ropes with
substantial remaining useful life .

Other sectors have implemented approaches for RUL estimation
based on machine learning, with several reviews available detailing
specific implementations (Nguyen et al., 2019; Fink et al., 2020; Lei
et al., 2018; Diez-Olivan et al., 2019; Sutharssan et al., 2015; Khan and
Yairi, 2018). However, this study will focus on the use of data-driven
approaches through machine learning applied to fibre rope condi-
tion monitoring data for RUL prediction from cyclic-bend-over-sheave
(CBOS) testing.

While the application of machine learning for prognostics and
health management in fibre rope condition monitoring is not as es-
tablished in the publicly accessible research domain, these applications
have seen successes in other fields. Much like other engineering compo-
nents, fibre ropes have damage mechanisms and physical changes that
can be detected by sensors, which can be used in machine learning
approaches. Offshore fibre rope use in particular is concerned with
RUL related to time, tension and temperature as advocated by industry
standards by DNVGL (2015) and ABS (2011). Previous studies into
rope behaviour detailing CBOS testing also advocated acquiring this
data (Törnqvist et al., 2011). Moving rope inspection from manual
visual methods to computer vision opens up possibilities in machine
learning and intelligent data-driven assessment of fibre rope condition.
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There are several examples of RUL prediction methods for fibre
ropes. RUL methods for fibre ropes have been mainly based on em-
pirical evidence where a number of studies with CBOS testing have
been conducted for both steel and fibre ropes of several different
diameters (Vennemann et al., 2008; Davies et al., 2015; Novak et al.,
2017; Horigome and Endo, 2018; Schmieder and Golder, 2020). Nuttall
(2010) detailed a modified version of the Feyrer model for fibre ropes
in lifting operations in conjunction with CBOS testing. There has also
been other modelling approaches related to CBOS motion in rope as
detailed by Frick et al. (2019) and Sloan (2019). Other model-based
and experimental approaches to estimate service life have also been
applied to HMPE ropes, under tension–tension regimes as seen in
mooring, as shown by Humeau et al. (2018) and Asane et al. (2020).
Addtionally, Lian et al. (2015) detailed a model based on thermody-
namic properties of fibres, yarns and ropes and compared predictions
to tensile tests.

Some patents also incorporate discard parameters into a wider fibre
rope monitoring system. Examples of this are provided by Mupende and
Zerza, who detail similar patents where a discard signal is created from
monitoring rope and environmental parameters (Mupende and Zerza,
2014, 2018, 2019).

In the context of lifting operations, machine learning has been
applied for prognostics and health management in steel ropes with
a focus on mining hoists where data acquisition is more mature and
readily available (Oland et al., 2017). Onur et al. (2019) used neural
networks to predict RUL of steel wire rope in CBOS testing and com-
pared the performance to Feyrer models at different loads and diameter
ratios. Xue et al. (2020) used a form of support vector machines to
classify steel wire rope condition based on vibration data and Zhou
et al. (2018) used convolutional neural networks (CNN) applied to
images for classifying faults in balancing tail ropes for mine shaft
hoisting operations. Finally, Huang et al. (2020) also applied a CNN
approach and computer vision techniques that detect surface damage
in steel wire ropes.

The contribution of the present article can be summarised as fol-
lows: machine learning - based methods are presented for RUL predic-
tion of fibre rope during CBOS testing. The methods comprise neural
networks (NN), support vector machines (SVM) and random forest
(RF), which are applied to data extracted from computer vision and
thermal monitoring. All approaches predict a target variable, known as
the RUL factor (𝑅𝑓 ), which is based on the number of cycles left to
failure occur during testing. The various model performances are then
assessed for their effectiveness based on both qualitative and quantita-
tive means. Conditions that are assessed to find the best methods for
RUL assessment include: variation of hyperparameters in the models,
and variations in the variables included in training the models. The
approach of combining data from two rope types under different test
conditions for training and RUL prediction is also explored. To the
authors’ knowledge, there is no publicly available detailed study into
the application of machine learning for RUL prediction specifically for
fibre ropes intended for offshore lifting until now. This paper thus
presents the application of existing methods for fibre rope condition
monitoring and is not intended to develop the algorithms further.

The paper is organised as follows: The machine learning frameworks
and how their performance is assessed in this context are detailed
in Section 2. The experimental study and data sets are summarised
in Section 3 and the results of the various approaches are shown in
Section 4. The results are then discussed in Section 5 before further
work is considered and conclusions are offered.

2. Applied methods

2.1. Target variable — RUL factor

A target variable is required for regression analysis in ML and will
act as the value to be predicted based on training data used in the
2

Table 1
NN architecture 1 (NN1) used to predict 𝑅𝑓 .

Layer Type

1 Input layer, 𝑁𝑓𝑒𝑎𝑡𝑠 inputs
2 Dense layer, 100 neurons, activation function — ‘ReLU’
3 Dropout layer — 20%
4 Dense layer, 50 neurons, activation function — ‘ReLU’
5 Dropout layer — 20%
6 Output, Dense layer, 1 neuron, activation function — ‘Sigmoid’

modelling process. The target variable used in this study is hereby
referred to as the RUL factor (𝑅𝑓 ), a fraction defined by Eq. (1).

