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Abstract 

Enhanced envelope spectrum (EES) and improved envelope spectrum (IES) generated from spectral 

coherence (SCoh) are proven to be more robust fault detection tools than squared envelope spectrum 

(SES). However, EES cannot effectively detect the fault-induced components under strong interference 

noise and IES can only capture the information of a fault-sensitive resonance spectral frequency band. 

To overcome these problems, weighted combined envelope spectrum (WCES) from SCoh is proposed 

as a novel fault detector. WCES integrates the fault components distributed in multiple resonance 

frequency bands using normalized feature energy and removes the envelope spectrum slices with less 

fault information to exclude disturbance noises. The performance of WCES is validated using 

simulations and experiments and compared with the advanced envelope spectra. The results 

demonstrate that WCES can effectively detect bearing faults under strong interference noise and 

multiple resonances compared with the SES, EES and IES, and has potential application value in 

bearing diagnostics. 

Keywords: Weighted combined envelope spectrum; improved envelope spectrum; IESFOgram; 

spectral coherence; bearing diagnostics 

1. Introduction 

Rolling element bearing is a core component that ensures the high-speed rotation of shafts or 

rotors in modern mechanical systems, such as train wheelsets, aero-engines and various production 

machines, and their damage or failure has an important impact on production, transportation and safety. 

Fault diagnosis is an effective means to prevent mechanical failures and improve economic benefits. 

Signal-based fault diagnosis methods can be divided into non-machine learning methods and machine 

learning methods. The machine learning-based methods, such as transfer learning [1,2], can effectively 

realize the classification and recognition of multiple faults, but require a large amount of sample data 

and labeling data. Among non-machine learning methods, statistical indicator-based methods that 

benefit from easy implementation are commonly used in bearing fault detection, such as kurtosis [3] 

and entropy [4,5], but they cannot accurately identify fault types and usually require some reference 

data. In contrast, the frequency domain methods can accurately identify the fault type and do not 

require reference data and a large amount of sample data. However, because the signatures induced by 

bearing defects are often contaminated by interference noises from outside and inside the machine [6–

8], some signal processing techniques are usually used for feature extraction before demodulation 

spectrum analysis, such as empirical mode decomposition [9], singular value decomposition [10], 

deconvolution [11], autocorrelated envelopes [12] and morphological filtering [13]. 

Local damage on bearing components usually induces repetitive transient impulses with a specific  
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Nomenclature  

Anomalous Envelope Spectrum AES 

Ball Pass Frequency of Outer Race BPFO 

Ball Pass Frequency of Inner Race BPFI 

Combined Envelope Spectrum CES 

Combined Improved Envelope Spectrum CIES 

Diagnostic Feature DF 

Enhanced Envelope Spectrum EES 

Envelope Spectrum Slice ESS 

Envelope Spectrum Slice Weight ESSW 

Generalized Integrated Spectrum GIS 

Improved Envelope Spectrum IES 

Improved Envelope Spectrum via Feature Optimization-gram IESFOgram 

Normalized Feature Energy NFE 

Spectral Correlation SC 

Spectral Coherence SCoh 

Squared Envelope Spectrum SES 

Signal-to-Noise Ratio SNR 

Weighted Combined Envelope Spectrum WCES 

Weighted Enhanced Envelope Spectrum WEES 

Weighted Envelope Spectrum WES 

 

characteristic frequency in vibration signals (at constant rotating speed) [14]. Squared envelope 

spectrum (SES) is a well-established method for bearing diagnostics by revealing the defect-induced 

characteristic frequency and its harmonics, but it performs poorly under strong interference noise. An 

effective solution is to perform SES analysis only on the fault-related resonance frequency band instead 

of the full frequency band to eliminate the interference noise. Many frequency band selection 

approaches have been developed for mechanical fault diagnosis, such as blind methods [15–20] and 

targeted methods [21–24]. The comparison of different band selection techniques can be referred to 

[23,25,26]. A popular and representative method is the fast kurtogram developed in [15], which uses a 

filter bank with 1/3-binary tree structure to split the vibration signals into a group of filtered signals 

with different center frequencies and limited bandwidths and takes the kurtosis of the narrow-band 

filtered signal to determine a frequency band with rich fault components. However, the fast kurtogram 

tends to choose the impulsive frequency band instead of the fault-related frequency band when 

confronted with strong random impulses [16]. 

The vibration signals induced by bearing defects have been proved to be second-order 

cyclostationary (i.e., signals contain hidden periodicities), and an effective analysis tool is the spectral 

correlation (SC) or its normalized form, namely the spectral coherence (SCoh) [14,27,28]. The SC and 

SCoh are dual-frequency representations that can simultaneously reveal the carrier frequency and 

cyclic frequency (and its harmonics) induced by bearing defects. It has been proved that the spectrum 

sequence generated by integrating the SC over all spectral frequencies is equivalent to the Fourier 

transform result of the squared envelope of the analyzed signal [27], which indicates an alternative 

approach to obtain the envelope spectra. The SES and enhanced envelope spectrum (EES) [29] have 

been constructed by integrating SCoh in the full spectral frequency band and used for fault detection of 
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rotating machinery. The EES usually performs better than the SES in enhancing non-zero cyclic 

components, but it cannot effectively reveal the fault-induced components under strong interference 

noise. Therefore, the spectrum obtained by integrating the SCoh over a certain spectral frequency band 

with rich fault information, namely improved envelope spectrum (IES) [30], was suggested to enhance 

the fault-related cyclic components and perform fault detection [29]. The selection of informative 

spectral frequency band is naturally transformed into a key factor affecting the fault diagnosis 

performance. An informative band selection method using the ratio of L2 norm to L1 norm [31] was 

proposed to distinguish multiple informative spectral frequency bands of the SCoh for constructing 

fault-sensitive IESs, but the bandwidth is fixed instead of determined adaptively. Recently, an improved 

envelope spectrum via feature optimization-gram (IESFOgram) method [32] was developed to 

adaptively select a fault-sensitive spectral frequency band of the SCoh to obtain the optimal IES and 

performed well in fault detection of gearbox bearings [33–35]. The IESFOgram splits the full spectral 

frequency band of the SCoh into a 1/3-binary tree structure and uses a targeted feature estimated from 

the IES of the narrow band to identify an optimal spectral frequency band. However, when the fault 

information is distributed in multiple resonance frequency bands, the IES can only capture the 

information of a certain resonance frequency band instead of all the resonance frequency bands. 

