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1 Introduction

A well-known simplification commonly introduced in the classical bifurcation analyses of thin elastic
plates and shells is the use of linear membrane solutions for describing the corresponding pre-buckling
deformations (e.g., [1]). This is a natural assumption for uniform rectangular thin plates compressed
by in-plane forces acting in their midplane as it corresponds to the everyday experience: such an
initially flat thin plate will continue to remain in its original state for as long as the magnitude of
the compressive forces does not exceed a certain critical threshold (i.e., the buckling load). With
regard to more complex geometries or loading scenarios, the situation is not quite so clear-cut because
bending effects might be non-trivially involved prior to the onset of a bifurcation. A particular case
in point is the edge-buckling of a stretched thin circular elastic plate under the action of a uniform
transverse pressure. While bending deformations might seem to play a key role in the description of
the basic state involved, numerical evidence [2, 3] indicates that nonlinear membrane (i.e., stretching)
deformations prevail just before the bifurcation is trigerred. This observation was also confirmed by
a couple of detailed asymptotic investigations [4, 5], in which the basic state was described by purely
nonlinear membrane behaviour.

The general problem investigated in the following pages is related to the aforementioned matters.
Broadly speaking, we are interested in the effect of pre-buckling bending deformations on the approx-
imation of the critical loads associated with the buckling of axially compressed circular cylindrical
shells. The classical theory involving a membrane basic state is well documented in the literature
(e.g., [1, 6, 7]); the two volumes [8, 9] include a thorough discussion of experimental work as well.
For further reference, we recall below the classical critical axial stress for an infinitely long, simply
supported thin cylinder of radius R and thickness h (with 0 < h/R� 1)

σcr ≡
E√

3(1− ν2)

(
h

R

)
' 0.605

(
Eh

R

)
, (ν = 0.3) , (1.1)

where E and ν denote, respectively, the Young’s modulus and the Poisson’s ratio of the cylinder.
Lack of agreement between experiments and theoretical predictions for circular cylinders encour-

aged the early investigators to consider the effect that the type of end restraints might have on the
computed buckling loads. Kilcevsky [10] had explored analytically the case of a free edge, and dis-
covered that the critical load for the radially symmetric modes obtained by taking into account the
edge constraints was half of that stated in (1.1). A similar conclusion was reached independently by
Hoff almost two decades later in a study [11] involving a semi-infinite thin elastic cylinder with a free
edge, while Ohira [12] obtained a confirmation of the same result on the basis of a numerical solution
of some related eigenvalue problems. In a follow-up work to [11], Nachbar & Hoff [13] relaxed the
axial symmetry of the eigenmodes by employing the full Donnel-Mushtari-Vlasov (DMV) buckling
equations; a refined set of (ad-hoc) equilibrium conditions was also derived for the deformed edge.
As a result of this added generality, the critical buckling stress turned out to be 37% of the classical
prediction (1.1), with the corresponding deformations being characterised by a regular circumferential
“rippling” pattern that attenuated rapidly away from the free edge. Hoff & Rehfield [14] re-visited the
axially compressed semi-infinite cylinder by considering a generalisation of the classical boundary con-
ditions for a simply supported circular edge within the context of the DMV shell theory. By relaxing
the in-plane end-restraints they proposed four different ways to constrain the circular edges. Two of
the new boundary conditions were found to yield critical compressive stresses slightly over 50% of the
classical value stated in (1.1), a result reinforced by a subsequent study that considered finite-length
cylinders [15].

Hoff’s work was largely based on DMV-type buckling equations with constant coefficients as his
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basic state was taken to be uniform. Such a restriction seems to have been largely dictated by his
method of solution; this relied on closed-form expressions for the roots of the characteristic equation
obtained upon substitution of the usual exponential trial solution into the differential equations. A
particularly simple form of the characteristic roots was originally derived by Nachbar [16] and required
special re-scaling of the DMV buckling equations (which is not applicable in the case of a non-uniform
basic state). Since closed-form solutions of those equations are therefore available, one can actually
write down the relevant determinantal equation for identifying the critical loads. In the aforementioned
works, Hoff and his associates simplified their determinantal equations, which eventually permitted
them to obtain compact formulae for the corresponding buckling loads. A direct numerical strategy
was also pursued by Hoff and Soong [17] to check the accuracy of the earlier approximations. As DMV
shell theory has limited reliability for configurations in which the hoop deformation wavelengths are
relatively large, the computations were repeated by using more refined equations based on Sanders’
nonlinear kinematics [18]. Although the agreement between the two numerical approaches was quite
encouraging, Simmonds & Danielson [19] pointed out that Hoff & Soong [17] failed to include all
the pre-stress terms in Sanders’ equations, and as a result those incorrect equations were hardly any
more accurate than the shallow-shell theory used previously. Unfortunately, many authors in the
open literature who claim to use Sanders’ shell equations seem to have fallen in the same trap (e.g.,
[20]). The problems studied in [14, 15, 17] were also the subject of some investigations by Durban &
Libai [21, 22], who used a special type of solution with separable variables in order to obtain (tight)
lower and upper bounds for the buckling loads. A more detailed review of the work by Hoff and his
associates is given in references [8] (pp. 81–85) and [9] (pp. 875–897).

In practice, the axial compression of thin elastic cylinders is usually carried out by stiffening the
edges of the shells (e.g., using rigid rings or circular plates). As early as 1932-1934, Flügge (see [23],
pp.252–258) hypothesised that rigorous buckling analyses for these structures would have to account
for the rotations near the shell edge in the basic state – see Figure 1. The linear membrane stress
state is valid only for infinitely long cylinders or for a Poisson’s ratio equal to zero. However, Flugge’s
observation had to wait for almost three decades, before the development of numerical solutions was
sufficiently advanced to enable the numerical integration of the relevant buckling boundary-value
problem with variable coefficients. Stein [24, 25] provided the first acurate such finite-differences
solution for the DMV cylinder buckling equations in displacements, with a basic state that incorporated
the effect of axi-symmetric bending. His work was limited to simply-supported cylinders having the
circular edges free to move in the tangential direction, but the effect of an external pressure was
also considered (in addition to the axial compression). Fischer [26, 27] employed different in-plane
boundary conditions to solve the same problem, but obtained different critical loads. To clarify
the discrepancies, Almroth [28] re-visited these earlier studies by performing a more comprehensive
numerical investigation vis-à-vis the role played by the edge restraints. To this end, eight different sets
of boundary conditions were considered, with the shell edges being supported in the radial direction
in each one of them. These correspond to the end constraints used by Hoff et al., and in this work we
shall also adopt a subset of them (as explained in §2.1). Rather unexpectedly, in all of the studies just
mentioned it was discovered that the behaviour of the cylinders was rather similar to the corresponding
scenarios involving a uniform membrane pre-buckling state of stress. As the axisymmetric bending
considered by Stein, Fischer, and Almroth depends nonlinearly on the loading parameter, this is not
an immediately obvious feature that could be anticipated a priori. It is one of the main goals of
the present study to throw further light upon the link between the two sets of problems by using a
mixture of perturbation techniques and direct numerical simulations of the original DMV bifurcation
equations.