𝑅𝑓 =
𝐶𝑇𝐹 𝑡
𝐶𝑇𝐹𝑡𝑒𝑠𝑡

(1)

Where 𝑅𝑓 denotes the RUL factor, 𝐶𝑇𝐹 𝑡 is the number of cycles
to failure at the time of measurement and 𝐶𝑇𝐹𝑡𝑒𝑠𝑡 is the amount of
cycles at failure in each individual test where the measurements are
made. This produces a value that starts at 1 representing start of life
and ends at 0 representing end of life respectively (i.e 100% and 0%).
Fig. 1 shows an example of damage progression in a section from a rope
(A5) at various 𝑅𝑓 , with the different stages highlighted by decreasing
𝑅𝑓 from (a) through to (d). The images show that as 𝑅𝑓 decreases the
subsection becomes longer and there is more visible wear, as shown
by ruptured strands and extruded loops. The errors of the predictions
made by the various approaches will be based on comparison to the
𝑅𝑓 .

As the CBOS tests are performed at a constant tension, 𝑅𝑓 is related
to the accumulated damage 𝑑 from Palmgren-Miner’s rule as shown
in Eq. (2).

𝑅𝑓 = 1 − 𝑑 (2)

As the CBOS tests progress there is accumulated damage in the form
of ruptured stands and compromised sub-ropes. The rope is extended
further as the true 𝑅𝑓 values drop to lower values. Therefore, the
reduction in rope residual strength and thereby the retirement criteria
in the experiments can be related to the non-linear progression of the
global elongation of the rope.

2.2. Neural networks

The NN structures, designated as NN1 and NN2, used in this study
are detailed in Tables 1 and 2, and are implemented using the Keras
library (Chollet, 2015) with a Tensorflow backend (Abadi et al., 2016).
The number of inputs in the input layer for both architectures corre-
spond to the number of features, 𝑁𝑓𝑒𝑎𝑡𝑠, used from the data extracted
from the ropes during CBOS testing. The hidden layers are of a dense
layer type with a specified number of neurons and a Rectified Linear
Unit (ReLU) activation function that introduces non-linearity to the
data. Both architectures use dropout layers that will randomly prevent
20% of the neuron outputs from proceeding through the network.
This is a regularisation technique used to prevent overfitting. The final
output layer consists of one neuron coupled with a Sigmoid activation
function that produces a value between 0 and 1 as a result. This is done
to reflect the previously described 𝑅𝑓 in Section 2.1.

The Adam optimisation function was used for both network ar-
chitectures specified in Tables 1 and 2 to update the weight values
associated with the input features. The inputs are fed forward and
backpropagated through the networks for 50 epochs, with the model
that produces the lower mean square error (MSE) on the test data being
saved as the best model used for predictions. Each configuration is
simulated 20 times to account for randomness in the weights assigned
in the neural network and give a more robust value for model output.
The average prediction calculated from these instances is used to
compare to the ground truth 𝑅𝑓 measured from the CBOS tests and

provide a confidence interval.
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Fig. 1. Example of degradation in rope A5.
Table 2
NN architecture 2 (NN2) used to predict 𝑅𝑓 .

Layer Type

1 Input layer, 𝑁𝑓𝑒𝑎𝑡𝑠 inputs
2 Dense layer, 100 neurons, activation function — ‘ReLU’
3 Dropout layer — 20%
4 Dense layer, 100 neurons, activation function — ‘ReLU’
5 Dropout layer — 20%
6 Dense layer, 50 neurons, activation function — ‘ReLU’
7 Dropout layer — 20%
8 Output, Dense layer, 1 neuron, activation function — ‘Sigmoid’

2.3. Support vector machine

SVM was first used for classification by Cortes and Vapnik (1995)
and was later adapted for regression problems by Vapnik et al. (1997).
To predict the 𝑅𝑓 in this context, the latter approach is adopted which
has also been applied in other studies related to RUL prediction, such
as García Nieto et al. (2015). Essentially, the data is separated by a
hyperplane in a higher vector space. This plane can be formed by use of
a kernel. In a classification implementation, this line is used to separate
the measured vectors into classes, but for the regression analysis it will
be used to predict a continuous variable for the other instances in the
data set.

To compare to the performance of the NN, it is chosen to use an SVM
framework adapted for regression analysis from scikit-learn (Pedregosa
et al., 2011). Linear and Gaussian kernels are used to form the fit to
the data and to compare their relative accuracy to 𝑅𝑓 are compared to
other methods.

2.4. Random forest

RF is an example of an ensemble method which utilises a user-
specified number of decision trees created by bootstrapping data from
features and data available from a training pool Breiman (2001)
and Kundu et al. (2020). The models created will assign RUL values
to the test samples in each individual tree and an average RUL value
will be calculated.