Subsequently, the IESFOgram was extended to construct a weighting function along the spectral 

frequency to obtain the combined IES (CIES) [36] for integrating the fault components around multiple 

resonant frequencies. The CIES assigns different weights to the envelope spectrum slices (ESSs) of the 

SCoh participating in the construction, presenting a spectrum construction strategy different from the 

EES and IES. However, the fault-unrelated components in the ESSs with small weights may affect the 

identification of the fault components, due to the consideration of the full spectral frequency band. 

To improve the performance of the SCoh-based envelope spectrum analysis, this paper proposes a 

novel envelope spectrum constructed from the SCoh as a bearing fault detector. The presented method 

integrates the fault components distributed in multiple resonance frequency bands and reduces the 

interference of the fault-unrelated frequency bands. The performance of the developed method is 

validated on the bearing datasets from simulations and experiments and compared with the advanced 

envelope spectra. To sum up, the main contributions of this work are as follows: 

(1) A weighted combined envelope spectrum (WCES) without dividing the spectral frequency 

band is proposed by integrating the SCoh with a normalized weight that assesses the level of 

fault-related information in each ESS. 

(2) A threshold is introduced into the construction of normalized weights to identify the 

informative ESSs, which enables the proposed WCES can integrate fault information distributed in 

multiple resonance frequency bands, and remove the ESSs with less useful information to exclude the 

fault-unrelated interferences. 

(3) The efficiency of the developed WCES is demonstrated using the different simulation signals 

and experimental bearing datasets, and the comparative analyses with SES, EES and IES illustrate the 

advantages of the developed WCES in bearing diagnostics under multiple resonances. 

The remainder of this article is arranged as follows. In Section 2, the basic theory of the advanced 

envelope spectra for bearing diagnostics is briefly reviewed, including the SES and EES based on the 

SCoh, and the IES and CIES based on the IESFOgram. Section 3 introduces the theoretical basis of the 

proposed WCES in detail. In Section 4, the bearing diagnostic capability of WCES is validated on the 

simulated signals with single and double resonance frequencies and is compared with the 

IESFOgram-based IES. Section 5 presents the results of the WCES and the IESFOgram-based IES on 
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the experimental bearing datasets. In Section 6, the main conclusions of this paper are summarized. 

2. Review of envelope spectra based on the spectral coherence 

This section reviews the basic theory of the envelope spectra based on the SCoh, including the 

SES, EES, and the IES and CIES obtained by the IESFOgram, and briefly discusses the characteristics 

and limitations of these methods. 

2.1. SES and EES based on the spectral coherence 

Let  nx t , , 0,1, , 1n st n F n N   , be a bearing vibration signal, where sF  and N  are the 

sampling rate and length, respectively. Assume that the bearing vibration signal  nx t  is second-order 

cyclostationary, its instantaneous autocorrelation function can be obtained as [29]: 

      ,x n m n n mR t E x t x t 


                                           (1) 

where E   is the expectation operator,   is the complex conjugate, and m sm F  . The SC is 

defined as the two-dimensional Fourier transform of the  ,x n mR t   [29]: 
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The fast SC estimator proposed in [29] is employed to calculate the SC in this study. Usually, the 

normalized version of the SC, namely the SCoh, is used in practical applications, and defined as 

follows [28]: 
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The magnitude of the SCoh is between 0 and 1. By integrating the SCoh over the full spectral 

frequency range, the SES is defined as follows [27]: 

   
/2

0

1
,

2

sF
SES

x

s

S f df
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                                            (4) 

Integrating the modulus of SCoh along the spectral frequency axis, the EES is formulated as 

follows [29]: 

   
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S f df
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                                            (5) 

The definitions of the SES and EES indicate that the SCoh can be interpreted as a set composed of 

a series of parallel envelope spectra at the discrete spectral frequencies, thus the slice spectrum of the 

SCoh at a specific spectral frequency can be called the envelope spectrum slice (ESS). 

When the bearing components are damaged, the fault information is not uniformly distributed in 

the full spectral frequency band. Specifically, the fault-related components are mainly concentrated in 

the frequency bands around the resonance frequencies, while other frequency bands are mainly 

dominated by the interference components. Neither the SES nor EES consider the difference of the 

fault information in the ESSs and adopt an equal weight strategy in the global integration of the SCoh. 

Therefore, these two methods are easily interfered with strong background noise, resulting in poor fault 

detection performance. 

2.2. IES and CIES based on the IESFOgram 
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The IES constructed by integrating the modulus of SCoh over a specific spectral frequency band 

was developed as an enhanced fault detection tool [29,30]. The IES based on the SCoh is defined as 

follows [30]: 

   
2

1
2 1

1
,

f
IES

x
f

S f df
f f

  
                                         (6) 

where 1f  and 2f  denote the starting and ending frequencies of the selected spectral frequency range, 

respectively. The selection of these two spectral frequencies has a significant influence on the 

IES-based bearing diagnostics and needs to be carefully determined. 

