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Abstract—We address the problem of scheduling water re-
sources in a power system via approximate dynamic programming.
To this goal, we consider the use of quadratic approximate value
functions for the finite horizon economic dispatch problem with
convex stage cost and affine dynamics. Evaluating the achieved
policy supposes solving a quadratic program at each time step,
while value function fitting can be cast as a semidefinite program.
We test our proposed algorithm on a simplified version of the
Uruguayan power system, and obtain simulations that show
promising performance.

Index Terms—Approximate dynamic programming, economic
dispatch, convex optimization, power systems.

I. INTRODUCTION

Optimal operation of multi-reservoir systems for economic
dispatch is a topic that has been extensively studied [1]–
[3]. Succintly, the goal is to obtain a sequence of release
decisions that achieve system operation with minimal cost over
a planned horizon, while also meeting operational constraints.
In systems involving large reservoirs decisions become coupled
across time, while also being dependant on the availability of
water —which is typically stochastic. The usual framework
for solving these kinds of problems is (Stochastic) Dynamic
Programming, where the state of the system typically includes
the storage level in each reservoir. Standard practice involves
discretizing the state variable and computing the value function
at each point. However, the number of needed evaluations grows
exponentially with the number of states, a phenomenon known
as the Curse of Dimensionality [4]. In order to circumvent this
issue, several (approximate) techniques have risen which allow
for the problem to be solved in continuous spaces. One of such
celebrated algorithms is SDDP which seeks to approximate
the value function by a set of lower bounding affine functions
[5], [6]. However, getting a rich enough approximation might
entail the use of too many hyperplanes [cite needed]. Moreover,
under quadratic stage cost and affine dynamics the resulting
value functions are provably convex quadratic [7]. Given this,
we sought to explore an alternative simpler parametric model.
Specifically, we aim to tackle this problem by approximating

each value function with a suitable convex quadratic function.
This simplified model allows us to formulate the scheduling
problem as a special case of convex approximate dynamic
programming, therefore making the problem tractable on a
continuous state manifold while also relaxing the need of
computing exact averages, something typical of SDDP [cite
needed].

There has been many a work regarding approximate convex
dynamic programming. For a certain class of scalar storage
problems, the value functions can be proven to be convex piece-
wise linear, and algorithms with proven convergence guarantees
have been developed [8], [9]. Quadratic approximate dynamic
programming has been used before (see e.g. [?]), especially
for systems with quadratic cost and transition dynamics that
are affine in the control (see [10] for examples including
trajectory tracking and portfolio optimization). We build on
these contributions for modelling the water scheduling problem
as a quadratic approximate dynamic program.

The paper is outlined as follows. Section II briefly reviews
dynamic programming and extends it so as to include inflow
evolutions. Section III presents the proposed algorithm, which
involves sequentially solving several quadratic programs [11,
p.152] and one semidefinite program [12]. In Section IV we
present our numerical results applied on the Uruguayan power
system, while also detailing how to incorporate hydrologic
uncertainty in our model. Conclusions are given in Section V.

II. DYNAMIC PROGRAMMING

Consider a simple model of operation of a hydroelectric sys-
tem over a horizon K, with time indexed as k = 0, 1, . . . ,K−1.
A state vector xk ∈ Rn represents current storage level at
n reservoirs; a control vector uk ∈ Rm models the actions
the system operator may take, including the release and spill
term on each hydroelectric plant and the economic dispatch
decisions on other types of generators; water inflows wk ∈ Rp

at the reservoirs are modeled as correlated noise. Notice that we
don’t enforce p = n since there might not be recorded inflows



at some of the reservoirs. The cost of operation of the system is
modeled through a function gk(xk, uk, wk), which may include
the cost of thermal generation and a penalty for deviating from
economic dispatch. Our goal is to obtain a sequence of control
actions u = {u0, . . . , uK−1} such that, for a given starting state
x, the expected cost of running the system is minimized:

E

[
min
u

K−1∑
k=0

gk(xk, uk, wk) | x0 = x

]
(1)

xk+1 = fk(xk, uk, wk)

Notice that this formulation —which first computes a mini-
mum and then an expected value— differs from typical dynamic
programming approaches [13], where the order is inverted. Im-
plicitly, we are assuming at the k−th stage that the disturbance
wk is known. This means full knowledge of total inflows at the
start of each time interval.