The RF algorithm for regression analysis from scikit-learn (Pe-
dregosa et al., 2011) is used for 𝑅𝑓 prediction. The configurations for
RF implementation in each data set are specified in Table 3 for data
sets A and B. Different tree depths are chosen due to the difference
in number of measurements available between the different data sets
and to prevent overfitting. The differences between the data sets are
highlighted in Table 5.

3. Experimental study

Fig. 2 details the flowchart of operations implemented in the ML
process from beginning to final output and performance assessment.
3

Fig. 2. Flowchart of operations detailing steps implemented in (a) data acquisition,
(b) data pre-processing, (c) training and estimating RUL and (d) model assessment.

Table 3
Configurations used for RF to predict 𝑅𝑓 for data sets A and B.

Data set A Data set B

Tree depth 1–4 Tree depth 1–2
Number of trees 50, 100, 200 Number of trees 50, 100, 200

Specific details related to (a) test methods and (b) data acquisition
are summarised in Section 3.1 and the subsequent pre-processing tech-
niques applied to the data for ML application in Section 3.2. Then in
Sections 3.3 and 3.4 the (c) training and RUL estimation stages and (d)
model assessment are detailed.
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Fig. 3. Summary of different rope bending zones where the features are derived from.

3.1. Test methods and data acquisition

The data sets were recorded from CBOS experiments performed at
the Mechatronics Innovation Lab in Grimstad, Norway. The fibre ropes
used in testing were 12-strand braided ropes with nominal diameter
of 28 mm. The two types used were five samples of Dyneema DM20
XBO and four samples of Samson AmSteel Blue which are designated
as separate campaigns A and B, respectively. Additionally, A is tested
at safety factor (SF) 11 and B is tested at SF 8. This equates to average
tensions of 1/11 and 1/8 of each rope type’s max tensile capacity.

Features are engineered from data recorded during CBOS testing
and the ropes were separated into different zones that reflect the
distinct bending regimes during CBOS testing, as highlighted in Fig. 3.
The acronyms SZ, SBZ and DBZ refer to straight zone, single bend zone
and double bend zone, respectively. These are the positions in the rope
where the rope is bending and unbending due to the cyclic movement
of the sheaves. No bending occurs in section SZ, a single bend occurs
during each cycle in SBZ and two bends occur in the DBZ during one
cycle.

The computer vision setup takes account of the whole rope surface,
with four Edmund Optics 13122C cameras placed around the rope as
shown in Fig. 4. This takes into account that degradation will not
be uniform around the rope and the different camera perspectives
can view this. Computer vision data is recorded for 2000 images,
corresponding to 13–15 complete cycles, every 1000 cycles.

A FLIR A6753sc thermal camera is placed next to the test sheave
of the CBOS machine, as shown in Fig. 5. It was set to sample at
100 Hz for 2000 images, resulting in a 20 s video for each period.
This was sufficient to record at least one full cycle in the CBOS test.
Temperatures are only available for the lumped zones SZ, SBZ and DBZ.

The global length elongation was measured by a Fluke 414D dis-
tance measuring laser that tracked the extension of the CBOS machine
hydraulic cylinder as the tests progressed. The sensor has an accuracy
of +/−2.0 mm.

Computer vision data is extracted via algorithms developed in
OpenCV (Bradski, 2000). The ‘‘geo’’ data represents the local length and
width measurements and values for each recording are thus aggregated
to give median, maximum, minimum and standard deviations for these
geometric features. The ‘‘therm’’ data represents thermal measurements
taken from the thermal camera and extracted using FLIR ResearchIR
4 software (FLIR, 2015). These are the temperature values within the
rope part of each relevant image are aggregated as average, maximum,
minimum and standard deviation. A list of features and their respective
bending zones are summarised in Table 4.

Specific details of the various operations the algorithms used to
extract data are summarised in previous work detailing the various
CBOS testing campaigns by Falconer et al. (2020).
4

Fig. 4. Computer vision camera set-up around rope at CBOS machine test sheave.

Fig. 5. FLIR A6753sc thermal camera at CBOS machine test sheave.

Table 4
List of features created from data acquisition process.

Rope Feature (zone) Data Statistical
campaign type parameter

A + B Local length (SZ1,
SZ2,
SBZ1, SBZ2,
DBZ-X-1, DBZ-X-2,
DBZ-Y-1, DBZ-Y-2)

geo Median, max,
min, stdev

A + B Width (SZ1, SZ2,
SBZ1, SBZ2,
DBZ-X-1, DBZ-X-2,
DBZ-Y-1, DBZ-Y-2)

geo Median, max,
min, stdev

A + B Global length geo N/A
A + B Temperature (SZ,

SBZ, DBZ)
therm Average, max,

min,
stdev, range

A + B Temperature
(SBZ–DBZ)

therm Ratio

3.2. Data pre-processing

The data sets are separated into ‘‘geo’’ and ‘‘geo_therm’’ feature sets
based on data type to assess the effect of adding thermal features to the
ML model. The data set compositions are summarised in Table 5. The
records are the number of data samples recorded by the data acquisition
set up mentioned in Section 3.1. The ropes used in campaign B were
tested at a higher tension and failed sooner than those in campaign A,
hence the lower number of records in B compared to A. The number of
features is found by multiplying the number of zones by the number of
statistical parameters for each type of data (e.g. 8 × 4 + 8 × 4 + 1 =
65 for geometric features and 3 × 5 + 1 = 16 for thermal features).