The IESFOgram [32] can adaptively select a fault-induced resonance spectral frequency band of 

the SCoh to construct an optimal IES. In this approach, the full spectral frequency range of SCoh, i.e., 

 0, 2sF , is firstly divided into a 1/3-binary tree structure, where a total of 2 l
 narrow bands with 

equal bandwidths can be obtained at the lth level, 0,1,1.6,2,2.6,3,l  . Then, a series of IESs are 

constructed by the integration of SCoh over the narrow spectral frequency bands as candidates. For the 

ith narrow band at the lth level, 1,2,3, , 2li  , the resulting IES is formulated as: 
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Further, a diagnostic feature (DF) [32], as defined in Eq. (8), is utilized as an evaluation indicator to 

measure the fault information contained in this narrow spectral frequency band. 
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where H  indicates the maximum harmonic order considered, mf  is the fault frequency to be 

detected, and 2 bf  denotes the width of a tolerance band around the hth harmonic to estimate the noise 

level. Following the recommendation in [32], bf  is set as 1/3 of the shaft rotating frequency in this 

paper. At last, a narrow candidate band with largest DF is identified as the most informative spectral 

frequency band and the corresponding IES is employed to perform bearing diagnostics. 

As mentioned above, the IESFOgram only selects an optimal spectral frequency band to construct 

the IES. To integrate the fault components distributed in multiple resonance frequency bands, the CIES 

[36] was developed by giving proper weights to the ESSs when integrating the SCoh over the full 

spectral frequency range. The weighting function  NDF f  is extracted from the DF values in the 

IESFOgram. The CIES is defined as the integration of the product of SCoh and  NDF f  over the 

full spectral frequency band [36]: 

     
2

0
,
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xS NDF f f df                                      (9) 

The CIES assigns different weights to the ESSs of the SCoh, which is a significant improvement 

in comparison with the EES and IES. Similarly, a weighting function constructed by the autocorrelation 

function of the ESSs was proposed to improve the SCoh-based envelope spectrum and generated the 

weighted enhanced envelope spectrum (WEES) [37]. However, considering that the ESSs with smaller 

weights are mainly dominated by interference information, the global weighted integration of the SCoh 

tends to introduce interference components into the final CIES and WEES, which interferes with the 

identification of the fault-induced frequencies. 

3. Weighted combined envelope spectrum 
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3.1. Generalized integrated spectrum 

The EES, IES and CIES can be interpreted as the special forms of the generalized integrated 

spectrum (GIS), which is obtained by the integration of the SCoh with a general weighting function. 

The GIS is defined as follows [38]: 

     
/ 2

0
, ,

sF
GIS

xS f f df                                          (10) 

where  , f   represents a general weighting function,  0 , 1f   . In [38], a two-dimensional 

weighting function was constructed using the SCoh of the historical data acquired from the healthy 

machine and then introduced into the GIS to obtain an anomalous envelope spectrum (AES) for 

rotating machine diagnostics. In this study, the elements of each ESS of the SCoh are given equal 

weights, thus the GIS can be simplified as: 

     
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0
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xS f f df                                           (11) 

where  0 1f   denotes the weight of the ESS of the SCoh at the spectral frequency f . The 

EES, IES, CIES and AES can be regarded as special cases of the GIS with a specific weighting 

function. The weighting functions and characteristics of these envelope spectra are summarized in 

Table 1. An illustration of the weighting functions of these envelope spectra is shown in Fig. 1. 

 

Table 1. The weighting functions and characteristics of the EES, IES, CIES and AES. 

Envelope spectrum Weighting function Characteristics 

EES    2 , 0, 2s sf F f F     

 Integration over the full 

spectral frequency band 

 Equal weights for all ESSs 

IES 

     2 1 1 21 , ,f f f f f f      

and    1 20, ,f f f f     

 Integration over a specific 

spectral frequency band 

 Equal weights for 

informative ESSs 

CIES      , 0, 2sf NDF f f F     

 Integration over the full 

spectral frequency band 

 Variable weights for all 

ESSs 

AES  , f  ,  max0,   and  0, 2sf F  

 Two-dimensional weight 

 Variable weights for the 

elements of the SCoh 
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Fig. 1. Illustration of the weighting functions of typical envelope spectra: (a) EES, (b) IES, (c) CIES, and (d) AES. 

3.2. Weighted combined envelope spectrum 

The above analysis indicates that constructing an appropriate weighting function is essential to 

fully reveal the useful information of SCoh and boost the fault detection performance of GIS. To 

further improve the performance of the SCoh-based envelope spectra, this section introduces a novel 

weight function into the construction of GIS and proposes a novel WCES for bearing fault diagnostics. 

For the ESS    ,k

x x kS f   , 0,1,2, , 2wk N , where wN  is the window length used for 

calculating the SCoh, a fault information measure, named the normalized feature energy (NFE), is used 

as the weight. The NFE is defined as the average energy of the characteristic frequencies of interest 

normalized by the average energy of all cyclic frequencies. For the kth ESS, its NFE is defined as: 
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where mf  and H  denote the detected fault frequency and its maximum harmonic order in the ESS, 

respectively. In this study, L  is specified as the maximum cyclic frequency to scrutinize, and H  is 

set as the maximum harmonic order of detected characteristic frequency in the range  0, L . The 

NFE-like metrics [39,40] have been used to measure the specific cyclostationary components in the 

frequency domain and show good performance. 

By using the NFE to assess the level of fault-related information in ESS at each spectral frequency 

of the SCoh, the envelope spectrum slice weight (ESSW) is defined as: 
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Based on the definition in Eq. (11), by integrating the SCoh with ESSW, the weighted envelope 

spectrum (WES) is proposed and defined as: 
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To eliminate the interference components from the ESSs with small weights, the information 

threshold is introduced into the construction of the envelope spectrum. The information threshold is 
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defined as: 

     thres w f w f                                              (15) 

where     and     are respectively employed to calculate the mean and standard deviation,   is 

a non-negative coefficient used for adjusting the threshold. 