Extensions of the “rigorous” buckling analyses mentioned in the previous paragraph to circular
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Figure 1: Axially symmetric deformation for a uniformly compressed circular cylin-
drical shell. The undeformed configuration appears on the left, while the ensuing
“barelling” state is sketched on the right (greatly exaggerated/simplified for illustra-
tion purposes only).

cylindrical shells with different types of anisotropy and composites have been considered by many
authors. This topic falls beyond the scope of our study, and we mention here only a couple of such
examples. Stavsky & Friedland [29] re-worked Hoff’s analysis [11] for the axisymmetric buckling of
a heterogeneous, orthotropic circular cylindrical shell, while Gavrilenko & Stepanenko [30] included
the possibility of asymmetric instability deformations for two particular types of edge supports in the
case of an orthotropic circular cylinder. The latter authors also carried out extensive investigations
into the buckling of ring-reinforced cylindrical shells, a scenario in which the nonlinear axisymmetric
bending solution still remains relevant.

A word about the choice of equations used in the present study is in order. The DMV buckling
equations employed in the rest of the paper have certain limitations that are well understood and
widely documented. For example, Yamaki [7] has provided an extensive comparative numerical study
of several sets of bifurcation equations for thin circular cylinders, by using both the classical membrane
basic state and the more rigorous nonlinear bending solution mentioned above. Evidence included in
the aforementioned reference confirms that the predictions of the DMV buckling equations are in very
good agreement with those of the more accurate Flügge’s equations [23], except for very short or
very long cylinders. In light of these remarks, we shall confine our attention to cylinders of medium
length (in a sense made clear in [7]). Further evidence that the DMV equations are a legitimate choice
(with the caveats outlined above) is also provided by the results reported by Simmonds & Danielson
in [19]. Their analysis was based on a set of equations derived previously in [31], whose accuracy is
comparable to the Koiter-Sanders-Budiansky shell theory (e.g., see [18, 32, 33, 34]). Almost identical
buckling equations for shells of revolution – and subject to less restrictive assumptions, were derived
by Barta around 1966 and were later reported in [35]. In the absence of pre-stress, and depending
on the geometry of the shell midsurface, these reduce to Morley’s equations for cylinders [36] or to
Vlasov’s equations for a complete sphere [37] (pp. 612-619, eqns. (15.10)). A detailed analysis of
Barta’s equations for the buckling of an axially compressed cylindrical shell was given by Ivan [38, 39],
who found that the predictions of the critical loads were very close to those obtained via Flügge’s
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much more complicated equations. Unfortunately, neither [31] nor [35] can be easily adapted to cope
with variable pre-stresses as they were originally derived only for uniform initial stress states.

With this background in mind, one of the main goals of the present paper is to revisit the classical
works of Hoff et al. [11, 14, 15] by relaxing the original assumptions regarding the uniform nature of the
pre-buckling deformations, and by exploring the use of singular perturbation methods. In contrast to
those earlier investigations, here we adopt a more rigorous nonlinear pre-buckling solution that allows
us to enforce more consistently the boundary constraints on both the pre-buckling equilibrium solution
as well as the buckling eigenmodes. This is not the case for the uniform membrane solution, for which
there are no boundary conditions. In fact, in the classical theory of buckling for thin cylindrical shells
the edges are free of contraint and are thus free to move both axially and radially. The sketch included
in Figure 2 displays the differences between the two aforementioned pre-buckling equilibrium solutions
for a shell with simply supported edges. As seen there, the equilibrium radial nonlinear deformation
developed as the result of the applied compression has quite a pronounced variation near the edge,
but attenuates quite rapidly to match the membrane pre-buckling deformation that predominates in
the rest of the shell. We make use of this asymptotic behaviour in order to simplify the corresponding
eigenvalue problems. In the case of two particular types of boundary constraints we actually derive
closed-form expressions for the critical load of the cylinder which extend the earlier results obtained
by Hoff and his associates.

rigorous pre-buckling deformation

membrane pre-buckling deformation

simply supported edge

undeformed shell

shell mid-length 

𝑃

Figure 2: Pre-buckling deformation for an axially compressed thin elastic cylinder:
membrane vs. nonlinear bending basic state (adapted from [40]).

The paper is laid out as follows. We start off in §2 with an overview of the main bifurcation problem,
which consists of the classical DMV system coupled with a variable axisymmetric basic state. The
boundary conditions adopted in this study are discussed separately in §2.1 for easy reference. These
end constraints give rise to four distinct bifurcation problems, which for convenience are identified as
P1–P4. A brief discussion of the particular basic state adopted in our investigations is outlined in §3.
While the closed form-solution recorded there has been known for some time (being originally derived
by Föppl [41]), the asymptotic simplification we propose does not seem to have been used before.
In §4 we start our discussion of the problems P1 and P2, which share a number of similarities. By
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taking advantage of the localised eigendeformations in these two problems, we indicate an asymptotic
simplification that allows us to identify the critical buckling load via a simple numerical strategy based
on the simplified equations. The other two problems (P3 and P4) require a change of tack. Before
the relevant changes are implemented, some key numerical results pertaining to these scenarios are
discussed in §5.1. We then carry out a simple perturbation analysis for problem P4, and show that
the two-term formula obtained there performs remarkably well when compared to the direct numerical
simulations of the full DMV bifurcation equations. It turns out that this perturbation strategy must
be modified in the case of P3, as this last case involves an unusual type of singular perturbation
problem. Finally, the paper concludes with a number of remarks and ideas for possible extensions of
this work.

2 Outline of the bifurcation equations

We consider a thin cylindrical shell of length L, radius R and uniform thickness h (0 < h/R � 1)
subjected to compressive axial forces P > 0 – see Figure 1. Its geometry is specified by the axial
coordinate ‘x’ and a circumferential arc-length coordinate s > 0 that runs along the median curve of
the transverse cross-section.

𝑃

𝑃
𝑥

𝑅

𝐿

ℎ

𝜃

𝐿/2

𝑠
𝜃

𝑥 = 0

Figure 3: The geometry of a thin cylindrical shell of length L and radius R com-
pressed by uniform axial forces P > 0.

The starting point for setting up the relevant bifurcation problem is the well-known Donnell-
Mushtari-Vlasov (DMV) shallow-shell nonlinear equations (e.g., see [42, 43]) formulated in terms of
the transverse displacement w ≡ w(x, s) and a stress function f ≡ f(x, s),

D∇4w +R−1f, xx − [f, w]− p = 0 , (2.1a)

(Eh)−1∇4f −R−1w, xx + [w,w] = 0 , (2.1b)

where D ≡ Eh3/12(1− ν2) represents the bending rigidity of the cylinder, the subscripts preceded by
a comma indicate (partial) differentiation with respect to the corresponding independent variables,
and the classical differential operators that feature in (2.1) correspond to

∇2(. . . ) := (. . . ), xx + (. . . ), ss , ∇4(. . . ) ≡ ∇2∇2(. . . ) ,
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[ϕ, φ] := ϕ, xx φ, ss − 2ϕ, xs φ, xs + ϕ, ss φ, xx ,

for any two arbitrary smooth functions ϕ ≡ ϕ(x, s) and φ ≡ φ(x, s). The parameter p in (2.1a) reflects
the effect of a uniform transverse pressure (acting either internally or externally).