The raw measurements from the data acquisition phase are subject
to pre-processing, where the data from the various features is standard-
ised. The data was scaled using the approach detailed in Eq. (3):

𝑧𝑖 =
𝑦𝑖 − 𝑦̄

(3)

𝜎𝑦
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Table 5
Data set summary for 28 mm ropes.

Data set ID A_geo A_geo_therm B_geo B_geo_therm

Data type geo geo + therm geo geo + therm
Features 65 81 65 81
Ropes 5 5 4 4
Records 509 509 103 103
Manufacturer Dyneema Dyneema Samson Samson
Rope type DM20 XBO DM20 XBO Amsteel Blue Amsteel Blue
SF 11 11 8 8

where 𝑧𝑖 is the individual standardised value, 𝑦𝑖 is the individual raw
value, 𝑦̄ is the average of all readings for the specific feature in the rope
sample and 𝜎𝑦 is the standard deviation of all readings for the specific
feature in the rope sample. This is done for each rope in the data set to
increase comparability between the different samples and is a standard
pre-processing step to prepare data for ML application.

3.3. Training and RUL estimation

The models are tested through leave one out cross validation
(LOOCV), where 𝑅𝑓 predictions made on a single rope will be made
using models trained with the remaining ropes in the data set. This
process is done separately for both ropes in campaign A and campaign
B and as a combined data set with both A and B together.

In addition to investigating the effect of only geometric and com-
bined geometric and thermal measurements as outlined in Table 5,
different combinations of features from the various bending zones
detailed in Fig. 3 are also trained and tested. This includes: testing using
all zones; using only SBZ and DBZ measurements; and finally, using
only DBZ measurements.

3.4. Model assessment

The metrics used for model assessment are root mean square error
(RMSE) and 𝑅2 score (𝑅2):

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑖 − 𝑦̂𝑖)2 (4)

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

(5)

Where 𝑁 is the number of measurements made for each rope
ample, 𝑦𝑖 is the observed 𝑅𝑓 at instance 𝑖, 𝑦̂𝑖 is the predicted 𝑅𝑓 at
nstance 𝑖, 𝑆𝑆𝑟𝑒𝑠 is the sum of squares of residuals and 𝑆𝑆𝑡𝑜𝑡 is the total
um of squares.

RMSE in this context will give an insight into how concentrated the
𝑓 predictions are around the 𝑅𝑓 ground truth using each algorithm
onfiguration outlined in Section 2. Additionally, the 𝑅2 score gauges
he correlation 𝑅𝑓 predictions have with the ground truth 𝑅𝑓 using the
nput variables outlined in Table 4.

The performance of the models is assessed through the use of 𝑅𝑓
raphs and residual analysis. The 𝑅𝑓 graphs will include the ground
ruth from the observed experimental measurements and tolerance
ounds at ±20% based on this data. The average 𝑅𝑓 prediction and a
95% confidence interval of the repeated simulations of each distinct
onfiguration are compared to the ground truth and tolerance bounds.

The residual values, 𝑒 are calculated using Eq. (6):

= 𝑦𝑖 − 𝑦̂𝑖 (6)

where 𝑦𝑖 are the RUL values from CBOS testing and 𝑦̂𝑖 are the predic-
tions made by each respective model. The analysis includes plotting
the residual values against the predicted 𝑅𝑓 values, the actual 𝑅𝑓
value against the predicted 𝑅𝑓 value and finally a histogram analy-
is accounting for the numerical spread of the residual values. This
rovides further information about the model ability to predict 𝑅𝑓 ,

potential model bias and where overestimation and underestimation in
rope health occurs.
5

Table 6
List of cycles at failure for ropes in campaigns A and B.
Rope No. of cycles SF

at failure

A1 75,324 11
A2 122,368 11
A3 120,430 11
A4 87,314 11
A5 143,374 11
B1 14,948 8
B2 13,883 8
B3 13,901 8
B4 13,998 8

4. Results

4.1. Experimental results

The amount of cycles at failure for all ropes in campaigns A and
B are summarised in Table 6. It is noted that there is a wider spread
of values in A than B. Ropes A1 and A4 were shown to fail at lower
amounts of cycles compared to the other ropes in campaign A. This
is owed to the rope failing at the driving sheave, rather than the test
sheave. Due the method used, parts of the splice were in contact with
the sheave during testing and lead to premature failure of the rope
samples. The features monitored at the test sheave in ropes A1 and A4
did not develop as much as those in A2, A3 and A5 but all ropes showed
the same patterns in progression of global elongation through out every
test. This included a period of accelerated elongation of global length
towards the failure of the rope.