Dynamic Programming allows for decoupling of the opti-
mization problem (1) across stages. For this purpose, let us
define the cost-to-go function from stage k onwards:

Vk(x) = E

 min
uk,...,uK−1

K−1∑
j=k

gk(xk, uk, wk) | xk = x

 (2)

As usual, the main idea behind this decoupling is to compute
the cost-to-go for stage k + 1 and, in a recursive manner, use
this solution to compute the cost-to-go for stage k by using
Bellman Equation [13]:

Vk(xk) = E
[

min
uk∈Uk(xk,wk)

{gk(xk, uk, wk) + Vk+1(xk+1)}
]
(3)

where the set Uk(xk, wk) involves box-type constraints (e.g.:
release and spill terms must be non-negative and bounded),
power balance, etc. It can be shown that the value functions are
convex, given that the stage cost is convex and the transition
dynamics are affine in both the state and the control [10].

A. Hydrologic state space model

To capture correlations in water inflows across stages we
expand the state variable to include a discrete Markov state
ek = e that summarizes the current hydrological environment.
Its dynamics are governed by an homogeneous Markov chain,
with transition probabilities:

Pee′ = P (ek+1 = e′ | ek = e) (4)

This probabilities may be estimated from historical data. One
possibility is letting ek take two values (corresponding to dry
and wet) as introduced in [14]. Local practice in Uruguay is to
use a 5-level model which spans from very-dry to very-wet
[15], with transitions given by a non-homogeneous Markov
chain. We propose keeping this 5-level discretization while
modelling the hydrologic state evolution as time invariant. This

entails procuring a single transition matrix P ∈ R5×5 from
the available data, which will be accomplished using Principal
Component Analysis [16], [17]. A more thorough description
of our proposed model is presented later in Section IV-B.

We separate the hydrologic state e from the reservoir levels
x and solve the expected value in Bellman Equation in two
steps. Since this hydrologic state can only take discrete values,
we can compute a different value function Vk,e(x) for each
possible value of e. Then, for given ek = e, we estimate the
future cost-to-go by an expected value over the next hydrologic
state e′, computed according to the finite probabilistic model
given in (4). The generalized Bellman iteration thus becomes:

Vk,e(x) = E

[
min
u

{
gk (x, u, w) +

∑
e′

Pee′ .Vk+1,e′ (x
′)

}]
(5)

x′ = fk(x, u, w)

u ∈ Uk (x,w)
where the outmost expectation is taken over inflows w

conditioned to ek = e. The rightmost sum in (5) can be
interpreted as an estimate of the future cost-to-go given the
current hydrologic state. If the costs gk and the dynamics fk
are affine (5) is a linearly constrained quadratic program [11,
p.152] and can be efficiently solved using standard techniques.

III. ALGORITHM

A. Backward pass
As has been argued before, our goal is to compute ap-

proximate value functions Ṽk,e(x) quadratic in x, for every
stage k and hydrologic state e. Each iteration of the backward
dynamic programming algorithm is subdivided into two parts: a
sampling stage and a fitting stage. The sampling stage consists
of obtaining state-cost pairs (x, β) by solving an approximate
Montecarlo-based version of (5):

β̂k,e(x,wi) = min
u

{
gk (x, u, wi) +

∑
e′

Pee′ .Ṽk+1,e′ (x
′)

}
(6)

βk,e(x) =
1

M

M−1∑
i=0

β̂k,e(x,wi) (7)

Upon obtaining N pairs
(
xsk, β

s
k,e

)
, we fit the quadratic value

function by solving:

min
P,q,r

N−1∑
s=0

(
xsk
>Pxsk + q>xsk + r − βs

k,e

)2
(8)

s. t.: P � 0

The computational complexity of our proposed method re-
sides in solving N×M linearly constrained quadratic programs
(as in (6)) and one semidefinite program (as in (8)) for each
stage and hydrologic state.