For axisymmetric deformation of the compressed cylindrical shell the transverse displacement is a
function of the axial coordinate x only. Letting w0 ≡ w0(x) be such a lateral displacement, with the
corresponding stress function f0, it is known (e.g., see [6, 8]) that the nonlinear system (2.1) can be
reduced to just one ordinary differential equation,

Dw0, xxxx +Nw0, xx +
(
EhR−2

)
w0 −

(
νNR−1 + p

)
= 0 , (2.2)

with N ≡ P/(2πR) being the force per unit of circumference, uniformly distributed along the edge of
the cylinder. For the sake of completeness, we mention that f0 depends on both x and s, and satisfies

f0, xx =
(
EhR−1

)
w0 − νN , f0, ss = −N .

Bifurcations from the radially symmetric deformation mentioned above are readily obtained by
employing the method of adjacent equilibrium. This involves writing w → w0(x) + w1(x, s) and
f → f0(x) + f1(x, s), that are then substituted in the nonlinear equations (2.1), followed by the usual
linearisation of the resulting equations. The outcome is the following system,

D∇4w1 +R−1f1, xx +Nw1, xx − w0, xxf1, ss +
[
νN −

(
EhR−1

)
w0

]
w1, ss = 0 , (2.3a)

(Eh)−1∇4f1 −R−1w1, xx + w0, xxw1, ss = 0 , (2.3b)

in which some of the coefficients depend on w0(x) and its second-order derivative. The classical theory
of buckling for axially compressed cylindrical shells is obtained by adopting a membrane basic state
in which the underlined terms above are dropped; this corresponds to the constant solution

w0 = R(Eh)−1(νN + pR) .

Note that in the absence of the pressure term, the last term in equation (2.3a) will also drop out in
the classical theory. As we are primarily interested in the effect of the axial compression we shall set
p ≡ 0 in the pre-buckling equation (2.2).

It is useful to re-scale (2.3) by introducing the non-dimensional quantities

x :=
2x

L
, c :=

[
3(1− ν2)

]1/2
, w0 := c

(w0

h

)
, w1 := c

(w1

h

)
, f1 :=

f1

D
, (2.4a)

α :=

√
3

4
(1− ν2)1/2 L

2

Rh
, Ncr :=

Eh2

cR
, Λ :=

N

Ncr
, (2.4b)

and we remark that the circumferential coordinate ‘s’ can be replaced with the polar angle ‘θ’ since
s = Rθ (see Figure 3). To avoid complicating the notation unnecessarily, in what follows we shall drop
the bar on x; thus, |x| ≤ 1 and the length of the re-scaled cylinder will then be equal to 2. We note in
passing that our α above is proportional to the so-called Batdorf (or curvature) parameter – see [44],
Z ≡ (1− ν2)1/2L2/(Rh), which is used extensively in the literature on circular cylindrical shells (e.g.,
see [6, 7, 45, 46]). The quantity Ncr ≡ σcrh defined in (2.4b) is the critical membrane force associated
with formula (1.1).
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The bifurcation system (2.3) is easily re-scaled in terms of the dimensionless quantities defined
in (2.4), but in the interest of brevity we leave out those routine manipulations. Instead we simply
point out that solutions with separable variables of the corresponding non-dimensional equations will
be sought in the form

w1(x, θ) = W (x) sin(mθ) , f1(x, θ) = F (x) sin(mθ) , (2.5)

with the arbitrary integer m > 0 being determined subject to the requirement that it should render
the global minimum of the curve Λ = Λ(m), while all the other parameters are kept fixed. Performing
the requisite substitutions, it turns out that the unknown amplitudes in (2.5) satisfy the linear system
with variable coefficients,

W ′′′′ − 2(β2 − 2αΛ)W ′′ + β2
{
β2 − 4α[νΛ− w0(x)]

}
W + αF ′′ + β2w′′0(x)F = 0 , (2.6a)

F ′′′′ − 2β2F ′′ + β4F − 4αW ′′ − 4β2w′′0(x)W = 0 , (2.6b)

where the dash is used for indicating differentiation with respect to x ∈ [−1,+1] and

β := mL/(2R) > 0 (2.7)

is the scaled mode number (which no longer is necessarily an integer).
The critical eigenvalue, Λc, and the critical mode number, mc, are defined by the requirements

Λc = min
m>0

Λ(m;α) , with Λc = Λ(mc;α) . (2.8)

In light of (2.7) it should be clear that one can define a critical β, by simply writing βc := mc(L/(2R)).
Typically, elastic stability problems amenable to the separation of variables considered above will
display a parabola-like dependence for Λ as a function of m (or β), and the minimization problem
(2.8) is completely unambiguous. However, this is not case for some of the scenarios considered
later in this paper. More specificaly, for certain boundary conditions it is found that the foregoing
dependence is in fact monotonic increasing, which suggests that the critical value Λc will correspond
to the smallest admissible value of m (from a physical point of view). The choice m = 0 in (2.5) leads
back to an axisymmetric deformation, so the bifurcated solution is qualitatively the same as the basic
state (as will be also confirmed shortly by theoretical arguments in §5). Clearly, the eigenvalues of
(2.6) associated with m = 0 do not represent true bifurcation points and can thus be omitted. The
value m = 1 corresponds to a simple rigid-body translation of the transverse cross sections; whether
or not this value must be considered is a contentious issue. Some authors (e.g., Yamaki [7]) have
regarded this choice as valid, arguing that it corresponds to a beam-like deformation of the cylinder.
However, for this statement to be true the transverse displacement W in (2.5) must resemble (more
or less) one-half of a sine wave. This is not true in some of the cases he considered, particularly for
moderate values of (L/R) and α� 1 – the situation we are mostly interested in. A number of other
investigators have rejected m = 1, e.g. Stein [25], Hoff and his associates [14, 15], as well as Almroth
[28]. In their studies the mode number is assumed to satisfy m ≥ 2, and we note that the case m = 2
corresponds to a change of the original circular cross section into an elliptic one. We shall elaborate
more on these issues later in §5.