Moreover, rope A5 completed a greater number of cycles than the
rest of the ropes in campaign A. This particular sample included an
attempt to embed thermocouples within the strands of the rope and
therefore could have contributed to slight discrepancy in the results.

Some halts in logging occurred sporadically during CBOS testing for
campaign A, meaning data acquisition equipment had to be restarted
occasionally. Furthermore, features for Rope B1 were recorded every
1000 cycles and has less data compared to the other campaign B ropes,
which were recorded every 500 cycles. This change was made as a
reaction to the comparatively shorter test times for campaign B than
campaign A.

4.2. Average metrics

A quantitative assessment of 𝑅𝑓 prediction is performed by cal-
culating the average 𝑅𝑀𝑆𝐸 and 𝑅2 scores in each data set using
different feature sets. Better performance is reflected by lower and
higher values for 𝑅𝑀𝑆𝐸 and 𝑅2, respectively. The results for different
feature combinations are compared for both A and B rope datasets
and ranked by performance of the algorithm on only using geometric
features (i.e A geo with A model and B geo with B model). The results
using the various feature combinations cross validated on a combined
A and B rope data set are also presented.

Fig. 6 gives an overview of each algorithm performance based on
different feature sets and training model composition. It is seen that
both configurations of RF performed best, followed by NN and finally
SVM based on producing the lowest 𝑅𝑀𝑆𝐸 scores. Introducing thermal
features generally either changes nothing or leads to detriment in
performance when only A ropes are used as training data, which is
particularly noticeable in both NN and SVM. When the combined A
and B model is used there is shown to be a slight improvement in
performance when thermal features are introduced for NN when the
SBZ+DBZ and DBZ feature sets are considered. There is also shown to
be a general reduction of 𝑅𝑀𝑆𝐸 as the number of zones used in the
training are decreased.
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Fig. 6. Average RMSE values per algorithm for A ropes.
Fig. 7. Average 𝑅2 values per algorithm for A ropes.
This performance is also reflected in the 𝑅2 values as shown in
Fig. 7. As seen with the 𝑅𝑀𝑆𝐸, data types, feature sets and model
compositions influenced the algorithms differently. The 𝑅2 values for
both RF configurations are shown to be the highest, followed by NN
and SVM. The high values recorded for 𝑅2 indicate that the features
used to create the RF models better explain the changes in 𝑅𝑓 . It is
seen that by using both A and B data to train the NN configurations,
that a higher 𝑅2 is achieved than by only using A, indicating that the
same feature with enhanced data from different ropes better explain
the changes in 𝑅𝑓 . This is also seen for both SVM configurations but
had little impact on RF.

The 𝑅𝑀𝑆𝐸 values for data set B are shown in Fig. 8. Both con-
figurations of NN were shown to perform best when only B data is
considered. A noticeable difference in the B data is that for both
6

NN and SVM, the thermal data led to significantly better predictive
performance as indicated by lower 𝑅𝑀𝑆𝐸. Using the combined A and
B data set also improved performance of NN with the exception of the
NN2 configuration in the SBZ+DBZ feature set. The combined A and B
data set has a detrimental impact on the RF configuration with depth
one.

The 𝑅2 scores for the same algorithms using the B rope data set
are shown in Fig. 9. The highest 𝑅2 values are achieved with NN, with
improvements being shown when thermal data is introduced. It is noted
that higher 𝑅2 is recorded using A and B data for training when only
geometric features are considered but similar values are seen for B only
and A and B combined when thermal features are introduced. RF is
shown to have similar 𝑅2 values no matter what features are used.
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Fig. 8. Average RMSE values per algorithm for B ropes.
Fig. 9. Average 𝑅2 values per algorithm for B ropes.
There is also a noticeable increase in 𝑅2 for SVM Gaussian when the
combined A and B data set is considered.

4.3. RUL graphs

A qualitative assessment of the algorithm performance during cross
validation is given through plotting the predicted 𝑅𝑓 at various cycles
throughout each test. It is possible to gain a general idea of algorithm
performance from the graphs, but they can also reveal at which times
in the test both the best and worst predictions are made. The results of
cross validation predictions made only using the single and combined
data sets is also considered. Selected RUL prediction results from both
A and B data sets are shown in Figs. 10, 11, 12 and 13.
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Fig. 10 shows the results of 𝑅𝑓 prediction using NN2 for geometric
features from all bending zones for rope A4. By using the combined A
and B data set, the predictions in the first half of the test are shown
to be closer to the ground truth, as well as showing a reduction in
the overestimation ‘‘peak’’ seen in the middle of the A ropes model.
The method was still shown to overestimate from 50,000 cycles until
failure, but was slightly improved with the addition of all ropes to the
model.