By setting an appropriate threshold (equivalent to the coefficient  ) and discarding the ESSs 

whose weights are lower than the threshold, the ESSW can be defined as: 
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Based on the SCoh and modified ESSW, the combined envelope spectrum (CES) is proposed and 

defined as: 
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The main difference between the IES and CES is that the former only focuses on the fault 

components in a specific spectral frequency band, while the latter integrates the fault information 

distributed in multiple spectral frequency bands. Thus CES is expected to achieve better performance 

than the IES when analyzing the vibration signal induced by multiple resonances. The explanation of 

the multiband combined envelope is presented in Appendix. 

In addition, taking both information threshold and different weights into consideration, the ESSW 

defined in Eq. (13) can be modified as: 
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Based on the SCoh and improved ESSW, the WCES is further proposed and defined as: 
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A schematic description of the conventional envelope spectrum methods (SES, EES and IES) and 

novel envelope spectrum methods (WES, CES and WCES) for bearing diagnostics is shown in Fig. 2. 
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Fig. 2. Schematic description of the conventional and novel envelope spectrum methods for bearing diagnostics. 

3.3. Selection of input parameters 

The input parameters need to be specified before estimating the SCoh of the signal and performing 

the CES, WCES and IES analysis. The parameters of the SCoh include the window length and 

maximum observed cyclic frequency. The window length should be much smaller than the signal 

length while ensuring the desired spectral frequency resolution [29]. The cyclic frequency to scrutinize 

needs to include a minimum of three harmonics of the detected fault frequency for accurate diagnostics. 

The parameter of the CES and WCES is the coefficient   in the threshold. A small   means that 

more ESSs are used to construct the CES and WCES, but the resulting spectrum may contain more 

interference components; although a large   can improve the fault detection performance (note that 

the coefficient selected should ensure that at least one ESS is used to construct the CES and WCES), it 

cannot fully integrate the fault components in multiple resonance frequency bands. Therefore, the 

selection of the   should comprehensively consider the fault detection performance under single and 

multiple resonances. In this work, the window length is specified as 128 sampling points; the 

coefficient   is specified as 1.5 for the CES and WCES; for the IESFOgram, the decomposition level 

of the spectral frequency band is set to 6. 

4. Verification with simulated bearing data 

In this section, the fault detection performance of the WES, CES and WCES is verified on the 

simulated signals with single and double resonance frequencies, and compared with the SES based on 

Hilbert demodulation transform, EES based on the SCoh and IES based on the IESFOgram. 

4.1. Model of simulated bearing data 

Based on the vibration modal in [19,24], the following numerical model is established to generate 

the simulated bearing fault datasets: 
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         x t b t r t h t n t                                          (20) 

The first part  b t  represents the repetitive impulse features induced by a local defect on bearing 

components and is usually simulated by the oscillating attenuation function [24]. The bearing fault 

component with single resonance frequency can be formulated as: 
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where 1M  denotes the total number of impulses with a repetition frequency of mf  in the sampling 

length; iA  represents the amplitude of the ith fault impulse and is specified as 1iA   for outer race 

fault and   1 cos 2 2i rA f t   for inner race fault, rf  being the shaft rotation frequency; 
,1nf  

and 1  are the resonance frequency and damping ratio of bearing fault impulses, respectively; i  

denotes the tiny fluctuation of the occurrence time of the ith fault impulse due to roller sliding and is 

generated from a uniform distribution  1 ,2 100m mU f f . 

The bearing fault component with double resonance frequencies can be formulated as: 

      
1

1 ,1

2
2 2

1 ,s

1 1

sin 2 1n m i

M
f t i f

i n m i

i s

b t A e f t i f
 

  
  

 

                  (22) 

where 
,2nf  represents the second resonance frequency of the faulty bearing structure. Table 2 exhibits 

the specific parameters of simulated bearing outer and inner race fault impulse components. 

The second part  h t  denotes the discrete harmonics from the shaft rotation [19], and is defined 

as the sum of sinusoidal components: 

   
2

1

sin 2
M

j j j

j

h t B f t 


                                           (23) 

where 2M  is the total number of interference harmonics; 
jf , 

j  and 
jB  are the frequency, initial 

phase and amplitude of the jth harmonic interference. The parameters of simulated discrete harmonic 

interference component are presented in Table 3. 

 

Table 2. Parameters of simulated bearing outer and inner race fault impulse components. 

Parameter 1M  mf  (Hz) rf  (Hz) 
,1nf  (Hz) 

,2nf  (Hz) 
1  

Outer race fault 219 73 
10 5800 1900 0.02 

Inner race fault 291 97 

 

Table 3. Parameters of simulated discrete harmonic component. 

Parameter 2M  1B  2B  1f  (Hz) 2f  (Hz) 1  2  

Value 2 0.05 0.05 10 20 6  3  

 

The third part  r t  stands for the random impulses induced by the external impacts [19] and is 

also simulated using the oscillating attenuation function as: 

      
3

3 ,32 2

3 ,3

1

sin 2 1n k

M
f t

k n k

k

r t C e f t
 

  
 



                          (24) 

where 3M  denotes the number of interference impulses and is specified as 5 in this study; kC  and 

k  indicate the magnitude and excitation time of the kth random impulse, and obtained by a normal 

distribution  5,1N  and a uniform distribution  0,3U , respectively; 
,3nf  and 3  are the 
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resonance frequency and damping ratio of random impulses, and are set to 10 kHz and 0.02, 

respectively. 

The last part  n t  is the background noise. In this study, the Gaussian white noise is added into 

the bearing fault component to give a signal-to-noise ratio (SNR) of –18 dB. The sampling rate and 

duration are assumed as 25.6 kHz and 3 s, respectively. In this study, the simulation analysis and 

experimental analysis are executed on the MATLAB R2016b environment on a desktop computer with 

a processor of Intel(R) Core(TM) i7-7700 CPU 3.60 GHz. The analysis results of simulated bearing 

fault datasets are exhibited in the subsequent subsections. 