Returning now to the two coupled equations (2.6), it is noted that they must be solved subject to
appropriate boundary conditions as discussed next. Taking into account the symmetry of the cylinder
geometry and the particular loading scenario, one would expect the displacements experienced by our
configuration to be either symmetric (even) or anti-symmetric (odd) about the midpoint of the shell
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axis. This observation permits us to integrate (2.6) over the reduced range 0 ≤ x ≤ 1. By choosing
the axial coordinate to be zero at the point situated half-way between the ends of the cylinder, the
symmetry conditions require the following additional requirements for the amplitudes W and F ; for
even eigendeformations:

W ′ = W ′′′ = 0 and F ′ = F ′′′ = 0 at x = 0 , (2.9)

while for the odd ones:

W = W ′′ = 0 and F = F ′′ = 0 at x = 0 . (2.10)

In this work we shall restrict attention to the case of simply supported ends in which the boundary
conditions w = w, xx = 0 at x = ±L translate to requiring

W = W ′′ = 0 at x = ±1 . (2.11)

Further conditions at the ends of the cylinders can take a number of forms; here we will explore four
possibilities that we discuss next.

2.1 Boundary conditions at x = 1

Let Nx, Ns and Nxs be the in-plane membrane forces in the shell, and suppose that u and v represent
the corresponding in-plane displacements in the axial and the circumferential directions, respectively.
It is recalled that the classical result (1.1) is valid only if the edges of the cylinder satisfy w = w, xx =
u, x = v = 0 for x = ±(L/2) and Z > 2.85 (e.g., [6, 44]).

Motivated by the earlier work of Hoff et al. ([14, 15]), in the remaining of this paper we will
investigate cylinders for which the boundary conditions (2.11) are augmented with one of the following
four choices for the in-plane quantities: (i) u = v = 0; (ii) Nx = v = 0; (iii) u = Nxs = 0 and (iv)
Nx = Nxs = 0. These are standard work-conjugate boundary conditions that arise from the variational
derivation of the DMV equations. The classical theory that predicts (1.1) is obtained for the second
choice. For a detailed discussion of the mechanical interpretation of these constraints we refer to the
textbook by Jones [40] (pp. 476-478), which includes also their counterparts for flexurally clamped
edges.

Early studies on buckling of cylinders (see Timoshenko’s excellent classical account [1]) relied
exclusively on the assumption that the ends of the cylinder were free to deform as they were axially
compressed. In this case the buckling deformation has an inextensible character and the displacements
can be taken in the form of suitable doubly infinite series of trigonometric functions. Given the local
nature of boundary conditions, for a long time it was believed that these conditions do not influence
the buckling load for thin and long cylinders. Discrepancies between theoretical predictions and
experiments have contributed to a re-examination of the possible sources for such a mismatch (e.g.,
[23]). Stein [24] and Fischer [26] seem to be the first to experiment with different types of end
constraints in their computations of buckling loads for thin elastic cylinders.

Since the DMV equations (2.1) operate only with the transverse displacement (w) and the stress
function (f), the usual constraints involving the in-plane displacments u and v must be converted
in terms of those quantities. In particular, the conditions v = 0 and u = 0 at the right end of the
cylindrical shell (x = 1) are equivalent to F ′′+νβ2F = 0 and F ′′′−(2+ν)β2F ′−4αW ′ = 0 respectively,
where F is as defined in (2.5). This then yields four separate problems in which the requirements
W (1) = W ′′(1) = 0, as stated in (2.11), are supplemented by

F ′′ + νβ2F = 0, F ′′′ − (2 + ν)β2F ′ − 4αW ′ = 0 ; (2.12a)

cipi
Highlight



Asymptotics for axially compressed cylinders 10

F ′′ = 0, F = 0 ; (2.12b)

F ′ = 0, F ′′′ − 4αW ′ = 0 ; (2.12c)

F = 0, F ′ = 0 . (2.12d)

We shall subsequently refer to the problems associated with (2.12a-d) as P1–P4, respectively. It
turns out that the first pair of problems share some structural similarities, as do the other two cases.
Therefore in it convenient to discuss these issues in pairs and this is done in sections §4 and §5 below.

3 The basic state

The governing equation for the pre-buckling deformation (2.2) can be expressed in terms of the non-
dimensional quantities (2.4), and takes the form

LΛ[w0] = 4να2Λ , with LΛ ≡
d4

dx4
+ 4αΛ

d2

dx2
+ 4α2 . (3.1)

We re-iterate that Λ > 0 represents a (non-dimensional) parameter that controls the intensity of the
applied compression (relative to Ncr), and the dependence of w0 on Λ is nonlinear. Extensive numerical
work carried out by Yamaki and his associates (see [7], pp.104–140) suggests that the critical value
of the load ratio Λ is less than 1 when α & 100, and we shall confine our attention to this regime
henceforth.

Equation (3.1) is linear and has constant coefficients, so an analytical form of its solution is readily
derived. When 0 < Λ < 1 we find that

w0(x) = νΛ
[
1 +A1 sin(a1x) sinh(a2x) +A2 cos(a1x) cosh(a2x)

]
, (3.2)

where a2
j := αω2

j (j = 1, 2) with ω1 :=
√

1 + Λ and ω2 :=
√

1− Λ. The constants Aj ∈ R (j = 1, 2)
are determined by the simply-supported requirements w0(1) = w′′0(1) = 0, while elementary algebraic
manipulations of these constraints indicate that

A1 ≡ As1 := −2(ω1ω2) sin a1 sinh a2 + (ω2
1 − ω2

2) cos a1 cosh a2

2ω1ω2(cosh2 a2 − sin2 a1)
, (3.3a)

A2 ≡ As2 := −2(ω1ω2) cos a1 cosh a2 − (ω2
1 − ω2

2) sin a1 sinh a2

2ω1ω2(cosh2 a2 − sin2 a1)
. (3.3b)

Unfortunately, the closed-form expression (3.2) is of limited practical use since the formulae (3.3)
are rather unwieldy. As we will ultimately be mainly interested in the asymptotic limits of the bifur-
cation system (2.6), we can take advantage of the presence of the parameter α in (3.1). If α � 1,
simple scaling arguments suggest that w0 consists of an O(1) constant part together with a pair of
O(α−1/2) boundary layers situated near x = −1 and x = 1, respectively. Symmetry considerations
assure us that we need only be concerned with one of these layers. For example, near x = 1 one can
introduce the stretched coordinate X defined by

x = 1− α−1/2X , X = O(1) , (3.4)

so w0 ≡ w0(X) turns out to satisfy the boundary-layer equation

d4w0

dX4
+ 4Λ

d2w0

dX2
+ 4w0 = 4νΛ . (3.5)
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The solution of (3.5) with the usual exponential decay away from the edge X = 0 yields the expression

w0 ≡ w0(X) = νΛ

[
1− 1

ω1ω2
cos(ω1X + Θs) exp(−ω2X)

]
, (3.6)

in which the phase angle Θs is defined by the trigonometric relation

sin Θs = Λ , 0 < Θs < π/2 .

Formula (3.6) for the basic state in a simply supported cylinder represents an approximate result
because the symmetry conditions at x = 0 are not satisfied exactly (but the errors are exponentially
small when α � 1). To get an idea about the accuracy of (3.6), we illustrate in Figure 4 several
comparisons with the exact formula (3.2). It is clear that the agreement is excellent even for quite
modest values of α. We also remark in passing that as Λ increases from 0 to 1 the edge deformation
spreads over an increasing distance along the half-length of the cylinder. For Λ = 1, we have ω2 = 0
and w0 becomes a purely harmonic deformation.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

x

w
0

Λ = 0.3

Λ = 0.5

Λ = 0.8

Figure 4: Comparison between the asymptotic approximation of the basic state (3.6)
and the exact formula (3.2) with Aj (j = 1, 2) given by (3.3). The latter is shown as
the continuous (blue) curve, while the former results correspond to the (red) circular
markers. Here, α = 2 × 102, the values of Λ are recorded next to the curves, and
ν = 0.3.