Fig. 11 presents the results for 𝑅𝑓 prediction for rope A3 using RF
at tree depth 4 using geometric features from all bend zones. As shown
in the previous 𝑅𝑀𝑆𝐸 results for RF, the combined A and B training
data performed either the same or to slight decrease in performance,
which is reflected in the 𝑅𝑓 graphs. There is a noticeable period of
overestimation in the combined A and B model between 40,000 and
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Fig. 10. 𝑅𝑓 prediction using NN2 for rope A4, using geometric features from all bend zones.
Fig. 11. 𝑅𝑓 prediction with RF, forest size 200, tree depth 4 for rope A3, using geometric features from all bend zones.
60,000 cycles but returns to being closer to RUL just after. Additionally,
both models have very small confidence intervals compared to the NN
configurations.

Fig. 12 considers the predictions by NN2 on rope B2 when both
geometric and thermal features from the DBZ are considered. The
confidence interval in the prediction is significantly reduced and almost
totally confined to the tolerance bounds. This is seen at the majority of
test times with the exception of between 0 to 40,000 test cycles. The
overestimation in the B model from 4000 cycles until failure is also
corrected to being closer to the true RUL values by introducing the A
rope data.

Fig. 13 shows the 𝑅𝑓 prediction results of using SVM with a linear
kernel when using geometric and thermal features from the DBZ.
The model trained using the B ropes data is shown to significantly
overestimate rope health after around 11,000 cycles but when the A
and B data is included, this period of 𝑅𝑓 predictions is corrected, albeit
with some underestimation after 12,000 cycles.

4.4. Residual analysis

A residual analysis is performed to further investigate 𝑅𝑓 predic-
tions and to compare the differences in results depending on algorithm,
features and training data used.

Fig. 14 shows the residual analysis comparison of using RF with tree
depth 4 and NN2 predictions for rope A2 using only geometric features
from all bend zones. In this specific case, both models were trained
using only the A rope data. The RF model produces low residual values
indicating closer agreement with the ground truth, while NN2 predic-
tion are shown to both overestimate and underestimate as indicated by
the spread of residual values.

Fig. 15 presents the residual analysis comparison of using geometric
and the combined geometric and thermal features. This is done for
rope B3 predictions made using NN2 with features from the DBZ. By
including thermal data, the magnitude of all residuals is reduced to
be within 0.1 of the 𝑅𝑓 ground truth. When comparing predicted and
actual 𝑅𝑓 values, predictions are more effective generally but there is
little effect on improving the predictions at the end of the test.

Fig. 16 provides analysis of improvements that are possible by com-
bining the A and B rope data sets in model training. This is presented
for rope A1 with NN2 using combined geometric and thermal data
from all bend zones. An improvement with the combined training set
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is observed, with magnitude of the outermost outliers being reduced.
Rope A1 completed the least amount of cycles at failure when compared
to the other ropes in the A data set and showed poor prediction results
on models trained on this data set.

5. Discussion

Model performance varied depending on the algorithm and the data
set used. A major difference shown was that RF performs better than
NN for campaign A but NN performs better than RF in campaign B.
Differences in performance can be explained by the training data used,
the size of the data set, and algorithm mechanisms.

5.1. Recorded data and availability

Two of the ropes in campaign A, ropes A1 and A4, broke where the
rope splice was bent over the driving sheave. This led to earlier failure
than for the other ropes of the campaign, and to failure which was not
located where the cameras were, at the test sheave. Still, the failure
mechanism was very similar to what caused failure in the other ropes
tested in this study. RF frequently identified the global elongation as
the most important split variable. In line with this overall sameness of
failure mechanism of all ropes tested, this variable showed a similar
development for all ropes, including ropes A1 and A4.

It was chosen to include the ropes in the analysis, a choice that has
two positive effects. Excluding them would have lead to even less data
for training the machine learning algorithm, and as discussed earlier,
CBOS test data are time consuming and expensive to obtain. Secondly,
in real life, ropes will not always break where expected. Including ropes
A1 and A4 in the data set makes the models able to handle some such
cases, where the deviation from the expectation is not too large.

The model stability is addressed through the 95% confidence in-
terval for the predictions. It was found that combining campaigns A
and B in all cases resulted in a narrower confidence interval than
from each of the campaigns alone. For unstable models, adding new
samples is expected to change the model qualitatively, resulting in
wider confidence intervals. Conversely, the present study’s narrowing
of the confidence intervals indicates a stable model.
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Fig. 12. 𝑅𝑓 prediction using NN2 for rope B2, using geometric and thermal features from DBZ.
Fig. 13. 𝑅𝑓 prediction using SVM, linear kernel for rope B3, using geometric and thermal features from DBZ.
Fig. 14. Residual analysis and comparison for rope A2 predictions made by NN2 and RF, with 200 trees and depth 4 with all features. Both models are trained using only A data.
Fig. 15. Residual analysis and comparison for rope B3 predictions by NN2 using geo and geo+therm data, using DBZ features. Both models are trained using only B data.
5.2. Random forest

RF is formed of several individual decision trees, where data is
separated based on feature values that give the purest split. The global
elongation shows a steady increase during testing, and it will therefore
create one of the best splits in the decision trees of the RFs. However,
this feature will not be available to all trees in the forest, due to feature
bagging. Still, the averaging over 200 trees will ensure its contribution
to the overall forests. This is shown in the residual analysis performed
in Fig. 14, where RF has outperformed NN2. RF was also shown to have
9

a steady balance between slight overestimation and underestimation of
predicted 𝑅𝑓 compared to the true value.

