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Abstract 

This article is concerned with the reconstruction of contaminated measurement 

data based on the moving total least squares (MTLS) method, which is extensively 

applied to many engineering and scientific fields. Traditional MTLS method is lack of 

robustness and sensitive to the outliers in measurement data. Based on the framework 

of MTLS method, we proposed a robust MTLS method called RMTLS method by 

introducing a two-step pre-process to detect and remove the anomalous nodes in the 

support domain. The first step is an iterative regression procedure that combines with 

k-medoids clustering to automatically reduce the weight of anomalous node for a 

regression-based reference (curve or surface). Based on the distances between 

reference and discrete points, the second step adopts a density function defined by a 

sorted distance sequence to select the normal points without setting a threshold 

artificially. After the two-step pre-process, weighted total least square is performed on 

the selected point set to obtain the estimation value. By disposing of the anomalous 

nodes in each independent support domain, multiple outliers can be suppressed within 

the whole domain. Furthermore, the suppression of multiple continual outliers is 

possible by adopting asymmetric support domain and introducing previous estimation 

points. The proposed method shows great robustness and accuracy in reconstructing 

the simulation and experiment data. 
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1. Introduction 

Curve or surface reconstruction for discrete data is a key issue in many fields 

such as reverse engineering, measurement technique and computer vision [1-3]. 

Currently, reconstruction method can be generally categorized into explicit and 

implicit reconstruction. For explicit reconstruction, the reconstructed curve or surface 

can be characterized by an explicit function such as Bezier [4], B-Spline [5] and 

Non-uniform Rational B-Spline (NURBS) [6]. When the shape parameters of the 

function are determined, the reconstructed result can be obtained. However, it is not 

an easy task to obtain the optimal parameters. Many optimization methods have been 

incorporated to obtain the shape parameters, such as invasive weed [7], genetic 

algorithm [8], simulated annealing [9], particle swarm [10]. Implicit reconstruction 

methods define the reconstructed curve or surface as a zero isocontour of a scalar 

function. Moving least squares (MLS) [11], radial basis function (RBF) [12], signed 

distance function [13] and level-set [14] are widely used implicit reconstruction 

methods. These approaches approximate the implicit surface with different criterions 

to minimize the cost which represent different distance functions [15]. Compared with 

the explicit reconstruction method, the reconstructed result by implicit method can 

provide better topology information [16].  

Among these reconstruction methods, MLS is a widely used reconstruction 

methods owing to its simplicity and computation efficiency. MLS is a point-wise 

estimation method proposed by Shepard [17], and Lancaster [18] promoted the MLS 

method to surface reconstruction. At each point, MLS gives the localized 

approximation by the weighted least square (WLS) with a compact weight function. 

MLS is firstly designed for reconstruction. After years of development, the 

characterization of localized approximation attracts many scholars to apply this 

method to meshless method [19-23]. In meshless method, a set of nodal points instead 

of meshes are used for the discretization of the field variables, which overcomes the 

shortcoming of triangulation and mesh refinement problem in finite element method 

(FEM) [24]. Belytschko [19] constructed the discrete weak form of the equilibrium 

equation by combining with MLS approximation and firstly proposed the 

element-free Galerkin (EFG) method. Based on Belytschko’ work, many meshless 

methods such as improved element-free galerkin (IEFG) [20], meshless local 
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Petrov-Galerkin (MLPG) [21], complex variable element-free Galerkin (CVEFG) 

[22] and improved complex variable element-free Galerkin (ICVEFG) [23] method 

have been established.  

Although there are great applications of MLS method in meshless methods, MLS 

method encounters some problems in the reconstruction of measurement data. In 

measurement field, random errors are inevitable and occur in all variables while the 

MLS method only considers the influence of the dependent variables with random 

errors. To cope with this shortcoming of MLS, Scitovski [25] proposed the MTLS 

method that uses weight total least square (WTLS) for the localized approximation. 

Furthermore, MLS and MTLS method are both non-robust reconstruction methods, 

which means that even a single outlier could greatly distort the reconstruction result. 

To suppress the outliers, one method is to assign a small weight to outlier to weaken 

its influence, such as redescending M-estimator [26] and robust Bayesian regression 

[27, 28]. The definition of the weight function for down-weighting outliers without 

affecting the weight of normal points is the key. An alternative way is to reject the 

outliers according to a certain criterion such as support vector machine (SVM) [29], 

least trimmed square (LTS) [30] and random sample consensus (RANSAC) [31] 

method. The determination of the pre-defined criterion is a challenging work for these 

methods. 