4.2. Bearing outer race fault with single and double resonances 

This section analyzes the bearing outer race fault signals with single resonance and double 

resonances, respectively. Fig. 3(a)-(d) display the simulated bearing signal components. The Gaussian 

white noise with an SNR of –18dB is mixed into the bearing fault components with single and double 

resonant frequencies, as shown in Fig. 3(e) and (f). For clear viewing, only 1 s of the signal waveform 

is displayed. 

Fig. 4(a) depicts the simulated outer race fault signal with single resonance frequency. The fault 

impulse features are completely buried in strong noise components. The resonance frequency band can 

be observed around 5800 Hz in Fig. 4(b), but the SES in Fig. 4(c) cannot reveal the outer race fault 

characteristic frequency (BPFO) and its first two harmonics (marked with red dot line). The maximum 

cyclic frequency to scrutinize is set to 250 Hz to cover three harmonics of the detected characteristic 

frequency. The weak BPFO and its first two harmonics are able to be identified from the SCoh 

exhibited in Fig. 4(d). In the ESSW plotted in Fig. 4(e), an obvious peak can be observed around 5800 

Hz, indicating that the developed method correctly identifies the resonance frequency band and 

measures the distribution of bearing fault information. 

The EES, WES, CES and WCES of simulated outer race fault signal with single resonance 

frequency are displayed in Fig. 5. The peak at the BPFO cannot be detected in the EES, while the WES, 

CES and WCES clearly exhibit the large amplitudes at the BPFO and its first two harmonics. The CES 

achieves better fault detection performance than the WES, but not as good as the WCES, judging from 

the amplitudes of the BPFO and its two harmonics. These results show that the weighted average of 

SCoh and the removal of the ESSs containing less fault information are reasonable and effective in the 

construction of the envelope spectra. For comparison, the processing results of the IESFOgram on the 

same signal are exhibited in Fig. 6. A spectral frequency band centered at 5700 Hz is selected by the 

IESFOgram, and its weight is plotted in Fig. 6(b). The large amplitudes at the BPFO and its two 

harmonics can also be clearly detected in the resulting IES, as shown in Fig. 6(c). Therefore, the WES, 

CES, WCES and the IESFOgram-based IES obtain good results in detecting bearing outer race fault 

with single resonance. 

Fig. 7(a) exhibits the bearing outer race fault signal with double resonance frequencies. The 

fault-related components are heavily contaminated by strong interference components. The two 

resonance frequency bands can be identified around 1900 Hz and 5800 Hz in the frequency spectrum in 

Fig. 7(b). The BPFO and its two harmonics cannot be detected directly from the SES and SCoh, as 

presented in Fig. 7(c) and (d). In the ESSW depicted in Fig. 7(e), two peaks can be clearly observed 

around 1900 Hz and 5800 Hz, respectively, indicating that the two resonance frequency bands 

containing the outer race fault components can be accurately identified using the presented method. 

The EES, WES, CES and WCES of bearing outer race fault simulated signal with double 
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resonance frequencies are displayed in Fig. 8. The spectral lines at the BPFO and its two harmonics can 

be observed from the WES, CES and WCES, but cannot be identified in the EES. The amplitudes at the 

BPFO and its two harmonics in CES and WCES are more obvious than that in WES, reflecting the 

better performance of CES and WCES in noise elimination and fault information disclosure. Fig. 9 

shows the processing results of the IESFOgram on the simulated bearing fault signal with double 

resonance frequencies. The IESFOgram only captures the resonance frequency band centered at 5700 

Hz and ignores another resonance frequency band with a center frequency of 1700 Hz. In the resulting 

IES, although the spectral lines at the BPFO and its two harmonics can also be identified, the 

corresponding amplitudes are not as obvious as those in the CES and WCES, indicating that the CES 

and WCES achieve better results than the IES in detecting this bearing outer race defect with double 

resonances. 

 

 

Fig. 3. Simulated signals of bearing outer race fault: (a) fault impulse component with single resonant frequency, 

(b) fault impulse component with double resonant frequency, (c) harmonic component, (d) random impulses, (e) 

mixed signal after adding the noise of –18dB to (a), and (f) mixed signal after adding the noise of –18dB to (b). 

 

Fig. 4. Results of bearing outer race fault simulated signal with single resonant frequency: (a) waveform, (b) 
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frequency spectrum, (c) SES, (d) SCoh, and (e) ESSW. 

 

 

Fig. 5. Results of different envelope spectrum methods on the bearing outer race fault simulated signal with single 

resonant frequency: (a) EES, (b) WES, (c) CES, and (d) WCES. 

 

 

Fig. 6. Results of the IESFOgram on bearing outer race fault simulated signal with single resonant frequency: (a) 

IESFOgram, (b) weight of the selected frequency band, and (c) IES. 

 

 

Fig. 7. Results of bearing outer race fault simulated signal with double resonant frequency: (a) waveform, (b) 

frequency spectrum, (c) SES, (d) SCoh, and (e) ESSW. 
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Fig. 8. Results of different envelope spectrum methods on the bearing outer race fault simulated signal with double 

resonant frequency: (a) EES, (b) WES, (c) CES, and (d) WCES. 

 

 

Fig. 9. Results of the IESFOgram on bearing outer race fault simulated signal with double resonant frequency: (a) 

IESFOgram, (b) weight of the selected frequency band, and (c) IES. 

 

4.3. Bearing inner race fault with single and double resonances 

This section analyzes bearing inner race fault simulated signals with single and double resonance 

frequencies, respectively. Fig. 10(a)-(d) display the simulated signal components related to bearing 

inner race fault. The Gaussian white noise with an SNR of –18dB is mixed into the bearing inner race 

fault components with single and double resonant frequencies, as presented in Fig. 10(e) and (f). 