B. Forward pass

Once all the value functions are approximated, the expected
cost of running the system from a certain initial state x
and certain hydrologic state e could be solved for by simply
evaluating the fitted function Ṽ0,e(x). However, each stage of
the backwards phase introduces errors on the approximations,
and therefore the predicted cost Ṽ0,e might differ from the true
cost substantially. In order to gauge the actual cost obtained
by our methodology, a forward phase is carried out. This phase
implements a Montecarlo simulation scheme which sequentially
solves the one-stage optimization problem:

uk = argmin
u∈Uk(xk,wk)

{
gk (xk, u, wk) +

∑
e′

Peke′ .Ṽk+1,e′ (xk+1)

}
(9)

xk+1 = fk(xk, u, wk)

starting at k = 0 with initial storage level x0 = x and
hydrological state e0 = e. The incurred cost of operation over
the planned horizon is the expected sum of the running cost
per stages:

total cost(x, e) = E

[
K−1∑
k=0

gk(xk, uk, wk) | x0 = x, e0 = e

]
(10)

where the expectation is taken over all possible sequences
{(wk, ek+1)}k=K−1

k=0 , and the control laws uk are derived from
(9). This simulated cost corresponds with what would be
obtained by deploying our policy, and is therefore a better
figure of merit for evaluating performance than the predictions
Ṽ0,e(x).

Moreover, the obtained policy’s performance can be con-
trasted with the performance of the myopic policy, which at
time k seeks to minimize the current stage cost:

umyopic
k = argmin

u∈Uk(xk,wk)

gk (xk, u, wk) (11)

xk+1 = fk(xk, u, wk)

Intuitively, at each step the myopic policy will use up
(possibly all) the available water, minimizing the current cost
and disregarding the utility of water in the future. While at
first glance a reasonable thing to do, this behavior is generally
suboptimal due to the expected inflows over the next steps and
the spatial interconnection of the dams. For example, it could
be better suited to store water now (at the expense of a higher
cost) for use later, when a drought is expected.

Hope is set for our methodology to outperform the myopic
policy. But how good can our policy really be? Although this
question remains unanswered, we can construct a lower bound
on the optimal performance. For a given inflow sequence w =
{w0, . . . , wK−1} the optimal decisions u = {u0, . . . , uK−1}
and the optimal cost can be obtained by solving the K−stage
problem:

uLB(x,w) = argmin
u∈U(x,w)

K−1∑
k=0

gk(xk, uk, wk) (12)

xk+1 = fk(xk, uk, wk) ∀k = 0, . . . ,K − 1

x0 = x

where u ∈ U(x,w) means that uk ∈ Uk(xk, wk) for each k,
with the sets Uk(xk, wk) described in (3). Problem (12) solves
for the whole decision sequence u = {u0, . . . , uK−1} at once,
by being given full knowledge of all the noise realizations w at
the start of the planning horizon. This is in sharp contrast with
our proposed algorithm, where at each stage k the controller
only has access to the current noise wk. The expected cost of
running (12) over all the possible inflow sequences w is indeed
a lower bound on (10), since no approximations are used in
the objective function and more information is available for
planning.

IV. TEST CASE: THE URUGUAYAN SYSTEM

A. The Uruguayan system
Uruguay is a small country with a demand profile that seldom

surpasses 2000MW . It is comprised of 4 hydroelectric plants:
3 of which are located in a cascade-like fashion along the Rı́o
Negro basin; the fourth one is located in the Rı́o Uruguay, and
is shared with neighbouring Argentina. The combined installed
power in said facilities is roughly 1500MW . There are a
number of wind farms in Uruguay, with a total installed power
amounting to more than 75% of the country’s peak load. In
recent years, there has been a surge in the installation of solar
farms as well [18].