In this article, a robust MTLS (RMTLS) method is proposed to improve the 

robustness of MTLS method to outliers without artificially setting threshold. The 

proposed RMTLS method adopts a two-step pre-process to select the normal points in 

the support domain. Firstly, a clustering-based iterative regression procedure is 

applied to obtain a regression-based reference within the support domain. Secondly, a 

density function based on the distribution of the discrete points is applied to select the 

normal points. Finally, WTLS is performed on the selected normal points with 

recalculated weights to obtain the estimation value. Through the validation of curve 

and surface reconstruction, the RMTLS method exhibits better robustness than the 

MLS and MTLS method. The outlines of this article are listed as follows. In section 2, 

the background knowledge of the MLS and MTLS method are introduced. In section 

3, k-medoids clustering and the RMTLS method are illustrated in detail. In section 4, 

curve and surface reconstruction cases are used to investigate the effectiveness of the 

RMTLS method. In section 5, the robustness of RMTLS to different types of outliers 

is further discussed. In section 6, a brief conclusion on whole work is given. 
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2. Introduction to the fundamental theory 

2.1 MLS method 

In the meshless method, the representation of the MLS method can be divided 

into non-shifted polynomial basis scheme and shifted polynomial basis scheme. The 

latter one is more commonly used because it is more robust for moment matrix [32, 

33]. In this paper, the MLS method with shifted polynomial basis scheme is adopted 

and will be introduced in this section. Suppose that ƒ(x) is a function defined in space 

ℝd. In the shifted polynomial basis scheme of MLS, the approximation ƒh(x,xc) of ƒ(x) 

is [34] 
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where xc is the centre of support domain Ωc in which the localized approximation is 

performed, α(xc) is local coefficient vector to be determined, and p(x–xc) is the shifted 

basis with the expression 
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Eq.(2) shows the linear shifted polynomial basis in different dimensions. The 

α(xc) is obtained by minimizing the objective function 
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where n is the total number of discrete points in Ωc and w(xi  ̶ xc) is a compact weight 

function. In this work, exponential weight function is used with the definition 
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where δ is the radius of Ωc and θ is a user-specified parameter that influences the 

distribution range of weight. θ is fixed to 16 in this article. Fig.1 shows the weight 
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function and its distribution when the centre of support domain moves from xi-2 to 

xi+2. 

 

Fig. 1. The distribution of weight at different estimation points 

The minimum of J(α) can be calculated by letting the partial differential of J(α) 

to α be 0 
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Then, α(xc) can be obtained by 
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with 

T
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where MΩc is the moment matrix. The approximation of ƒ(x) can be calculated by 

substituting Eq.(7-8) into Eq.(1) 
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The above expression gives MLS approximation of ƒ(x) when the centre of 

support domain is located at xc. When applying the MLS method to reconstructing 

measurement data, the estimation point x is chosen as the centre of the support 

domain, that is, x = xc. Then the Eq.(9) can be further rewritten as 
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2.2 MTLS method 
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The representation of MTLS method with shifted polynomial basis scheme will 

be introduced in this section. In 1981, Lancaster formally proposed the MLS method 

and solved the problem that ordinary least square (OLS) is not feasible to fit the data 

with complex shape. MLS adopts WLS method in the support domain to obtain the 

estimation value. Then, Scitovski proposed the MTLS method by replacing WLS 

estimation with WTLS estimation. MTLS can be seen as an evolution of MLS, which 

further considers both dependent and independent variables.  

WTLS method is established based on the errors in variable (EIV) model [35] 

which can be formulated as  

T( + ) ( ) +
c cc =x fP E α x f e                        (12) 

where Ex is an unknown error matrix of PΩc and ef is an unknown error vector of fΩc. 

The dimension of PΩc (or Ex) is n(m+1) and the dimension of fΩc (or ef) is n1. In 

WLTS, to obtain the estimation of α(xc) is to minimize the function 
2
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where || ∙ ||
2 

F  is the Frobenius norm defined as ||Amn||
2 

F =
m 

i=1
n 

j=1|aij|
2, and D (or T) is a 

diagonal weight matrix with dimension of n (or m+2). MTLS adopts a simplified 

WTLS estimation in which the weight matrix D is set as compact weight matrix WΩc 

and T is assumed to be Im+2, which means that the error terms on each row of 

augmented matrix D[Ex | ef] have the same weight.  

By left multiplying the matrix D on both side of Eq.(12), Eq.(12) can be 

rewritten as 
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Then, the minimization of Eq.(13) is equivalent to find a matrix D[Ex | ef] with 

the lowest Frobenius norm that reduces D[PΩc | fΩc] with rank m+2 to {D[PΩc | fΩc]+ 

D[Ex | ef]} with rank m+1, which leads to a best rank-m+1 approximation problem. 

Let the singular decomposition of the augmented matrix G:= D[PΩc | fΩc] be 
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According to the low-rank approximation theory, the best rank-m+1 

approximation of D[PΩc | fΩc], i.e. {D[PΩc | fΩc]+D[Ex | ef]}, can be obtained by 

dropping the singular value σm+2 of G, and the minimization is unique when 

σm+1≠σm+2. Then {D[PΩc | fΩc]+D[Ex | ef]} can be formulated as 
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Based on the above, D[Ex | ef] can be obtained by 
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Combined with Eq.(14) and Eq.(17), the solution of α(xc) can be expressed as 

( 1) 1( ) /c m v+ = −α x v                          (18) 