Fig. 11(a) shows the bearing inner race fault simulated signal with single resonance frequency. 

The inner race fault components are heavily polluted by the noise components, and only a few random 

impulses with large amplitudes are visible. In this section, the maximum observed cyclic frequency is 

specified as 350 Hz to cover three harmonics of the fault characteristic frequency of bearing inner race 

(BPFI). The resonance frequency band around 5800 Hz can be recognized in the frequency spectrum 

presented in Fig. 11(b), while the BPFI and its harmonics cannot be directly identified in the SES and 

SCoh, as displayed in Fig. 11(c) and (d). In the ESSW presented in Fig. 11(e), a peak can be clearly 

observed around 5800 Hz, indicating the good performance of the presented method in locating the 

spectral frequency band with rich fault information. 

The EES, WES, CES and WCES of the same bearing fault simulated signal are displayed in Fig. 

12. The spectral lines at the BPFI and its two harmonics cannot be observed from the EES but can be 
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clearly identified in the WES, CES and WCES. The apparent amplitudes at the bearing characteristic 

frequencies and the modulation sidebands indicate that the CES and WCES achieve similar results and 

are superior to the WES. It shows that the fault detection capability of the SCoh-based envelope 

spectrum can be enhanced significantly by removing the ESSs which contain less fault information. Fig. 

13 shows the processing results of the IESFOgram on bearing fault simulated signal depicted in Fig. 

11(a). The IESFOgram correctly identifies the resonance spectral frequency band around 5700 Hz with 

a bandwidth of 200 Hz. The BPFI and its two harmonics can also be determined in the resulting IES 

shown in Fig. 13(c), but their peaks are not as significant as those in the CES and WCES. 

Fig. 14(a) depicts bearing inner race fault simulated signal with double resonance frequency. The 

fault impulse components are completely hidden in noisy interference components. In Fig. 14(b), the 

two resonance frequency bands around 1900 Hz and 5800 Hz can be recognized from the frequency 

spectrum. The BPFI and its harmonics are unable to be detected in the SES and SCoh, as displayed in 

Fig. 14(c) and (d). In the ESSW presented in Fig. 14(e), two dominant peaks can be easily discovered 

at the two resonance frequencies of the bearing inner race fault, indicating that the developed method is 

capable of quantifying the fault information distributed in multiple resonance frequency bands. 

The EES, WES, CES and WCES of bearing inner race fault signal with double resonance 

frequency are exhibited in Fig. 15. The WES, CES and WCES exhibit large amplitudes at the BPFI and 

its two harmonics, while the EES is unable to capture the fault information of bearing inner race. The 

CES and WCES achieve similar fault detection results, and better than the WES. Fig. 16 displays the 

processing results of the IESFOgram on bearing fault simulated signal presented in Fig. 14(a). A 

resonance frequency band with a center frequency of 1700 Hz is selected by the IESFOgram, but 

another resonance frequency band around 5800 Hz is ignored, resulting in only the second harmonic of 

the BPFI can be identified from the resulting IES, as exhibited in Fig. 16 (c). Therefore, the CES and 

WCES achieve a better performance than the IES in detecting this bearing inner race fault with double 

resonances. 

 

 

Fig. 10. Simulated signal of bearing inner race fault: (a) fault impulse component with single resonant frequency, 

(b) fault impulse component with double resonant frequency, (c) harmonic component, (d) random impulses, (e) 

mixed signal after adding the noise of –18dB to (a), and (f) mixed signal after adding the noise of –18dB to (b). 
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Fig. 11. Results of bearing inner race fault simulated signal with single resonant frequency: (a) waveform, (b) 

frequency spectrum, (c) SES, (d) SCoh, and (e) ESSW. 

 

Fig. 12. Results of different envelope spectrum methods on the bearing inner race fault simulated signal with 

single resonant frequency: (a) EES, (b) WES, (c) CES, and (d) WCES. 

 

 

Fig. 13. Results of the IESFOgram on bearing inner race fault simulated signal with single resonant frequency: (a) 

IESFOgram, (b) weight of the selected frequency band, and (c) IES. 
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Fig. 14. Results of bearing inner race fault simulated signal with double resonant frequency: (a) waveform, (b) 

frequency spectrum, (c) SES, (d) SCoh, and (e) ESSW. 

 

 

Fig. 15. Results of different envelope spectrum methods on the bearing inner race fault simulated signal with 

double resonant frequency: (a) EES, (b) WES, (c) CES, and (d) WCES. 

 

Fig. 16. Results of the IESFOgram on bearing inner race fault simulated signal with double resonant frequency: (a) 

IESFOgram, (b) weight of the selected frequency band, and (c) IES. 

 

4.4. Performance analysis 
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This section evaluates quantitatively the performance of the conventional and proposed methods 

on the simulated bearing fault datasets. The previous analysis results show that the NFE can effectively 

measure the fault components in the envelope spectrum, so this paper continues to employ the NFE to 

quantitatively evaluate the fault extraction effects of different approaches. 

Fig. 17 exhibits the NFE values of conventional and proposed envelope spectrum methods when 

processing the bearing fault simulated datasets. The NFE values calculated from the WES are greater 

than that of the EES and the NFE values of the CES are greater than that of the WES. It indicates that 

the ESSW is able to significantly improve the fault detection performance of the SCoh-based envelope 

spectrum, and the removal of the ESSs with less fault information is more effective than the weighted 

average in reducing interference noise. In addition, the NFE values of the WCES are greater than that 

of the IES, indicating that the WCES achieve better performance than the IES in identifying these 

bearing faults with single and double resonances. 

