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Abstract: Fog computing is an interesting technology aimed at providing various processing and 

storage resources at the IoT networks' edge. Energy consumption is one of the essential factors that 

can directly impact the maintenance cost and CO2 emissions of fog environments. Energy 

consumption can be mitigated by effective scheduling approaches, in which tasks are going to be 

mapped on the best possible resources regarding some conflicting objectives. To deal with these  

issues, we introduce an opposition-based hybrid discrete optimization algorithm, called DMFO-DE. 

For this purpose, first, a discrete and Opposition-Based Learning (OBL) version of the Moth-Flame 

Optimization (MFO) algorithm is provided, and it then is combined with the Differential Evolution 

(DE) algorithm to improve the convergence speed and prevent local optima problem. The DMFO- 

DE is then employed for scientific workflow scheduling in fog computing environments using the 

Dynamic Voltage and Frequency Scaling (DVFS) method. The Heterogeneous Earliest Finish Time 

(HEFT) algorithm is used to find the tasks execution order in the scientific workflows. Our 

workflow scheduling approach mainly tries to decrease the scheduling process's energy 

consumption by minimizing the applied Virtual Machines (VMs), makespan, and communication 

between dependent tasks. For evaluating the performance of the proposed scheduling scheme,  

extensive simulations are conducted on the scientific workflows with four different sizes. The  

experimental results indicate that scheduling using the DMFO-DE algorithm can outperform other 

metrics such as the number of applied VMs, and energy consumption. 

 
Keywords: Fog Computing, Task, Workflow, Optimization, Makespan, Energy, DVFS. 

 

1. Introduction: 

Internet of things (IoT) is a collection of devices or things such as various home appliances [1, 2] that contain the  

required software and hardware technologies for communicating with other things and systems [3]. These things can 

gather monitoring data from their environment and are able to cooperate using unique addressing methods [4]. As a 

result, IoT is successfully integrated with other contexts such as smart homes, smart cities, e-healthcare, transportation, 

industries, agriculture, etc. However, IoT things often suffer from low computational, storage, and power resources 

[5, 6]. Cloud computing [7] is a well-known technology that can deliver the required resources by the IoT from. 

Typically, cloud computing benefit from a large number of VMs in its data centers and using proper resource  

management techniques such as VM migration[8] and VM placement[9-11], can deliver the required resources by the 

IoT. However, using cloud computing resources incurs long delays, which may be unacceptable in some applications. 

Therefore, there is a desperate need for more resources at the edge of the IoT networks. Fog computing is new 

technology to answer such requirements and is able to provide the required resources to facilitate task processing,  

networking, and data storage[12] near the IoT networks [13]. Thus, fog computing can effectively reduce the 

communication overheads and delay for the IoT networks while mitigating the workloads on cloud computing data 

centers [14, 15]. Each fog server is a virtualized environment equipped with computational devices, a wireless 

communication unit, and data storage cards. Many VMs can serve requests from mobile users, and IoT devices resided 

in the fog servers. A mobile user can communicate directly with fog servers through a single-hop wireless connection 

using a wireless interface, namely 4G LTE devices, WiFi, Bluetooth, etc. When fog computing receives more requests 

than it can handle, it may offload some of its load to the cloud computing data centers, as needed [10, 16, 17]. Figure 

1 depicts fog computing architecture in which, in the bottom layer, IoT devices are located [18]. 
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Figure 1: Fog computing architecture 

 

Then, fog computing resources are placed at the top of the IoT devices, and the top layer is Cloud computing, which 

is a paradigm for hosting services over the Internet. Efficient resource management[19] is one of the essential 

requirements of fog computing and can help provide high-quality IoT services. Task and workflow scheduling are 

practical resource management approaches in the fog computing environments to assign a set of tasks requested by 

the IoT to the most appropriate fog nodes [20-22]. Such fog scheduling schemes try to manage various fog virtual 

resources and focus on user-specified constraints and deadlines. Also, scheduling approaches often minimize the 

makespan, resource consumption, data transfer, and cost while ensuring the quality of service factors such as 

deadlines[23, 24]. Task and workflow scheduling problems are proven to be NP-hard problems in fog computing [25- 

27]. In this context, several heuristics and metaheuristic scheduling methods are widely studied by scheduling 

independent tasks. Still, fewer researches have been presented for workflow scheduling in the fog computing context. 