3. Proposed RMTLS method 

3.1 K-medoids clustering method 

In the RMTLS method, k-medoids clustering is introduced to construct the 

weight function based on the geometry feature of dataset itself. Hence, before 

illustrating the proposed RMTLS method, it is needed to give a brief introduction to 

k-medoids clustering. K-medoids clustering is an improved k-means clustering 

method with higher robustness to outliers [36]. For a given point set X ={x1, x2, ∙∙∙, xn} 

in ℝd, the objective of k-medoids clustering is to find k subsets C1, C2, ∙∙∙, Ck subject to 

Uk 

i=1Ci =X and Ci ∩ Ci '= ϕ, i ≠ i ' and satisfy the minimum cost defined by [37] 

2

1 j i

k

j i

i

E
= 

= − 
x C

x p                            (19) 

where pi is the medoid of the cluster Ci which can be defined as the most centrally 

located point in cluster Ci, and || ∙ || denotes the Euclidian norm. To obtain the global 

minima of Eq.(19) is a time consuming work and it is considered to be as a NP-hard 

problem. The most popular realization of k-medoids clustering is the partition around 

medoids (PAM) algorithm proposed by Kaufman [38], which is listed as follows: 

Step 1: Randomly set k points in X as the initial medoids. 

Step 2: Assign the other points into their nearest medoids to form k clusters. 

Step 3: Calculate current cost E. 

Step 4: For each medoid pi (1≤i≤k), swap pi with all other non-medoid points xj 

in turn and calculated the associated cost Ei,j. 
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Step 5: If the minimum of Ei,j is smaller than current cost E, swap the medoid pi 

with point xj. 

Step 6: Repeat Step 2 – Step 5 until the minimum of Ei,j is larger than current cost 

E. 

3.2 RMTLS method 

3.2.1 Iterative regression procedure 

The proposed RMTLS method contains a two-step pre-process. The first step is to 

obtain a regression-based reference by iterative regression procedure and the second 

step is to define and select the normal points based on the reference. 

 

Fig. 2. The principle of iterative regression procedure 

Fig.2 shows the principle of iterative regression procedure. In Fig.2, ri,j is the 

residual of jth point in support domain Ωi centred at x(e)
i, and it is defined by ri,j=|yj – 

ŷj| where ŷj is the fitting value at xj. The iterative procedure starts with the initial 

weighted residuals {r(0)
i,j}

n 

j=1, which are obtained by performing WLS method within 

the support domain Ωi with the uniform initial weights {w(0)
i,j}

n 

j=1=1. In this paper, 

WLS method with third order basis is adopted to fit the local shape of the curve in a 

support domain. Then, the weight residuals {r(0)
i,j}

n 

j=1 are divided into two clusters 

through k-medoids clustering. Cluster 1 is defined as the cluster with lower centroid 

value while cluster 2 has a higher centroid. Based on clustering result, a weight 

function is proposed to calculate the weight of points with the expression 

(0)

,
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 
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= 
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where si,j is the difference between r(0)
i,j in cluster 2 and centroid 1, and S is the 

difference between centroid 1 and maximum of {r(0)
i,j}

n 

j=1. In kth iteration (k ≥ 1), 

through the WLS method with the weights {w(k)
i,j}

n 

j=1, the weight residuals {r(k)
i,j}

n 

j=1 

can be obtained with the expression  

( ) ( )

, , ,

k k

i j i j i jr r w=                        (21) 

where 

( 1) 1
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− −

− −

 


= 
 − 



（ ）

（ ）（ ）
        (22) 

In this way, after the iterative procedure, the influence of the outlier can be 

significantly weakened. It should be noticed that with the increase of iteration, the 

sum of weighted residual rapidly converges to near 0 and the reference barely 

changes. To quit the iteration and save computation cost, a criterion c1/c2 based on the 

clustering result is proposed. In Fig.2, c1 is the difference between centroid 1 and 

zero, and c2 is the difference between two centroids. If the difference between the sum 

of weighted residual set of two iterations is lower than the criterion c1/c2, the iterative 

procedure will be terminated and the last regression is considered as the 

regression-based reference which serves as the input of selection procedure. The 

details of the algorithm are listed as follows. 

Algorithm 1 Iterative regression process 

Input: discrete point set X, estimation point x(e)
i, radius of support domain δ 

Output: Regression-based reference l 

Determine the support domain Ωi = { x ∈ X |  || x ‒ x(e)
i || < δ} 

Set k = 0 

Set {w(k)
i,j}

n 

j=1 = 1 

    while ((sum{r(k‒2)
i,j}

n 

j=1 ‒ sum{r(k‒1)
i,j}

n 

j=1)> c1/c2, k > 1) or (k ≤ 1) do 

Obtain the regression l(k) in Ωi by WLS method with {w(k)
i,j}

n 

j=1 

Compute the weighted residuals {r(k)
i,j}

n 

j=1 with {w(k)
i,j}

n 

j=1 by Eq.(21) 

Perform k-medoids clustering on {r(k)
i,j}

n 

j=1 

k = k+1 

Update the weights {w(k)
i,j}

n 

j=1 by Eq.(22) 

end while 

return Regression-based reference l 

3.2.2 Density-based selection procedure 

In the second step of pre-process, a density-based selection procedure is proposed 

to select the normal points in the support domain according to the regression-based 
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reference determined by the iterative regression procedure. 