In general, increased tree depth increases random forest accuracy
and improvements by increasing forest size tend to plateau. In cam-
paign B, each rope had fewer records than in campaign A. To avoid
overfitting, the result was shallower trees for this campaign, giving
less accurate RF results. The data is split by random feature sampling
in each tree, there would be slightly more variation in the quality of
fits due to data splits made on less suitable features. This leads to less
accurate RUL predictions as indicated by the higher RMSE and lower
𝑅2 values.
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Fig. 16. Residual analysis and comparison for A1 predictions with geo + therm features from all zones by NN2, using models trained with A data set and combined A + B data
set.
5.3. Neural networks

The NN algorithms performed better in campaign B than campaign
A. All input variables are considered when using NN and depending on
the neurons that randomly dropout the network through regularisation,
this can influence the model. A feature that varies very little during
the testing only contributes noise to a model and impacts performance
negatively. A clear example is comparing the use of geometric and the
combined geometric and thermal feature sets for campaign A, where
thermal features lead to a higher 𝑅𝑀𝑆𝐸. At the lower test tensions
the temperatures do not vary significantly throughout the CBOS tests,
but reach a steady temperature until failure, thus contributing noise to
a potential model formulation. However, the temperatures recorded in
campaign B are noticeably higher and have more variation between the
SBZ and DBZ in line with the decreasing 𝑅𝑓 , therefore contributing to
a better model. Due to campaign B having both less data coupled with
more variation in measurements leads to NN finding a better model
than developed for campaign A. Both NN configurations show slight
overestimation in the latter stages of the CBOS tests but not to the same
extent as SVM.

Generally, it is noted that despite inconsistent numbers of test cycles
in campaign A, it is still possible to achieve acceptable results within
the range of ± 20% of the RUL ground truth. Additionally, NN is shown
to struggle with predicting RUL in the earlier stages of the testing in
particular for some ropes in the data set. Initially, the various widths,
lengths and temperatures monitored will not change until later in the
test and therefore the networks struggles to predict the distinct 𝑅𝑓
values at this testing stage.

5.4. Support vector machine

The SVM algorithms performed poorly compared to the other algo-
rithms applied in this study. If the hyperplane fit to the data is poor
and non-representative, it will in turn have a detrimental impact on
𝑅𝑓 prediction using the algorithm. As with NN, the presence of noise
via lack of variation in certain features will negatively influence this
fit. This is particularly prevalent in campaign A, however it is noticed
that SVM performed slightly better in campaign B due to the greater
variation in values measured. It is also shown that the fit created by
the linear kernel suits this rope test data set better than the Gaussian
kernel. The SVM is also shown to overestimate rope health towards the
later stages of the CBOS tests.

Potential improvements for SVM could be reducing the number of
features used to create a simpler model. There is also further potential
in hyperparameter optimisation for both linear and Gaussian kernels
that can contribute to improve models.
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5.5. Feature selection

Creating models from different feature sets consisting of the dif-
ferent bending zones features also influences algorithm performance.
During CBOS testing, the SBZ and DBZ are subject to substantially
more bending, whereas there is none present in the SZ. Therefore, in
line with what was previously stated about NN, measurements from
the SZ essentially contribute noise in the modelling process. As only
the features that give the best splits in the data are considered from
the random subsets in RF, the likelihood that features from SZ will be
consistently picked as splitting criteria in individual trees is extremely
low, hence minimal effect on both 𝑅𝑀𝑆𝐸 and 𝑅2 values.

However, limiting the features used to only those from the DBZ is
shown to improve algorithm performance for both NN and SVM. There
was very little difference between the results from models that used
all features and the combination of SBZ and DBZ features but the most
accurate results for SVM were achieved by reducing to only training
with DBZ features. More frequent repeated bending will cause more
accumulated damage and variation in these features will relate better
to the associated RUL value.

The residual analysis performed in Fig. 15 also shows the advantage
of combining both geometric and thermal features as training data. The
higher temperatures in campaign B in this example contribute features
with greater variation and therefore improve the prediction capabilities
of the NN2 model used in this example.

5.6. Combining data sets

Combining the two data sets for predictions based on cross val-
idation had both a positive and negative impact depending on the
algorithm considered. The main benefactors of this approach were the
NN configurations, as shown by improved results in average 𝑅𝑀𝑆𝐸
and 𝑅2 for both the A and B ropes. Introducing thermal features for A
rope predictions led to decreased performance when only considering
the A data set, but improved for the cases where SBZ+DBZ and DBZ
features are used with models trained using the A and B ropes. This
can be attributed to the different thermal behaviour in each data set,
with the thermal information from the B ropes contributing to better
predictions. From a B ropes prediction perspective, combining the A
and B data sets creates a larger training data set and improves esti-
mations from both NN and SVM. This suggests that simply increasing
the amount of training data with slightly different feature behaviours
will benefit model fitting in these cases. The observations support the
finding from this study that unique rope types subject to different
relative test tensions can be combined to produce more accurate results.