Based on their applied algorithm, workflow scheduling schemes can be classified as heuristic[28-38] and 

metaheuristic schemes, which in the latter case different optimization algorithms, such as particle swarm optimization, 

genetic algorithm, etc., are used in the metaheuristic fog scheduling approaches. For instance, in [39], Hosseinioun et 

al. introduced a DVFS-based power-aware approach to save energy in fog computing, which schedules tasks in lower 

voltage and frequency in slack times. They used IWO-CA, a hybrid evolutionary algorithm to order tasks regarding 

task precedence. Also, in the scheduling approach provided in [40], the authors presented the TCaS algorithm based 

on an evolutionary algorithm. They indicated that it could reduce the makespan and execution cost while meeting 

users’ QoS and cost requirements. Besides, in [41], Aburukba et al. schedule the IoT tasks to reduce their execution 

latency in fog-cloud computing. This scheme considers delays like waiting time, routing or queuing delay, 

transmission delay, and processing time for processing IoT requests. Furthermore, they used genetic algorithms to 

find the right solutions quickly and indicated that it improves the performance and latency while meeting the deadlines. 

Also, the scheduling scheme provided in [42] applies the MFO algorithm to assign an optimal set of fog nodes to tasks 

to meet the applications’ QoS requirements and mitigate their makespan. The authors have conducted their 

experiments using the iFogSim toolkit and indicated that their scheme could reduce the execution time. Moreover, in 

[43, 44], the bees life algorithm, which is an optimization approach for workflow scheduling in the fog is presented, 

which optimizes the task distribution among fog nodes. This scheme is aimed to optimize the CPU execution time and 

allocated memory. Also, in [45], Maio and Kimovski proposed an NSGA-II-based scheduling approach for data- 

intensive workflows, which considers the response time, cost, and reliability. They extend a Fog simulation framework 

to evaluate the cloud offloading suitability for data-intensive scientific workflows. They indicated that the use of fog 

is beneficial for low computation and high data transmission tasks, making it the best choice for optimizing the 

response time of data-intensive tasks. They indicated that their approach could reduce response time compared to 

HEFT for small task sizes while slightly maintaining cost and reliability values. Besides, in [46], a particle swarm 

optimization-based cost-aware scheduling approach for multiple workflows is presented. 

These scheduling approaches consider various factors such as makespan, communication delay, cost, reliability[47], 

security[48-50], etc. Furthermore, energy consumption is one of the critical factors considered in scheduling 

schemes[51]. Different techniques are  used in the literature to reduce the fog computing environments' energy 
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consumption, in which DVFS is one of them. DVFS is an interesting method that can reduce the processor’s frequency 

to mitigate its power usage. However, reducing the processor’s frequency increases its execution time, and as a result, 

the primary deadline and various Quality of Service (QoS) factors should not be neglected. Although numerous  

researches have been carried out in the DVFS-based scheduling context in cloud computing platforms, very few 

DVFS-based schemes are provided in the literature for fog computing environments. Thus, conducting further  

investigation in the energy-efficient scheduling in the fog computing environments is an essential issue. 

In the optimization algorithm context, the moth-flame optimization algorithm or MFO is an interesting algorithm 

introduced by Mirjalili [52]. This algorithm is inspired by the movement of the moths for solving continuous  

optimization problems. However, despite the MFO’s success in the continuous optimization context, it cannot handle 

discrete problems without modification. For this purpose, in this article, we present DMFO, a discrete version of the 

MFO algorithm, which uses genetic operators such as mutation and crossover to produce discrete solutions. But, the 

MFO algorithm suffers from the low convergence speed and global search capability [53]. To handle these issues,  

opposition-based learning (OBL) is used in the DMFO algorithm. The DMFO is combined with the DE algorithm to 

provide a new hybrid, and discrete optimization algorithm denoted as DMFO-DE. In each iteration, the DMFO-DE 

algorithm randomly executes one of the DMFO and DE algorithms. Their achieved results give a penalty or reward 

to these algorithms using a Learning Automaton (LA). Using this technique, the algorithm that gets better results  

achieves more chance to explore the problem space. However, to give both algorithms a chance to find better solutions, 

every 30 rounds, the LA used for each algorithm is reset, increasing the exploration of the proposed algorithm. The 

DMFO-DE algorithm is also used for DVFS-based scheduling of scientific workflows submitted to mitigate the fog 

computing environment's energy consumption in the scheduling process. Furthermore, in this scheduling approach, 

different chaotic maps are used to produce a discrete initial population. Besides, in this scheme, the HEFT scheduling 

algorithm's task prioritization method is applied for finding the order of task execution in the scientific workflows. 

Finally, to verify the proposed scheduling schemes' energy efficiency, several experiments with different size scientific 

workflows are conducted. Our primary contributions in this paper can be listed as follows: 

 Presenting a discrete version of the MFO algorithm, denoted as DMFO. 