 

Fig. 3. The principle of density-based selection procedure 

Fig.3 shows the principle of the density-based selection procedure. The distances 

{di,1, di,2 , ‧‧‧, di,n} between each discrete points and regression-based reference are 

firstly calculated. The density function are defined based on the sorted set Ds= {di,(1), 

di,(2) , ‧‧‧, di,(n)}, di,(1)≤ di,(2) ≤ ‧‧‧≤di,(n) with the expression 

,( )1( )
i jd

j j n
j

 − =  ，1                        (23) 

where ρ denotes the number of points within per unit length. The median of density 

can be defined as 

,( /2)1=
/ 2

i n
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d

n
 −

                          (24) 

To ensure the result of n/2 is an integer, n/2 is rounded when n is an odd number. 

Then, the selected point set Xs can be determined through 

,( ) ,( ) 1

' 1 1

1 ,( ') 1
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{ | }

, arg min( ( ) )

s i j i j
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k n

d d C

C d j k p − −
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 = =  


X
         (25) 

By letting ρ(k) ‒1 = p1 ‧ ρmedian
‒1, the outlier criterion for kth distance di,(k) in Ds can 

be further obtained with the following expression 

,( /2) 1

,( ) 1 1   , / 2
/ 2

i n

i k median

d
criterion of d p k p k k n

n
 −=  =          (26) 

where p1 is a parameter related to the selection range. Suppose that normal points 

obey the Gauss distribution along regression-based reference with zero means and 

variance σ2. Then, di,(n/2) can be calculated approximately by Z0.75‧σ ≈ 0.68σ according 

to cumulative Z-Table of standard normal distribution, and di,(n) can be considered as 

3σ. Then the ratio ρ(n)‒1/ρ(n/2)‒1
 = (3σ/n)/(0.68σ/n/2) ≈ 2.2 can be obtained. Parameter 

p1 is set to 2 in this paper. 
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Subsequently, the ordinary least square (OLS) method is applied on the point set 

Xs to obtain a corrected reference because that in the iterative regression method, the 

weights of part of normal points are influenced, resulting in the slight deviation of 

regression-based reference. Then, the distances {d 'i,j}
n 

j=1 between corrected reference 

and discrete points are calculated, and re-selected point set X's is determined by 

performing the selection procedure with sorted distance set D's and parameter p2. The 

determination of parameter p2 is the same as p1. However, the number of discrete 

points within support domain is small especially in curve reconstruction situation. 

Based on insufficient statistical information, the median distance d 'i,(n/2) may deviates 

from the approximation value 0.68σ so that some normal points will be excluded from 

the re-selection step. Therefore, for curve reconstruction, p2 is set to 4 and for surface 

reconstruction, p2 is set to 2 in this paper. 

The estimation value of x(e)
i can be determined by performing the WTLS method 

on X's with the compact weight function w(s). The algorithm of density-based 

selection procedure is listed as follows. 

Algorithm 2 Density-based selection procedure  

Input: regression-based reference l, support domain Ωi, parameter p1, p2 

Output: point set X's 
 

Compute the orthogonal distances {di,j}
n 

j=1 between discrete points in Ωi and l 

Set Ds = sort ({di,j }
n 

j=1) ={di,(j)}
n 

j=1, di,(1)≤ di,(2) ≤ ‧‧‧≤di,(n) 

Determine the point set Xs with C1 and p1 by Eq.(25) 

Obtain the corrected reference l ' by performing OLS method on Xs 

Compute the orthogonal distances {d 'i,j}
n 

j=1 between discrete points in Ωi and l ' 

Set D's = sort ({d 'i,j }
n 

j=1) 

Determine the reselected point set X's with C2 and p2 

return point set X's  

4. Simulation and experiment validation 

4.1. Reconstruction of simulated data 

In this section, two simulated reconstruction instances are used to validate the 

effectiveness of the proposed RMTLS method. 1D and 2D function are taken as the 

curve and surface reconstruction objective, respectively. Firstly, a series of equal 

spaced estimation points are used to obtain the discrete data of the function. Then, 

outliers and random errors which obey normal distribution with zero means and the 

variance of σx
2, σy

2 are added to these discrete data to form the simulated data. 

The 1D function 
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2

2 4.51.1(1 2 )
x

y x x e x
−

= − + ，                    (27) 

where Ω={x| x∈[0,10] } is taken as the simulated curve reconstruction case. In this 

case, 201 estimation points are used. The radius of support domain δ is set to 

Ωlength×5/100. Random errors with σx=σy =10-3 are added and five outliers E1, ‧‧‧, E5 

are added to the different locations of the function.  

 

Fig. 4. The reconstructed curves in Case 1D  

Fig.4 shows the reconstructed curves by three methods, namely MLS, MTLS and 

RMTLS in a typical simulation run. From the local enlargement graph in Fig.4, the 

presence of outliers distorts the reconstructed curves in the MLS and MTLS method. 