The residual analysis performed in Fig. 16 also shows the advantage
of combining the separate test campaigns. In campaign A, the thermal
data varied very little due to the lower test tension applied. Therefore
the little variation in the thermal data would contribute noise to the
modelling process. The introduction of campaign B, improved the
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models due to both the presence of similar global elongation trends
and thermal features that showed more variation due to the higher test
tension.

6. Future work and adaptation for field deployment

From the perspective of RUL prediction in CBOS testing, the effec-
tiveness of ML approaches is influenced by the quality and quantity of
data recorded. Though good prediction results are demonstrated with
a small pool of data at two safety factors, further ML application to
CBOS test sets performed at a wider range of lower safety factors is
needed. These further tests would also benefit from more frequent data
recording, that would give a more rounded picture of the performance
of a specific rope type. This would be beneficial for methods such as
RF, which gave excellent results in campaign A but had its performance
inhibited by the limited tree depths in campaign B. Furthermore, it is
shown that these further enhanced data sets can be combined into a
common training data pool that can be used to make predictions on
new test data from distinct rope types from various test conditions.

Data availability is another limiting factor to further development
of ML algorithms for application to fibre ropes. Other engineering com-
ponents such as bearings and motors benefit from publicly available
datasets and can therefore specifically focus on further development of
prognostics methods, rather than the condition monitoring framework
for data acquisition.

The data acquisition methods can also be further developed to
improve the presented models. The current method does not account
for the internal degradation for the rope, which would provide another
perspective to assess damage in fibre rope. This could be done through
embedded sensors that could account for changes in internal temper-
ature or further exploration of localised strain. Additionally, as the
structure of the rope fuses with the test progression, acoustic sensors
could be placed on the sheave or internally to monitor changes in the
micro-structure of the rope.

This study provides an overview of the main ML techniques used
for RUL prediction, but each algorithm mentioned has potential for
further exploration. This was done on tabular data that dealt with
measurable physical quantities such as width, length and temperatures
but there are still further opportunities for enhancement by using CNN
to quantify damage in the rope condition directly from visual and
thermal images. This could be extended to automatically detect visible
abrasion, fluffiness, polishing and broken strands from the same images
used in this study. ML as a method combined with current inspection
methods would further facilitate its application in real time inspection
of fibre ropes in cranes and would provide a useful additional source
to make decisions on rope retirement.

However, there is further work required to fully adapt the ML
approach usage in offshore construction cranes. Firstly, CBOS testing is
an example of a run-to-failure test where a constant tension is applied
at the same rope sections. In real practice, it will be different sections
of the rope that will be subject to bending depending on lift depth
and sea state during operations. Other factors such as payload size, the
temperature at lift location and the operation time will also influence
rope longevity. Data from potential lifting campaigns would have to
be recorded as part of a wider rope condition monitoring system,
where data is continually added to form a model with historical data.
This would create a model that specifically pertains to fibre rope use
for offshore lifting, rather than relying on more commonly used S–N
curves for these specific types of ropes. The findings from this study of
different ropes at different relative test tensions show there is potential
in using data from a fleet of fibre rope cranes performing different
lifting operations to validate the condition of an individual fibre rope
crane.

Intelligent prognosis techniques would then be applied to assess
this data and establish what are the most relevant features to be
11

monitored in practice and further develop a retirement criteria based on
informed data-driven methods for condition based maintenance, rather
than manual inspection geared towards reactive and time-based main-
tenance practices. In this study it is shown that there are benefits from
monitoring the length, both locally and globally, and the temperature in
different bend zones. Such measurements would be made from sensors
collecting visual and IR data, ideally from a location near the main
sheave, from a rope that has clearly defined sections. The global rope
length measurement would also have to be incorporated through some
form of embedded sensor measurements within the rope structure to
be monitored continually during use. This could be done in the form
of fibre optic threads, allowing the changes in the light propagation to
be continually measured and estimates to be made on the global length
changes.

7. Conclusion

Several approaches for RUL prediction in fibre ropes during CBOS
testing are discussed in this work. The algorithms in this study are
capable of predicting a continuous target variable, known as 𝑅𝑓 , for
ropes using features derived from an experimental set-up that uses
computer vision and thermal monitoring.

In this investigation machine learning methods, such as neural
networks, random forest and support vector machine were applied for
prognostics for two sets of CBOS test data at different safety factors. For
data set A, random forest showed the most promise as a RUL prediction
method, while NN was the best performing algorithm in data set B. The
benefit of combining data from different types of ropes for training data
for RUL prediction is also demonstrated for NN and SVM. RF has been
shown to be the most effective in this study, particularly in cases where
larger amounts of data are available, allowing a suitably complex model
to be developed based on features selected by the algorithm. NN is also
shown to be useful, but slightly less effective compared to RF. If large
amounts of data are not available, then NN application with more focus
in including only relevant features is a useful fall-back solution.
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