We will employ a one-year horizon with weekly decisions
(K = 52 weeks in a year, k = 0, . . . ,K − 1). In that regard,
non-dispatchable renewables (wind and solar) will be left out of
our model since they typically vary on a much faster timescale.
Generation will be provided by the four hydroelectric plants and
by a single thermal generator representing the aggregate thermal
generation of the whole system. The state vector xk ∈ R4

represents the current volume at each of the four reservoirs.
The control uk =

[
r>k , s

>
k , tk

]> ∈ R9
+ consists of the release

(rk ∈ R4
+) and spill vectors (sk ∈ R4

+) and the total thermal
generation (tk ∈ R+). The state dynamics are described by

xk+1 = f(xk, uk, wk) = xk +B (rk + sk) + wk (13)

where B is the coupling matrix that captures the intercon-
nection between hydro plants:

B =


−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 0 −1

 (14)

and the vector wk gathers the weekly inflows at each reser-
voir, as detailed in the next Section. Finally, the cost function
g(tk) is the cost incurred by thermal generation, modeled as
linear and time-invariant.



B. Markov Model estimation

The series used in this study case consist of the weekly inflow
data from the three main reservoirs in Uruguay collected for
105 years.

At first, the negative values are replaced by zeros and then,
for this application, all the zeros are handled as Not Available.

1) Normalization: Each one of the three series of hydraulic
inflow is divided by its weekly median to remove the seasonal
variations.

Graficas de medianas anuales, no se si irı́an acá
Then, when logarithm is applied to the series obtained

before, it can be observed that the new series present a normal
distribution.

Histogramas de series lognormales
2) Model estimation: For the model estimation the rows with

Not Available data are removed, so they are not considered in
the model.

a) Clustering considering three-dimension data.: In
this first model, the K-means algorithm is applied to the three
variables data set. This algorithm consists in separating the data
into K clusters in a way that the euclidean distance between
each point to the centroid of the assigned group is minimized.

The basic idea of the algorithm is: given an initial but
not optimal clustering, relocate each point to its new nearest
center, update the clustering centers by calculating the mean
of the member points, and repeat the relocating-and-updating
process until convergence criteria (such as predefined number
of iterations, difference on the value of the distortion function)
are satisfied.cita

For this study, a five cluster model is chosen and it is
important to highlight that numbers assigned (1, 2, 3, 4, 5)
to each cluster are not related to the hydraulicity of the group
because they are assigned randomly by the algorithm. Finally,
the data which were not assigned to any cluster because one
or more of their components were equal to zero, are studied
replacing the zeros by a small value. Then to label them,
the modified points are assigned to a cluster in a way that
the euclidean distance between its centroid and the point is
minimized. grafica cluster k-means

b) Clustering considering principal components analysis
(PCA):

In this case, the clustering method is applied to a linear
combination of the three inflow series. The coefficients used in
the linear combination are the result of the principal component
analysis of the series that considers the direction in which the
variation of the series is maximized. This direction is now
the principal axis, and then, the other axes are determined
because of the orthogonality. The linear combination consists
of projecting the three components of the points into these axes.

To find the principal direction, the covariance matrix of
the data set is calculated, as well as its eigenvectors and
eigenvalues. The principal direction is the one associated with
the biggest eigenvalue, and before doing the projection into this
direction, the eigenvector is normalized with the 1-norm. Once
we have the projected series, the clustering method is applied.

In this method the 20% percentile is calculated and then the
data is labeled according to the five ranges determined between
the percentiles. Afterward, the points which were not labeled
into any cluster because one or more of their components were
equal to zero, are assigned to the first cluster.

grafica cluster PCA
c) Markov process estimation:

For both clustering methods explained before, in order to
estimate the Markov process, the transitions between different
clusters are counted.

The parameters pij of the markovian matrix P represent the
probability of making a transition from cluster i to cluster j.
This parameters are calculated as follows:

p̂ij =

∑T
t=1 1xt−1=i,xt=j∑T

t=1 1xt=i

(15)

where xt represents que state in time t, and the sum is computed
along the complete state secuence.

C. Simulation using Markov transitions

Trials begin at an initial state x0 and initial hydrologic state
e0. At each time step the hydrologic sequence is updated with
the markovian matrix P derived in (15), and a disturbance
vector wk corresponding to said hydrologic state is sampled.
In order to approximate the total cost of running the system,
we substitute the expected value in (10) with a sample mean
carried out over T = 105 forward passes.