The poor estimation is adverse to the application of further analysis techniques such 

as roughness estimation and geometry characterization. By applying the RMTLS 

method to Case 1D, we obtain a smooth reconstructed curve (purple line) and all the 

outliers are successfully suppressed as shown in Fig.4. 

To study the effectiveness of the RMTLS method on surface reconstruction, the 

2D function [39] 
2 22 2 2 2

2 2
1 11 1 1

( (0.9 1) (0.9 1) ))( ((0.9 2) (0.9 2) )) ( (0.9 7) (0.9 3) ))
( (0.9 4) (0.9 7) ))49 104 4 4

3 3 1 1

4 4 2 5

x yx y x y
x yz e e e e

− + − +− − + − − − − −
− − − −= + + −  (28) 

defined in Ω={(x, y)|(x, y)∈ [0,10]×[0,10]} is taken as the simulated surface 

reconstruction case. In this case, two types of estimation points are investigated, i.e., 

structured and non-structured estimation points as shown in Fig.5(a) and (b). The 

number of both estimation points are 1681. In Fig.5(a), estimation points lie on a 

structured grid with 41 columns and 41 rows. For Fig.5(b), estimation points lie on a 

non-structured grid which is generated by sampling from random variable Tx and Ty 

which both obey a uniform distribution in [0,10] and the sampled values (tx, ty) are 
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taken as the coordinates of estimation points. Fig.5(c) shows the generation of 2D 

simulation data. For estimation point (x(e)
i, y(e)

i), the ideal value zi can be obtained 

through Eq.(28). Then, three random error terms (Δx~N(0,σx
2), Δy~N(0,σy

2),  

Δz~N(0,σz
2)) are added to form the simulation data point (x(e)

i+Δxi, y
(e)

i+Δyi, zi+Δzi), 

1≤ i ≤ n. Let δ＝(Ωwidth+Ωlength)×5/100. In this case, random errors are set to 

σx=σy=σz=10-3 and seven outliers are added. Let δ＝(Ωwidth+Ωlength)×5/100. In this 

case, random errors are set to σx=σy=σz=10-3 and seven outliers are added. 

     

(a) Structured grid      (b) Non-structured grid   (c) Generation of simulation data 

Fig. 5. The arrangement of estimation points in Case 2D 

Fig.6 shows the reconstructed surfaces by three methods. On a structured grid, for 

the MLS and MTLS method, it can be found that reconstruction surfaces are both 

distorted near the outlier because these two methods treat outlier as a sharp feature 

and thus give ill result around the outlier. In contrast, RMTLS method removes the 

outlier and gives smooth reconstructed surface. On a non-structured grid, similar 

conclusion can be made that RMTLS has higher robustness to outliers. Fig.6(d1) and 

(d2) further give the error distribution of reconstructed surfaces by RMTLS on two 

types of grids. The errors in the marked regions of Fig.6(d1) are significantly smaller 

than that of Fig.6(d2).  

 The reconstruction result of simulation data in Case 1D and 2D both prove that 

the RMTLS method appears the highest robustness among three methods.  
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(a1) MLS - Structured grid              (a2) MLS with - Non-structured grid  

        

(b1) MTLS - Structured grid                 (b2) MTLS - Non-structured grid  

         

(c1) RMTLS - Structured grid                 (c2) RMTLS - Non-structured grid 

      

(d1) Error distribution of (c1)                 (d2) Error distribution of (c2) 

Fig. 6. Reconstructed surfaces and error distribution in Case 2D 

To further investigate the performance of RMTLS method under different 

random errors, outliers in Case 1D and 2D, and random errors with the ratio σx/σy or 

σx(y)/σz of being 10-6/10-3, 10-5/10-3, 10-3/10-3, 10-3/10-4, 10-3/10-4, 10-3/10-4, 10-3/10-6 are 

added to both simulation cases, respectively. Moreover, in order to quantify the 

difference between different reconstructed curves and illustrate the reconstruction 
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effectiveness, the reconstruction error defined by the sum of absolute residual of all 

estimation points s is adopted with the expression 

1

1

ˆ   , in case 1D

ˆ    , in case 2D

n

i i

i

n

i i

i

y y

s

z z

=

=


−


= 
 −





                     (29) 

where yi and zi are ideal value, and ŷi and ẑi is estimation value. Fig.7 shows the s 

values by three methods with different random errors. It can be found that in Fig.4 

and Fig.6, the reconstructed curve and surface by the MTLS method distort more 

seriously near outliers than that by the MLS method, meaning higher estimation error 

of the MTLS method in these areas. However, from Fig.7(a) and (b), the 

reconstruction errors of the MTLS method in Case 1D and 2D with different random 

errors are all lower than that of the MLS method, which illustrates that the MTLS 

method achieves higher reconstruction accuracy in the areas without the presence of 

outliers compared to the MLS method. Then, by applying the robust pre-process, the s 

values by the RMTLS method are further reduced compared to the MTLS method 

because of the suppression of outliers within whole parameter domain. The 

comparison results show that the RMTLS method has the lowest reconstruction error 

and outstanding robustness to outliers.  