Equation (3.6) can be used to find simple approximations for the values of w′0(x) and w′′′0 (x) at
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x = 1, in the limit α� 1. In particular we note that

w′0
∣∣
x=1
' − νΛα1/2

√
1− Λ

, w′′′0
∣∣
x=1
' 2νΛα3/2

√
1− Λ

, (3.7)

results that will be required below in our later analysis.

4 The problems P1 and P2

In this section we will examine a thin elastic cylinder with simply supported ends, corresponding to
the problems designated as P1 and P2 in §2.1. In the works of Hoff and his associates (e.g., see
[14, 15]) these problems were labeled SS4 and SS3, respectively. We recall that those studies were
based on a constant basic state, which resulted in no critical eigenvalues with 0 < Λc < 1 (i.e., no
reduction of the buckling load from the classical theory was possible). Here, by contrast, the presence
of variable pre-buckling deformations alters this conclusion as discovered by others in earlier numerical
investigations (e.g., [28]). Our discussion below establishes the asymptotic structure of P1 and P2,
and highlights some features of these problems that have hitherto remained obscure.

4.1 Numerical results

In order to appreciate the properties of the solutions we first obtained some numerical results derived
directly from the bifurcation equations. For a given value of α, the eighth-order system (2.6) was solved
with the basic state w0(x) given by the expression (3.2), symmetry conditions applied at x = 0 and the
simply supported requirements W = W ′′ = 0 imposed at x = 1. The last pair of boundary conditions
at x = 1, as given by (2.12a) for P1 or (2.12b) for P2, then defines completely an eigenproblem for
the loading parameter Λ (as a function of β and α).

Some sample results are illustrated in Figures 5 and 6. In Figure 5 we see the form of Λ ≡ Λ(β;α)
for several values of α; it is evident that the overall shape of the solution curve is remarkably similar
as α increases, and that the critical value of Λ appears to be almost independent of this quantity.
The presence of the two local minima in the curves included in the right window of Figure 5 is not a
numerical artefact, and appears to be a robust feature of the bucking equations themselves. A similar
phenomenon was noted by Singer et al. [9] (Fig. 11.33, page 894) for a related situation in which the
ends of the cylinder were taken to be clamped.

An inspection of the corresponding modal structure, as recorded in Figure 6, shows that as α
increases so the eigensolutions are compressed against the end x = 1. This is confirmed by a simple
asymptotic analysis that we describe next.

4.2 Asymptotic analysis for α� 1

We have already seen in §3 that for large α the basic state takes on a two-layer structure. Across
the bulk of the region, where x = O(1) < 1, w0(x) is virtually constant and it is only in the edge
region where 1− x = O(α−1/2) that there is any significant variation. In terms of the boundary layer
co-ordinate X, as defined in (3.4), the basic state is given by (3.6).

The numerical evidence summarised above indicates that when α � 1 the critical eigenmodes
associated with problems P1 and P2 are confined to the region where X = O(1) and that the critical
value of β is proportional to α1/2. Guided by this observation we put β = α1/2B for some B = O(1),
and expand the unknown functions and eigenvalue so that

W = W0(X) + . . . , F = F0(X) + . . . , Λ = Λ0 + . . . , (4.1)
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Figure 5: Samples of curves Λ = Λ(β;α) for P1 (left) and P2 (right) corresponding to
α = 550, 1100, 2200; in both cases the arrow indicates the direction in which α increases
and the red markers Sα identify the location of the critical point (βc,Λc).
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Figure 6: Sequences of critical eigenmodes corresponding to the red markers Sα
(α = 550, 1100, 2200) in Fig. 5: P1 (left) and P2 (right). The arrows show the
direction in which parameter α increases, and all solutions are normalised so that∫ 1

0
W 2
c (x) dx = 0.3.

where W0 and F0 are leading order functions to be found. Substituting these expressions into (2.6)
and retaining the dominant terms yields the system
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W ′′′′0 − 2(B2 − 2Λ0)W ′′0 +B2

[
B2 − 4νΛ√

1− Λ2
cos(ω1X + Θs) exp(−ω2X)

]
W0 + F ′′0 +B2w0XXF0 = 0 ,

(4.2a)

F ′′′′0 − 2B2F ′′0 +B4F0 − 4W ′′0 − 4B2w0XXW0 = 0 , (4.2b)

where

w0XX = − 2νΛ0√
1− Λ2

0

sin(ω1X) exp(−ω2X)

is simply the second derivative of the expression (3.6) with Λ = Λ0. This system needs to be solved
subject to W0 = W ′′0 = 0 at X = 0 together with either

F ′′0 + νB2F = 0 and F ′′′0 − (2 + ν)B2F ′0 − 4W ′0 = 0 at X = 0 (Problem P1)

or
F ′′0 = 0 and F0 = 0 at X = 0 , (Problem P2)

where the dash in these equations stands for differentiation with respect to the variable X introduced
in (3.4). We also demand that the eigensolutions be confined to the thin boundary layer so that both
W0 and F0 decay exponentially as X →∞.

It is noticed that the asymptotic problem (4.2) essentially replicates the original system and there
is minimal simplification of the full forms. The problem can only be solved numerically and this
yields a curve that gives Λ0 as a function of B. This curve is virtually identical in shape to any of
the eigen-curves already seen in Figure 5; for instance, in the case of P1 the minimum is found at at
(Λ0, B) = (0.866944, 0.667), while for P2 this point corresponds to (Λ0, B) = (0.844264, 0.623). To
better appreciate the high accuracy of the simplified problems we illustrate in Figure 7 a sample of
representative comparisons with the data shown earlier in Figure 5.

5 The problems P3 and P4

In this section we explore the remaining two cases, that is the problems designated as P3 and P4 in
§2.1. These correspond, respectively, to the cases SS2 and SS1 studied by Hoff and Rehfield [14] and
Hoff [15], whose buckling models were limited to a standard linear membrane basic state.