Figs. 18 and 19 display the NFE values of the CES and WCES with different coefficients 

(equivalent to the thresholds) when analyzing the simulated signals of bearing outer race and inner 

faults, respectively. The NFE values of the CES and WCES increase with the increase of the coefficient 

and the difference between them decreases, indicating that the increase of the coefficient can 

simultaneously improve the performance of the CES and WCES and the effect of the weighting 

function on WCES is gradually insignificant. Furthermore, when the coefficient is higher than a 

specific value, the NFE values obtained by the CES and WCES are greater than that of the IESFOgram, 

especially when detecting bearing inner race faults, the CES and WCES with coefficients ranging from 

0.5 to 3 exhibit better diagnostic performance than the IES. These results demonstrate the stronger 

cyclostationary detection capability of the developed WCES over the conventional envelope spectra, 

especially when analyzing bearing fault signals with more than one resonant frequency. 

 

Fig. 17. NFE values obtained by conventional and proposed envelope spectra on bearing fault simulated signals. 
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Fig. 18. NFE values of the CES and WCES with different coefficients on bearing outer race fault simulated 

signals. 

 

 

Fig. 19. NFE values of the CES and WCES with different coefficients on bearing inner race fault simulated 

signals. 

5. Verification with experimental bearing data 

This section utilizes two bearing experimental datasets (with single and multiple resonance 

frequencies, respectively) from two different test rigs to further verify the proposed envelope spectrum 

methods, and their performance is compared with the advanced envelope spectrum methods. 

5.1. Case 1: Bearing outer race fault 

The experimental data of outer race fault bearing [41] was collected from the planetary gearbox 

test rig of the University of New South Wales (UNSW), Australia. The tested gearbox mainly contains 

a parallel gear system, in which a spur gear integrated with the planet carrier is driven by a pinion, as 

shown in Fig. 20(a). An outer race defect was implanted into one planetary bearing (IKO model NAF 

122812), as shown in Fig. 20(b). An acceleration sensor mounted above the stationary ring gear was 

used for the acquisition of vibration data with a sampling rate of 150 kHz. Data collection was carried 

out at a constant speed, and the rotation speed of the input shaft was about 324 r/min (5.4 Hz). The 

BPFO of planetary bearing is about 66.42 Hz, with modulation of 14.36 Hz. The maximum cyclic 

frequency to scrutinize is set to 250 Hz to cover three harmonics of the BPFO of planetary bearing. 

The vibration signal of the tested planetary gearbox and its frequency spectrum are shown in Fig. 
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21(a) and (b), respectively. A series of transient impulses can be clearly discovered in the time-domain 

waveform, while the resonance frequency band is completely invisible in the frequency spectrum. Due 

to the strong interference noises, the BPFO and its harmonics are hardly identified directly in the SES 

and SCoh displayed in Fig. 21(c) and (d). An obvious peak can be observed around 47 kHz in the 

ESSW depicted in Fig. 21(e), indicating that the cyclic components related to bearing outer race fault 

are mainly distributed around this spectral frequency. 

Fig. 22 displays the EES, WES, CES and WCES of the gearbox vibration signal. Similar to the 

SES, the EES and WES are unable to provide the information about the bearing outer race fault, while 

the CES and WCES confirm the outer race defect occurred on the planetary bearing by revealing the 

fault characteristic frequency 66.42 Hz and its harmonics (marked with red dot line). Fig. 23 exhibits 

the results of the IESFOgram for processing the same vibration signal. The spectral frequency band 

with a bandwidth of 1172 Hz and located at 47461 Hz is selected by the IESFOgram. In the resulting 

IES presented in Fig. 23(c), the spectral lines at the BPFO and its two harmonics can be identified, 

indicating that the IES also discovers the outer race defect of planetary bearing. 

 

 

Fig. 20. (a) Diagram of the UNSW planetary gearbox test rig and (b) planetary bearing with seeded fault [23]. 

 

 

Fig. 21. Results of the planetary gearbox vibration data: (a) signal waveform, (b) frequency spectrum, (c) SES, (d) 

SCoh, and (e) ESSW. 
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Fig. 22. Results of different envelope spectrum methods on the planetary gearbox vibration data: (a) EES, (b) WES, 

(c) CES, and (d) WCES. 

 

 

Fig. 23. Results of the IESFOgram method on the planetary gearbox vibration data: (a) IESFOgram, (b) weight of 

the selected frequency band, and (c) IES. 

 

5.2. Case 2: Bearing inner race fault 

The experimental data of inner race fault bearing [42] was collected from the bearing test rig of 

the University of Electronic Science and Technology of China (UESTC), China. The test rig is mainly 

composed of the motor and speed controller, support bearing, loading disc and test bearing, as 

exhibited in Fig. 24. A local defect was implanted into the inner race of the test bearing. The 

acceleration sensors were mounted on the housing of faulty bearing to record the bearing vibration data 

at a sampling rate of 51.2 kHz. The spindle rotated at a constant speed of 3600 r/min (60 Hz), and the 

BPFI of faulty bearing is about 325.8 Hz. In this case, the maximum observed cyclic frequency is 

specified as 1200 Hz to cover three harmonics of the BPFI. 

Fig. 25(a) and (b) show the vibration signal and its frequency spectrum of inner race fault bearing, 

respectively. The resonance frequency bands cannot be directly identified in Fig. 25(b) because of the 

strong interference noises. The SES can barely discover the inner race damage of the bearing, judging 

from the weak amplitudes at the BPFI and its third harmonic, as depicted in Fig. 25(c). The SCoh 

displayed in Fig. 25(d) fails to reveal the BPFI of faulty bearing. In the ESSW shown in Fig. 25(e), 

three obvious peaks can be observed around 7 kHz, 11 kHz and 17.5 kHz, respectively, indicating that 

the cyclic components related to bearing inner race fault are mainly distributed around these three 

spectral frequencies. 
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Fig. 26 displays the EES, WES, CES and WCES of the experimental signal of bearing inner race 

fault. The BPFI and its two harmonics (marked with red dot line) can be detected in all the envelope 

spectra. The fault detection result of the EES is inferior to that of the WES, CES and WCES, and the 

CES and WCES achieve similar performance and are superior to the WES. Fig. 27 shows the results of 

the IESFOgram when analyzing the same vibration signal. A spectral frequency band located at 6600 

Hz with a width of 400 Hz is selected by the IESFOgram to construct the IES. In Fig. 27(c), although 

the amplitudes at the BPFI and its two harmonics have been enhanced, many of the strong interference 

components are retained compared with the CES and WCES. 