 

(a) Case 1D 

 



 

16 
 

(b) Case 2D 

Fig. 7. The s values in Case 1D and 2D with different random errors 

4.2 Arrangement of measurement experiment 

In order to apply the RMTLS method to the reconstruction of measurement data 

and investigate the reconstruction effectiveness, measurement experiments with two 

instruments were used to obtain the measurement data. In this section, a brief 

introduction to the instruments used in the experiment is given.  

For the first measurement experiment, a self-built measuring platform was used 

to acquire curve measurement data. Fig.8(a) shows the self-built measurement 

platform that was mainly composed by a three-axis moving platform and a laser 

displacement sensor. The moving platform used a SILVERA 080 precision rail as the 

moving component controlled by Parker 1505 controller and LK-G150 laser 

displacement sensor from KEYENCE was adopted. In this measurement platform, 

LK-G150 was clamped on the Z-axis rail and the measuring object was mounted on 

the workbench. The repetitive positioning error of the moving platform is about 15μm 

and the repetitive measurement error of LK-G150 is about 5μm. The measurement 

data are obtained by scanning the tested sample through the translation platform and 

the scanning space was set to 0.05mm. 

    

(a) Self-built measurement platform    (b) Principle of laser displacement sensor LK-G150 

Fig. 8. The self-built measurement platform 

Fig.8(b) gives the inner structure of the laser displacement sensor. LK-G150 

measures the object at position b according to a reference position a. In Fig.8(b), △

A'B'P' and △ABP are similar, and the relative distance m can be calculated through 

[40] 
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sin( ) ' '

sin( ) sin( ) ' '

l A B
m

f l A B



  
=

− +
                    (30) 

where l is the object distance, f is the focal distance, θ is the angle between 

transmitting beam and receiving beam and γ is the angle between receiving beam and 

CCD.  

For the second measurement experiment, a non-contact measurement instrument, 

white light interferometer (WLI) - Taylor Hobson CCI 3000, is adopted. As shown in 

Fig.9(a), a sphere part is fixed on the movable workbench. The obtained 2D surface 

measurement data has a uniform space of 1.7969μm on x and y axis. Fig.9(b) shows 

the structure of the WLI system. A broadband light beam is firstly reflected by a 

beamsplitter and passes through an interferometric objective. The reflected beams 

from the reference mirror and tested surface were focused onto a CMOS camera. 

Interference fringes occur when the optical path difference (OPD) of two arms of the 

interferometer is within the coherence length, and the visibility of the fringes reaches 

maximum when the OPD equals zero. Through scanning the objective along the depth 

direction, a sequence of interferograms can be obtained. Afterwards, the surface 

topography within the field of view of the objective can be constructed by tracking 

coherence peaks in each interferogram and corresponding PZT positions.  

         

(a) WLI-Taylor Hobson CCI 3000               (b) Principle of the WLI system 

Fig. 9. The principle of the WLI system 

4.3. Reconstruction of measurement data 

In the first measurement experiment, the self-built measurement platform was 

used to measure the profile of a cylindrical part. Through calibration by PGI 1240 

profilometer, the radius of the cylindrical part is considered as 40.1840 mm. We take 
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a segment of measurement data which contains 805 measurement points. Let δ＝

(Ωlength)×5.5/100 where Ω={x| x∈[–22.5,22.5]}.  

 

Fig. 10. The reconstructed curves of curve measurement data 

Fig.10 shows the reconstructed curves by three methods. From the enlargement 

graph in Fig.10, the reconstructed curves by the MLS and MTLS method slightly 

distort toward the outlier compared to that by the RMTLS method. The reason of the 

small difference between the reconstructed curve by the RMTLS method and two 

other methods may attribute to the fact that the outlier is relatively close to the normal 

points. 

In the second experiment, a spherical surface was measured by a WLI system 

with a radius of 14.402mm obtained by the WLI system. Let u=v=56, n=uv=3136, 

δ=(Ωwidth+Ωlength)×2/100 where Ω={(x,  y)|(x,  y)∈ [–50,50]×[–50,50]}. Fig.11(a) 

gives the measurement data from WLI system. Plenty of outliers on the right corner of 

the data can be observed. As shown in Fig.11(b) and (c), the reconstructed surfaces by 

the MLS and MTLS method distorted seriously by outliers. In contrast, the RMTLS 

method successfully suppresses the influence of all outliers and gives a smooth 

reconstructed surface as shown in Fig.11(d). 

     

(a) Measurement data                (b) Reconstructed surface by the MLS method 
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(c) Reconstructed surface by the MTLS method   (d) Reconstructed surface by the RMTLS method 

Fig. 11. Reconstructed surfaces of surface measurement data 

To further quantify the reconstruction effectiveness of the RMTLS method in this 

section, simulated annealing algorithm [41] is adopted to obtain a regression circle (or 

sphere 

e) based on the reconstructed curve (or surface) with minimum sum of residuals. 