5.1 Numerical results

Our immediate goal is to determine the dependence of Λc on α � 1, for moderately long cylinders.
To this end, we note that if we fix (R/h) then (L/R) ∝ α1/2 – see (2.4b). Conversely, if (L/R) is
fixed (and hence β in (2.7) depends only on m ≥ 2), then (R/h) ∝ α. In this latter case, direct
numerical integration of the bifurcation system (2.6) subject to the boundary constraints (2.12c) or
(2.12d) shows that Λ = Λ(m;α) is a monotonic increasing function of m. As discussed at the end
of §2, the critical mode numbers are either mc = 1 or mc = 2, and numerical evidence suggests that
Λc is about the same for each of these values; by following Stein [25] and Almroth [28], we choose
mc = 2. Thus, if ν = 0.3 then β = (L/R) ' 0.1556α1/2 for (R/h) = 100, while (L/R) ' 0.0898α1/2

for (R/h) = 300. By solving the corresponding bifurcation problems with these values of β and for a
range of α-values we arrive at the curves presented in Figure 8, which capture the dependence of Λc
on (L/R) (or, equivalently, on α1/2). It is clear both P3 and P4 display very similar behaviour, with
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Λ
Figure 7: Comparisons between the predictions of the asymptotically simplified problems P1
and P2 – see the system (4.2), and the corresponding response curves recorded in Fig. 5. The
data for P1 is included in the left window, while that for P2 appears in the right one. In
both windows the red markers represent the asymptotic predictions, the response curves being
“stacked” on top of each other and shown in blue (α = 2200), black (α = 1100), and green
(α = 550), respectively.

Λc in each case showing very little variation once (L/R) & 1.5. For P3 the asymptotic values of the
load ratio are Λc ' 0.510 (R/h = 102) and Λc ' 0.503 (R/h = 3 × 102), while for P4 very similar
values are obtained, with the corresponding differences being at most O(10−4).
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Figure 8: Typical dependence of the critical load ratio Λc on (L/R) for cylinders with
(R/h) ∈ {100, 300}: P3 (left) and P4 (right). In all cases the buckling load becomes
constant for sufficiently large aspect ratios.
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Having seen the behaviour of Λc with α > 0, we now consider the approximation of the above
asymptotic values using some reduced bifurcation systems. Samples of curves Λ = Λ(β;α) for P3 and
P4 are included in Figure 9, where each curve corresponds to a different value of α. The bifurcation
equations (2.6) were solved by using the appropriate boundary conditions from §2.1, with α being
kept fixed while β > 0 was varied in order to capture the desired dependence of Λ for α � 1; for
clarity purposes, in Figure 9 we have restricted the range of the scaled mode number to 0 ≤ β ≤ 1.
Note that in the case of P4, it appears that limβ→0+ Λc = 1/2 irrespective of the value of α � 1.
This contrasts to the behaviour of P3 for which the limit Λc as β → 0+ seems to be a function of α,
with this limit approaching 1/2 as α→∞. We try to confirm some of these behaviours using formal
asymptotic techniques which we outline now.
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0.5
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0.5006
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β

Λ

Figure 9: Samples of curves Λ = Λ(β;α) for P3 (left) and P4 (right) corresponding to
α = j × 102, with j ∈ {1, 2, 3, 5, 7, 9}; in both cases the arrow indicates the direction in
which α increases.

5.2 Asymptotic analysis for P4

We have already noted that for problem 4, is seems to be the case that Λ tends to exactly 1/2 as β → 0+

whilst there appears to be a more complicated picture at hand in problem 3. For that reason we start
our asymptotic analysis for the former case, and hope that an understanding of that underpinning
structure will provide a guide to help us subsequently explain the more involved problem.

Before embarking on the analysis it is worth reminding the reader that when α � 1 the basic
state w0 takes on a two-zoned structure; across the majority of the cylinder w0 is a constant (= νΛ)
and only exhibits significant variation in a thin layer of depth O(α−1/2) adjacent to x = 1 where
the co-ordinate X = O(1) (see (3.4)). If we were to follow standard asymptotic arguments we might
attempt to develop solutions in the separate regimes where x = O(1) and where X = O(1), and
then match the solutions together. In turns out, however, that in the current problem this is not the
most advantageous strategy. Instead it proves possible to determine the eigensolution forms across
the whole region 0 ≤ x ≤ 1 and without the need to suppose that α � 1 at the outset. This is the
route we shall take and develop our solutions on the assumption that α = O(1) and β is small. It is
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only when we need to determine expressions for the form of Λ when α is large that we will need to
consider this limit explicitly.

It is helpful to write β2 = αε, for 0 < ε� 1, and seek a solution of the problem with

W = W04(x) + εW14(x) + . . . , F = F04(x) + εF14(x) + . . . , Λ = Λ04 + εΛ14 + . . . ; (5.1)

the notation ·04 denotes leading order quantities and ·14 their corrections; we have included the second
digit to indicate which problem is under consideration. If we substitute (5.1) into system (2.6), the
leading-order terms give

W ′′′′04 + 4αΛ04W
′′
04 + αF ′′04 = 0, F ′′′′04 − 4αW ′′04 = 0 , (5.2)

where a dash denotes differentiation with respect to x. We commented earlier that the bifurcation
system admitted families of solutions which are even-valued in x and others which are odd-valued.
Our computations revealed that it is the former set which are the more important, in the sense that
they arise at smaller loading, and we proceed under this assumption. One integration of (5.2b), and
application of the symmetry gives F ′′′04 − 4αW ′04 = 0, while integrating again yields

F ′′04 = 4α(W04 −A) , (5.3)

for some constant A ∈ R (A 6= 0). If we eliminate F04 from (5.2a), we are left with

W ′′′′04 + 4αΛ04W
′′
04 + 4α2W04 = 4α2A . (5.4)

In turns out that this equation can be solved completely in terms of the basic state function w0 which
we know satisfies (3.1) (and where we have put Λ = Λ04 at leading order). We obtain the simple result

W04 =
A

νΛ04
w0 ; (5.5)

then it is possible to integrate (5.3) twice to deduce that

F04 = − A

νΛ04α

(
w′′0 + 4αΛ04w0

)
; (5.6)

it is remarked that these leading order solutions automatically satisfy the desired symmetry conditions
at x = 0 together with the relevant conditions that W04 = W ′′04 = F04 = 0 at x = 1. All that needs to
be ensured is that F ′04 = 0 at x = 1. We can use the results (3.7) to deduce that

F ′04

∣∣
x=1

=
2A(2Λ04 − 1)√

1− Λ04
=⇒ Λ04 =

1

2
.

This confirms our earlier observation that Λ→ 1/2 as β → 0+, irrespective of the value of α.
We can now proceed to consider the correction terms. If we extract the O(ε) terms from the

governing system (2.6) then we find that

W ′′′′14 + 4αΛ04W
′′
14 + αF ′′14 = 2α(1− 2Λ14)W ′′04 − αw′′0F04, (5.7a)

F ′′′′14 − 4αW ′′14 = 2αF ′′04 + 4αw′′0W04 , (5.7b)

which needs to be solved subject to the symmetry conditions at x = 0 and the requirements that
W14 = W ′′14 = F14 = F ′14 = 0 at x = 1. Since equations (5.7) are just forced versions of (5.2), we
need not solve these explicitly but rather just derive a suitable solvability condition. It is a standard
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procedure to derive the pair of functions that is adjoint to the system (5.2); these are P (x) := W04

and Q(x) := −1
4F04. If we multiply (5.7a) by P (x), (5.7b) by Q(x), add and then integrate, it follows

that our problem for W14 and F14 only admits a solution if

(1− Λ14)

∫ 1

0
W ′204(x) dx = −2

∫ 1

0
w′′0(x)F04(x)W04(x) dx .