 

 

Fig. 24. UESTC bearing test rig [23]. 

 

 

Fig. 25. Results of the vibration data of inner race fault bearing: (a) signal waveform, (b) frequency spectrum, (c) 

SES, (d) SCoh, and (e) ESSW. 
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Fig. 26. Results of different envelope spectrum methods on the vibration data of inner race fault bearing: (a) EES, 

(b) WES, (c) CES, and (d) WCES. 

 

 

Fig. 27. Results of the IESFOgram method on the vibration data of inner race fault bearing: (a) IESFOgram, (b) 

weight of the selected frequency band, and (c) IES. 

 

5.3. Performance analysis 

This section evaluates the fault detection performance of the conventional and proposed envelope 

spectrum methods on the bearing experimental signals from a quantitative perspective. 

Fig. 28 presents the NFE values of the conventional and presented methods on the bearing 

experimental signals. The CES and WCES have similar NFE values, which are greater than that of the 

WES, indicating the effectiveness of introducing the threshold strategy into the construction of ESSW. 

The CES, WCES and IESFOgram obtain similar NFE values when analyzing the vibration data of 

outer race fault bearing, but the NFE values of CES and WCES are significantly greater than that of the 

IESFOgram when analyzing the bearing inner race fault signal, reflecting better multi-resonance band 

detection performance than the IESFOgram. 

Fig. 29 shows the NFE values obtained by the CES and WCES with different coefficients when 

processing the bearing experimental signals. It can be observed that the NFE values of the CES and 

WCES increase with the increase of the coefficient and the difference between them gradually 

disappears, which further indicates that their fault detection performance can be improved by 

increasing the coefficient, but the weighting function gradually loses its effect on the WCES. Similarly, 

when the coefficient is higher than a certain value, the NFE values of the CES and WCES are greater 

than that of the IESFOgram, especially when analyzing the vibration data of inner race fault bearing, 
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the CES and WCES with coefficients from 0.5 to 3 can achieve a higher NFE value than IESFOgram. 

These quantitative results again illustrate the efficiency and superiority of the WCES over the 

conventional envelope spectrum methods, especially in the analysis of bearing vibration datasets with 

multiple resonance frequencies. 

 

 

Fig. 28. NFE values obtained by conventional and proposed methods for experimental bearing signals. 

 

 
Fig. 29. NFE values obtained by the CES and WCES with different coefficients for experimental bearing signals. 

6. Conclusions 

How to construct an appropriate weighting function for the GIS to fully extract the fault-related 

cyclostationary features in the SCoh is still problematic. In this paper, a fault feature measure-based 

normalized weight that quantifies the diagnostic information level in each ESS is proposed to enhance 

the SCoh-based envelope spectrum analysis. An information threshold is introduced into the 

construction of normalized weight to preserve informative ESSs while reducing the interference 

components. Further, the WEC, CES and WCES are developed for cyclostationary analysis and bearing 

diagnostics. The simulations and experiments are conducted to validate the diagnostic capability of the 

proposed methods. Compared with the SES and EES, the WES, CES and WCES can effectively extract 

bearing fault features and reduce interference noise. Compared with the IESFOgram, the CES and 

WCES deliver good performance in integrating fault information distributed in multiple resonance 

frequency bands. The weighting function adopted by WCES can reveal fault features more effectively 

than the weighting functions adopted by WES and CES. Thus, the WCES is recommended for 

cyclostationary feature extraction and bearing diagnostics, and the recommended coefficient in 

threshold is higher than or equal to 1.5 by comprehensively analyzing the results under single and 

multiple resonance frequencies. 
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The proposed method is not really blind because it requires the fault characteristic frequency as 

input. Therefore, a weight estimation solution that does not rely on prior knowledge is worth studying 

in future work. In addition, the comparative analysis with other diagnostic techniques and the extension 

of the developed technique to the condition monitoring of rotating machinery components are also part 

of future work. 
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Appendix. Explanation of multiband combined envelope 

Envelope analysis is usually only performed on the (squared) envelope of the band-pass filtered 

result around a resonance frequency. When the vibration signal is excited by multiple resonance 

frequencies, the (squared) envelopes of the filtered results on multiple resonance frequency bands can 

be integrated to fully extract useful information distributed on multiple resonance frequency bands. 

Let  x t  be a vibration signal with multiple resonance frequencies, the multi-band combined 

(squared) envelop signal is formulated as: 

         ,1 ,2 , ,1

k

bp bp bp k bp nn
y t a t a t a t a t
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                                (A1) 

where  ,bp na t  denotes the (squared) envelope of the band-pass filtered result of the signal  x t  

around the nth resonance frequency, k  the number of resonance frequencies. 

Further, the spectrum of the multi-band combined (squared) envelope signal is expressed as: 
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               (A2) 

Eq. (A2) shows that the Fourier transform result of multi-band combined (squared) envelope 

signal obtained from the sum of several (squared) envelope signals is equivalent to the sum of the 

Fourier transform results of these (squared) envelope signals. Therefore, the combination of (squared) 

envelope spectra on multiple frequency bands can sufficiently extract useful information distributed in 

multiple frequency bands. 
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