By comparing the regression radius and the reference radius, the reconstruct 

effectiveness can be evaluated. As shown in Table 1, for the curve measurement data, 

the regression radius by the RMTLS method is closest to the calibration radius 

40.1840 mm, indicating that the RMTLS method achieves the best reconstruct 

effectiveness among these methods. For the surface measurement data, similar 

conclusion can also be drawn. Both experiments also prove that the RMTLS method 

has highest robustness to outliers and it is more suitable for the reconstruction of the 

measurement data. 

Table 1. Regression radius of reconstructed curves and surfaces [mm] 

Experiment No. Reference radius MLS MTLS RMTLS 

1 40.184 39.932 40.006 40.044 

2 14.402 14.594 14.631 14.567 

5. Discussion 

5.1 Suppression of multiple discrete outliers 

Through Case 1D and 2D, the RMTLS method has showed great robustness to 

single outlier in a support domain. And the reconstruction result in the second 

experiment preliminarily shows the ability of the RMTLS method in handling 

multiple outliers. To quantitatively investigate the robustness of RMTLS in the 
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presence of multiple discrete outliers, the outliers with different percentages in the 

support domain are added.  

 

Fig. 12. The reconstructed curves of Case 1D with multiple discrete outliers 

Take Case 1D as an example and increase the total number of estimation points to 

500. Let r＝Ωlength×5/100. The outliers with percentages ranging from 10% to 48% in 

the support domain are added in different regions of the Case 1D. In Fig.12, the 

support domain in location Ⅰ, Ⅱ, Ⅲ, Ⅳ, Ⅴ includes the outlier with the percentage of 

10%, 20%, 30%, 40%, 48%, respectively. From the reconstructed curves by three 

methods, it can be found that RMTLS is able to effectively suppress multiple discrete 

outliers. When the outliers account over 50% of total number of the discrete points in 

a support domain, according to the principle of selection procedure, di,(n/2) will be 

considered as a normal point while it is actually an outlier in this situation. 

Consequently, more outliers will be selected owing to the poor estimation of selection 

range. Therefore, in this situation, even if all outliers are successfully suppressed in 

the iterative regression procedure, the selection procedure will still include some 

outliers wrongly, resulting in the deviation of estimation value. 

5.2 Suppression of multiple continual outliers 

As shown above, RMTLS is able to suppress the multiple discrete outliers in the 

support domain. However, if continual outliers exist in support domain, the iterative 

regression procedure will give an ill reference that biases to the outliers as shown in 

the left part of Fig.13. Different from multiple discrete outliers, there are no normal 

points between continuous outliers, which is difficult for iterative regression 

procedure to suppress them especially when continuous outliers exist on the edge of 
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support domain. An applicable solution is to introduce the previous estimation points 

which can be seen as normal points to the iterative regression procedure to transfer the 

continuous outliers into discrete outliers as shown in section 5.1. 

 

Fig. 13. The comparison between symmetric and asymmetric support domain 

In a symmetric support domain, i.e., the estimation point locates at the center of 

support domain. If all the previous estimation points are taken into the iterative 

regression procedure as shown in the left part of Fig.13, there are still no normal 

points in the front of current estimation point x(e)
i. To solve this problem, the location 

of the estimation point x(e)
i should be moved forward to the frontal edge of the support 

domain as shown in the right part of Fig.13, which leads to an asymmetric support 

domain. In this way, by introducing the previous estimation points in asymmetric 

support domain to the iterative regression procedure, continual outliers can be 

transferred into discrete outliers. Moreover, in asymmetric support domain, the 

compact weight function becomes 
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where δ1 is the distance between left boundary of support domain and estimation point 

x(e)
i, and δ2 is the distance of x(e)

i to the right boundary of support domain as shown in 

Fig.13. 
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Fig. 14. The application of asymmetric support domain in the RMTLS method 

The left of Fig.14 shows the WTLS estimation step in support domain Ωi. WTLS 

is applied to obtain the estimation value at the central estimation point x=x(e)
i with 

weight w(s) and the sub-estimation value at the most frontal estimation point x=x(e)
i+2 

with weight w(s'). It is noted that after WTLS estimation, there are two estimation 

values at x=x(e)
i. To ensure one estimation value at each estimation point, the previous 

sub-estimation value at x=x(e)
i will be deleted in the next support domain. Then, in the 

next support domain Ωi+1, discrete points, previous estimation and sub-estimation 

points are taken as the input of iterative regression procedure to obtain a 

regression-based reference.  

 

Fig. 15. The reconstructed curve by the RMTLS method with asymmetric support domain  

To validate the effectiveness of the RMTLS method with asymmetric support 

domain, some continual outliers and discrete outliers are both added to different 

locations of Case 1D. Fig.15 shows the reconstructed curve. Detected outliers in 

Fig.15 represent those points that have not been selected by the pre-process in any 

support domains. From Fig.15, it can be seen that most of continual and discrete 
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outliers are detected. The reconstructed curve proves that the robustness of RMTLS 

can be further improved by adopting an asymmetric support domain. 