If we use our solutions (5.5) and (5.6) for W04 and F04 respectively, then when α� 1 we discover that
Λ14 = 1

4(1 + 2ν), whence

Λ =
1

2
+

(1 + 2ν)β2

4α
+ . . . . (5.8)

A comparison of this formula against the numerical results given in Figure 9 is excellent; if this
is superimposed on the curves shown the difference is imperceptible, at least for β over the range
indicated – see Figure 10.
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Figure 10: The predictions of our asymptotic result (5.8), shown as red markers,
are superimposed on the sample of response curves recorded in the right window of
Fig. 9. The latter set of results is seen as a single blue curve because we display the
behaviour of Λ on (β2/α) rather than β.

5.3 Analysis of solutions of P3 when α� 1

We now turn to examine the remaining problem, which we have denoted P3. We have already pointed
out that the numerical solutions of this case are in many ways similar to those for P4 in as much
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that the critical case seems to arise as β → 0+ and that this critical value is close to 1/2. On the
other hand, while we have proved above that for P4 the response curves Λ = Λ(β;α) asymptote to
1/2 for all α ≥ O(1) as β → 0+, there is clear α-dependence on the limit of these curves in the case
of P3. Moreover, while P3 may be well-defined at small non-zero values of β, the value β = 0 must
be some kind of singular limit; we can conclude this because when β = 0 precisely, the bifurcation
equation (2.6b) reduces to F ′′′′ − 4αW ′′ = 0; the requirements for even-valued solutions then give
F ′′′ − 4αW ′ = 0 which is an exact duplication of the second of boundary conditions (2.12c) so that
the boundary value problem is ill-defined.

Given the similarity between the numerical solutions of problems P3 and P4, it is plausible that
the relevant solution structures ought to be closely related to each other. It is therefore tempting to
propose a stucture similar to (5.1), viz.

W = W03(x) + εW13(x) + . . . , F = F03(x) + εF13(x) + . . . , Λ = Λ03 + εΛ13 + . . . .

However, closer inspection of the correction equation (5.7b) reveals that the structure must need some
revision. One integration of this equation shows that the boundary condition for P3 at x = 1 can
only be met if

∫ 1
0 w
′′
0(x)W04(x) dx = 0 and this is not the case; this means that the leading-order

part of the W eigenfunction must be modified in some way. This can be achieved by introducing an
asymptotically larger component into the form of the function F so that

W = W03(x) + εW13(x) + . . . , F = ε−1F−1(x) + F03(x) + εF13(x) + . . . , (5.9a)

Λ = Λ03 + εΛ13 + . . . . (5.9b)

The leading-order equation involves only the O(ε−1)-term in the expansion of F and this satisfies
F ′′−1 = 0; the solution which is even-valued about x = 0 is just

F−1(x) ≡ K

for some constant K ∈ R. The next-order equations follow very similar lines to those described in our
account of P4; in particular we again find that F03 is related to W03 using

F ′′03 = 4α(W03 −A) , (5.10)

for some constant A ∈ R (A 6= 0), while the fourth-order equation for W03 assumes the form

W ′′′′03 + 4αΛ03W
′′
03 + 4α2W03 = 4α2A−Kw′′0; (5.11)

we point out that the additional term on the right-side side arises owing to the presence of F−1. Now
we have introduced two constants A and K and our aim is to relate them. Although equation (5.11)
is more complicated than before, we are still able to solve it in terms of w0. Routine calculations show
that

W̃03(x) = γ0w0(x) + x
[
γ1w

′
0(x) + γ3w

′′′
0 (x)

]
(5.12)

is a particular solution of (5.11) where

γ0 :=
A

νΛ03
, γ1 :=

KΛ03

8(1− Λ2
03)

, γ3 :=
Kα−1

16(1− Λ2
03)

.

In (5.12) the function w0 is the leading-order part of the basic state that results from expanding Λ
according to (5.9b).
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We need the solution of equation (5.11) that satisfies W0 = W ′′0 = 0 at x = 1, as stipulated by
the original boundary conditions consistent with the simply supported edge constraints considered in
this work. On noting that the functions (w0− νΛ03) and w′′0 are themselves particular solutions of the
homogeneous form of equation (5.11), we can add appropriate multiples of these to (5.12) to obtain
the solution that has the requisite properties. This full solution turns out to be

W03(x) = W̃03(x) + γ2w
′′
0(x) + γ(w0 − νΛ03) , (5.13)

with

γ2 :=
2α−3/2 + α−1

√
1− Λ03

16(1− Λ2
03)

, γ := − 1

8(1 + Λ03)
√

1− Λ03
.

In principle, we can use (5.10) to deduce the function F03 but this is unnecessary. It is sufficient to
integrate just once to derive

F ′03(x) = Γ3w
′′′
0 (x) + Γ2w

′′
0(x) + x

[
Γ1w

′
0(x) + Γ0w0(x) + Γ

]
,

with

Γ3 := −Aα
−1

νΛ03
+

Kα−1

8
√

1− Λ2
03

(
Λ03 − α1/2

√
1− Λ03

)
,

Γ1 := −4A

ν
+

K

4(1− Λ2
03)

[
α1/2(1 + 2Λ03)

√
1− Λ03 + (3− 2Λ2

03)
]
,

Γ2 :=
K

4(1− Λ2
03)

, Γ0 := 2αΛ03Γ2 , Γ := −νΛ03Γ0 ,

and demand that F ′03(1) = 0. This yields a first relation between the constants A and K in the form

2A(1− 2Λ03) =
νΛ03K(3− 2Λ03)

4α1/2(1− Λ03)
. (5.14)

A second connection is established by looking at the next order equation

F ′′′′13 − 4αW ′′13 = 2αF ′′03 − α2F−1 + 4αw′′0W03 ,

which when integrated once becomes

F ′′′13 − 4αW ′13 = 2αF ′03 −Kα2x+ 4α

∫ x

0
w′′0(x)W03(x) dx . (5.15)

The constant of integration has been chosen to ensure that F13 and W13 are even-valued functions.
Now the left-hand side of this balance must be zero when evaluated at x = 1, as required by the
boundary conditions specified in P3. Since we have demanded that F ′03(1) = 0 then∫ 1

0
w′′0(x)W03(x) dx =

1

4
Kα . (5.16)

Since we have already calculated W03 in (5.13), the integral constraint (5.16) can be reduced to a
rather tedious exercise in integration by parts. It can be shown that all integrals involved can be
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written in terms of
∫ 1

0 w
′′2
0 (x) dx and

∫ 1
0 w
′2
0 (x) dx, which can be evaluated asymptotically for α� 1.