1) Performance for varying training points: State-cost pairs
are sampled by partinioning the state space in a grid-like
fashion. Each of the four reservoirs i = 0, . . . , 3 is uni-
formly partitioned in Ni steps, yielding a total number of
N = N0 × N1 × N2 × N3 state points. The cost at each
point is obtained by averaging over M = 10 different noise
realizations. It is worth emphasizing that the state variables
are not discretized, but these grid points are knots where we
anchor our quadratic model to find the specified parameters
using (8). The results shown herafter are for varying N0, which
corresponds to the discretization of the largest reservoir Bonete.
For the other reservoirs we fix Ni = 3. As an illustrating
example, Fig. 1 shows a cut of the quadratic obtained for the
fourtieth week of the year with N0 = 10.

Sampling more state-cost pairs at every stage naturally
increases the computational effort required to perform the
backward pass (Table I). Nonetheless, our experiments show
that there is no significant performance gain in the obtained
policy if more points are used in the training phase (Fig. 2).

TABLE I
TRAINING TIME AS A FUNCTION OF DISCRETIZATION STEPS ON BONETE

N0 3 5 10 15
Time (s) 6113 11289 19312 29084



Fig. 1. Fitted quadratic function for the fourtieth week of the year and wet
hydrologic state (e40 = 1) for N0 = 10. In red: sampled state-cost pairs (using
(6)–(7)). In blue: fitted quadratic function (using (8)). Note that the cost-to-go
seems to primarily depend on the state of Bonete dam.
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Fig. 2. Percentual cost deviation with respect to N0 = 10 as a function of
Bonete’s initial level. Each line corresponds to a different policy trained with
varying degree of discretization of Bonete (N0). Note that all the policies attain
a similar cost.

2) Bounds on performance and comparison with myopic
policy: We can compare the predicted cost-to-go at the start
of the year V0,e0(x0) with the simulated total cost

∑K−1
k=0 gk

achieved by running the system forward starting from e0 and
x0, following the learned policy (see (9)–(10)). Fig. 3 shows
a comparison between the predicted and simulated cost as a
function of the level of the largest reservoir, while starting from
a neither-dry-nor-wet hydrologic state (e0 = 2). A lower bound
is constructed by solving the K−stages problem (12) given full
knowledge of the noise realizations. Our experiments show that
the predictions Ṽ0,e are typically optimistic.

The policy achieved by our proposed algorithm typically
outperforms the so-called myopic policy (11), in particular for
non-empty initial reservoir levels, as portrayed in Fig. 4.

D. Simulation using historical series

We also perform simulations using the historical series of
inflows that were used for fitting our markov model. We
compare the cost attained by our policy with the cost attained
by a policy that was trained with the Markov model currently
in use in Uruguay, and obtain better performance (see Fig. 5).
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Fig. 3. Annual cost as a function of largest reservoir initial level for e0 = 2:
comparison between simulated and predicted costs, along with a performance
bound. Simulated costs are averaged over T = 105 different trials. Mean cost
is plotted in solid blue; shaded interval is defined as ±

√
σ/T where σ is the

sample deviation.
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Fig. 4. Comparison between the myopic (blue) and learned policy (orange)
for varying initial storage levels, along with a performance bound. Our policy
achieves a 4% reduction on cost w.r.t. the myopic policy when storage levels
are half-full, and performs at most 9% worse than the lower bound policy.

V. CONCLUSIONS

We proposed the use of convex quadratic functions to approx-
imate the cost-to-go of a simple economic dispatch problem.
We showed that training our method involves solving a large
number of convex optimization problems, typically quadratic
and semidefinite programs, while computing our policy consists
of solving a quadratic program at each step. We benchmarked
our algorithm on the Uruguayan power system, obtaining per-
formance that surpasses that of a myopic policy, while incurring
a cost that is not far from a theoretical lower bound.
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Universidad de la Repúlica (Uruguay). Facultad de Ingenierı́a. Instituto
de Ingenierı́a Elétrica, Number 7-Dec, Tech. Rep., 2008.

[16] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemometrics and intelligent laboratory systems, vol. 2, no. 1-3, pp. 37–
52, 1987.

[17] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley
interdisciplinary reviews: computational statistics, vol. 2, no. 4, pp. 433–
459, 2010.

[18] “ADME: Administración del mercado eléctrico,” www.adme.com.uy, ac-
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