5.3 Suppression of random errors 

In this section, another situation that no outliers exist in the support domain will 

be discussed. Under this situation, basically all the points will be selected thorough 

pre-process so that RMTLS method will give the same estimation result with MTLS 

method. To further suppress the random errors, a clustering-based weight function is 

applied to adjust the weight of points within the support domain. After the two-step 

pre-process, the selected point set X's and corresponding distance set {d 'i,j | xi,j ∈ X's} 

can be obtained as stated in section 3.2.  

 

Fig. 16. The construction of clustering-based weight function 

By performing k-medoids clustering on the distance set {d 'i,j | xi,j ∈ X's} as shown 

in Fig.16, clustering result can be used to define a weight function 
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where ti,j is the difference between d 'i,j and centroid 1, T is the difference between 

centroid 1 and maximum of distance set, and λ is a parameter which is associated with 

weight of point in cluster 2. When λ is greater than 0, the influence of the point with 

large random errors will be increased and vice versa. A large value of |λ| indicates that 

a sharp transition of weight between the points in two clusters. The estimation value 

can be determined through the WTLS method with the combination of compact 

weight function w(s) and clustering-based weight function w(d). 
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(a) Case 1D without outliers 

 

(b) Case 2D without outliers 

Fig. 17. The s values in previous cases only with different random errors 

Previous simulated curve and surface reconstruction case with different random 

errors are adopted to validate the effectiveness of clustering-based weight function on 

suppressing random errors. Fig.17(a) and (b) show the s values in Case 1D and 2D 

only with different random errors, respectively. The comparison results show that 

RMTLS method with clustering-based weight function achieves the highest accuracy. 

5.4 Computation efficiency 

In this section, the computation efficiency of three methods is investigated. Three 

methods are run in MATLAB and the CPU is Intel i5-7500 3.6GHz. Time 

consumption is used to evaluate the computation efficiency of each method. Two sets 

of simulations are designed based on Case 2D with a structured grid, and the first 

simulation keeps the number of points in support domain nδ2 fixed (n is the number 

of total points and δ is the radius of support domain) while n gradually increases. In 

the second simulation, n is fixed and nδ2 gradually increases. Table 2 and 3 give the 

results of two simulations.  

Table 2. Comparison of time consumption by three methods with fixed nδ2  
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n 322 482 642 962 1282 1922 2562 

δ 1 2/3 1/2 1/3 1/4 1/6 1/8 

tMLS[second] 0.209 0.522 1.175 3.659 10.730 45.591 133.243 

tMTLS[second] 0.200 0.484 1.091 3.645 10.433 44.609 132.602 

tRMTLS[second] 1.303 2.904 5.186 12.709 30.063 87.967 213.867 

(tRMTLS–tMLS)/tMLS 5.234 4.563 3.414 2.473 1.802 0.929 0.605 

 

Table 3. Comparison of time consumption by three methods with fixed n  

n 412 412 412 412 412 412 412 

δ 0.8 1 1.2 1.4 1.8 2.2 2.6 

tMLS[second] 0.456 0.544 0.766 0.923 1.506 2.158 2.965 

tMTLS[second] 0.443 0.478 0.690 0.878 1.478 2.133 2.782 

tRMTLS[second] 2.378 2.609 3.693 5.420 12.589 21.983 36.220 

(tRMTLS–tMLS)/tMLS 4.215 3.796 3.821 4.872 7.359 9.187 11.216 

In Table 2, when the number of points in support domain is fixed, with the 

increase of n, the relative difference between tRMTLS and tMLS, i.e., (tRMTLS-tMLS)/tMLS, 

gradually decreases. While in Table 3, when the number of points in each support 

increases, the relative difference between tRMTLS and tMLS increases rapidly. The two 

simulations indicate that the efficiency of RMTLS method is more sensitive to nδ2 

(number of points in support domain) while less sensitive to number of total points n. 

Based on the simulation results, the selection of nδ2 should be mainly considered to 

allow the application of RMTLS on reconstructing large scale data with a small δ. 

6. Conclusions 

A robust pre-process for the support domain is proposed to improve the 

robustness of the MTLS method to outliers in this paper. The pre-process includes two 

steps. The first step is to obtain a regression-based reference within support domain. 

By adopting the k-medoids clustering, the weight of the outlier can be automatically 

weakened without setting any threshold values. The second step is to select the 

normal points along the reference. Simulated curve and surface reconstruction cases 

are used to validate the effectiveness of the RMTLS method. The sum of absolute 

residuals as well as root mean square (RMS) both prove that the RMTLS method has 
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higher robustness to outliers compared to the MLS and MTLS method. Then, the 

RMTLS method is applied to the reconstruction of measurement data derived from a 

self-built measuring platform and a WLI measuring system respectively. The RMTLS 

method successfully suppresses all the outliers and gives the reconstructed result 

which is the closest to the calibration result. Furthermore, by adopting asymmetric 

support domain and including the previous estimation points into the pre-process, 

multiple continual outliers can be suppressed. The random error can also be 

suppressed by introducing the clustering-based weight function. 
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