In particular, in this limit ∫ 1

0
w′20 (x) dx ' ν2Λ2

03(3− 2Λ03)α1/2

4(1− Λ03)3/2
, (5.17a)

∫ 1

0
w′′20 (x) dx ' ν2Λ2

03α
3/2

2(1− Λ03)3/2
. (5.17b)

Evaluating (5.16) with the help of (5.17) leads to

νΛ03(3− 2Λ03)A

4(1− Λ03)3/2
= −K

[
1

4
α1/2 − ν2Λ2

03(2Λ03 − 5)

16(1− Λ03)5/2

]
. (5.18)

The eigenrelation for Λ03 follows from (5.14) and (5.18); these are consistent only if

2(1− 2Λ03)
[
4(1− Λ03)5/2 − ν2Λ2

03(2Λ03 − 5)α−1/2
]

+ ν2Λ2
03(3− 2Λ03)2α−1/2 = 0 . (5.19)

In the limit α→∞, the underlined term in this equation diminishes and the solution given by (5.19)
is just Λ03 = 1/2. For α � 1 the aforementioned term is small, so we expect that Λ03 ≡ Λ03(α) will
be close to 1/2. A routine perturbation analysis of (5.19) reveals that the root Λ03 of that equation
admits an expansion of the type

Λ03 =
1

2
+
ν2α−1/2

2
√

2
+

3ν4α−1

8
+O(α−3/2) . (5.20)

In Table 1 we have included a comparison between the values Λ03 obtained by numerically solving
(5.19) and the direct numerical simulations of the full problem P3. Clearly, the agreement between
the two sets of data is excellent. It is interesting to note that the three-term formula (5.20) reproduces
exactly the values predicted in the second column of the table.

Table 1: Comparison between the asymptotic results (5.19) and the full numerical simulations of problem P3;
the latter set of Λ-values corresponds to β ' 0 in the left window of Figure 9. The relative errors (R.E.) between
the two sets of values are recorded in the last column.

α Λ0 Λ R.E.
(asymptotics) (full numerics) (×10−4)

100 0.503212 0.503244 0.6359
200 0.502265 0.502281 0.3185
300 0.501847 0.501858 0.2192
500 0.501429 0.501435 0.1197
700 0.501207 0.501211 0.0798
900 0.501064 0.501067 0.0599
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6 Conclusions

We have investigated the compressive buckling of a simply supported thin elastic circular cylindrical
shell subjected to four different types of in-plane conditions. The emphasis here has been on taking
into account the axisymmetric nonlinear bending deformation experienced by the cylinder prior to the
onset of buckling. Although the numerical analysis of the scenarios considered in this study has been
known for some time (e.g., [28, 6, 7]), to the best of our knowledge this is the first time that a rational
asymptotic structure of these problems has been elucidated in any detail using perturbation methods.
In particular, we have been able to show that in the case of simply supported ends some of the earlier
findings of Hoff et al. for the case of a uniform membrane basic state (discussed in §1), carry over
to the nonlinear situation considered in this work and are amenable to an analytic description. Our
main results consist of simple asymptotic predictions for the critical load ratio Λc (defined in (2.4b)
and (2.8)) as a function of the Batdorf parameter α and the scaled mode number β – for the precise
definitions of these quantities see (2.4b) and (2.7). Details of a couple of such formulae are recorded
in (5.8) and (5.20). For the remaining two sets of in-plane boundary conditions considered, we have
shown that the asymptotic simplification of the full DMV buckling system is only marginally simpler
than the original; furthermore, in those cases the additional corrections to the leading-order Λc derived
in §4 will offer no benefit since these leading-order predictions have only excluded exponentially small
terms.

To illustrate the similarity between our result for problem P4 and Hoff & Rehfield’s finding for its
counterpart (SS1), we express both predictions for the critical load ratio in terms of the ubiquitous
shell parameter (h/R). To this end, we substitute into (5.8) the expressions of α and β from (2.4b)
and (2.7), respectively, and set m = 2. This results in Λc = ΛBC , where the latter quantity is defined
below,

ΛBC :=
1

2
+

1 + 2ν√
3(1− ν2)

(
h

R

)
+ . . . .

Hoff & Rehfield’s result follows from their equations (78) and (79) in [14], and reads Λc = ΛHR, where

ΛHR :=
1

2
+

2√
3(1− ν2)

(
h

R

)
+ . . . . (6.1)

Clearly, if ν ' 0.3 then the predictions of these formulae are very similar; in this case the presence of
a (nonlinear) variable basic state has a marginal impact on the final result. A similar comparison for
P3 is not available since our asymptotic analysis in §5.3 captured only the leading-order behaviour of
Λc. Nevertheless, as our Λ03 ' 1/2 and reference [14] identified (6.1) as still being valid for their SS2
(whose our counterpart is P3), the agreement between the two sets of results is still very close.

It is perhaps worth emphasising that, even though the pre-bucking state is available in closed form,
our arguments have not relied on its availability. In fact, our entire theoretical developments were
carried out with the help of the boundary-layer approximation (3.6). A close inspection of the original
bifurcation equations suggests that the approach taken here (in problems P3 and P4) can be adapted
to the case of a uniform pre-buckling state as well. There are several key advantages in taking this
particular route: (a) the complicated rescaling used by Hoff et al. becomes redundant; (b) there is no
need to rely on closed-form exponential solutions and awkward determinantal equations.

Generally speaking, the DMV shell theory employed throughout this paper forms a robust frame-
work for investigating non-symmetric deformations of cylinders, provided that the mode number m
in (2.5) is sufficiently large (typically, m ≥ 4). In our present analysis, as well as in the works of
Hoff and Almroth discussed in §1, this requirement is violated, and this represents a limitation of
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the shallow-shell theory adopted. On the other hand, the extensive numerical results of Yamaki [7]
show that, qualitatively, the drastic reduction of the buckling load in cases P3 and P4 is not simply
an artefact of the equations used, as it is also encountered in models based on Flügge’s buckling
equations. It is interesting to note that in more recent times Yamaki’s results were corroborated by
even more sophisticated shell buckling equations (e.g., [47]). In future, it may be worth revisiting our
analysis of P3 and P4 on the basis of a more complete set of bifurcation equations that is not limited
to ‘shallow modes’. Of course, this is likely to require non-trivial modifications of our asymptotic ar-
guments, not least because such more accurate systems of shell equations tend to be framed in terms
of displacements rather than with the help of a stress function.

In the interest of brevity, in this work we have focused exclusively on cylinders with simply sup-
ported ends. It is possible to replace those constraints with clamped conditions, as has been done in
the numerical studies mentioned at the start of this section. While for the most part there are many
similarities between the corresponding problems (with either a uniform or a nonlinear basic state,
respectively), some differences exist as well, and these are best discussed separately. For example, as
reported by Singer et al. [9], in some of those cases the linear membrane scenario predicts Λc > 1
and a sinusoidal eigenmode, while the nonlinear prebuckling yields Λc < 1 and an edge-localised
eigen-deformation (see Fig. 11.28, p. 891, op. cit). Clamping of the circular ends will also introduce
small O(α−1) bending layers, whose details are likely to play an important role in piecing together
the overall picture. We hope to report the corresponding results at a later time.
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