 Presenting DMFO-DE, a hybrid and OBL-based optimization algorithm using the DMFO and DE 

optimization algorithms. 

 Introducing a scientific workflow scheduling scheme using the DMFO-DE algorithm. 

 Effective energy management using DVFS in the introduced workflow scheduling approach. 

 Extensive simulations using the iFogSim simulator tool to verify the proposed algorithm's effectiveness in 

terms of energy consumption and the number of applied VMs, with different DVFS settings. 

The rest of this scheduling article is organized as follows: Section 2 gives an interesting review of the fog computing 

domain's previously published scheduling approaches. Section 3 discusses the MFO algorithm. Section 4 presents the 

proposed discrete version of the MFO algorithm, and Section 5 introduces our proposed workflow scheduling 

framework. Moreover, Section 6 reports the experimental results, and finally, Section 7 puts forward the concluding 

remarks and future study directions. 

 

2. MFO algorithm 

MFO algorithm is a population-based algorithm inspired by the moths' movement and is used for solving continuous 

optimization problems. Typically, moths fly by keeping a fixed angle to the moon that is an efficient method for  

traveling in a straight path, but artificial lights trick the moths and show such behaviors. Because the light is close to 

the moth, keeping a similar angle to the light source causes a moths' spiral fly path. In the MFO, the set of moths is 

represented in a matrix as follows: 
 

𝑀𝑜𝑡ℎ =   
𝑀𝑜𝑡ℎ11     ⋯ 𝑀𝑜𝑡ℎ1𝑑 

⋮ ⋱ ⋮ 
𝑀𝑜𝑡ℎ𝑛1     ⋯ 𝑀𝑜𝑡ℎ𝑛𝑑 

  (1) 

In which n determines the number of moths and d denotes their dimension. Besides, the fitness of the moths should 

be maintained as follows: 
𝑀𝑜𝑡ℎ𝐹1 
𝑀𝑜𝑡ℎ𝐹2 

𝑀𝑜𝑡ℎ𝐹 =   
… 

𝑀𝑜𝑡ℎ𝐹
n 

  (2) 

Flames are the other components of the proposed MFO algorithm and are stored in a matrix as follows: 

𝐹𝑙𝑎𝑚𝑒1,1     ⋯    𝐹𝑙𝑎𝑚𝑒1, 𝑑 
𝐹𝑙𝑎𝑚𝑒 =   ⋮ ⋱ ⋮ 

𝐹𝑙𝑎𝑚𝑒𝑛,1     ⋯    𝐹𝑙𝑎𝑚𝑒𝑛, 𝑑 
  (3) 
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Which n specifies the number of flames, and d determines the number of dimensions. Furthermore, it is assumed that 

there is an array for storing the corresponding fitness values as follows: 
𝐹𝑙𝑎𝑚𝑒𝐹1 
𝐹𝑙𝑎𝑚𝑒𝐹2 

𝐹𝑙𝑎𝑚𝑒𝐹 =   
… 

𝐹𝑙𝑎𝑚𝑒𝐹n 

  (4) 

In which n specifies the number of flames. It should be noted that both moths and flames are solutions, but they differ 

in their updating method. The moths are search agents that can explore the search space, but flames are the best  

solutions that have been reached so far. In this algorithm, each moth searches around a flame and updates the moth 

when it finds a solution with a better fitness value. Figure 2 indicates the population initialization method in the MFO 

algorithm. 

 
Figure 2: Population initialization in the MFO algorithm 

 

Furthermore, the upper bound and lower bound of the solutions are defined by two arrays: upperb and lowerb. These 

arrays are defined as follows: 

𝑢𝑝𝑝𝑒𝑟𝑏 = {𝑢𝑝𝑝𝑒𝑟𝑏1, 𝑢𝑝𝑝𝑒𝑟𝑏2, 𝑢𝑝𝑝𝑒𝑟𝑏3,…, 𝑢𝑝𝑝𝑒𝑟𝑏𝑛} (5) 

In which, 𝑢𝑝𝑝𝑒𝑟𝑏 specifies the upper bound of the i
th

 dimension of each solution. 

𝑙𝑜𝑤𝑒𝑟𝑏 = {𝑙𝑜𝑤𝑒𝑟𝑏1, 𝑙𝑜𝑤𝑒𝑟𝑏2, 𝑙𝑜𝑤𝑒𝑟𝑏3,…, 𝑙𝑜𝑤𝑒𝑟𝑏𝑛} (6) 

In which, 𝑙𝑜𝑤𝑒𝑟𝑏 indicates the lower bound of the i
th

 dimension of each solution. For mathematically modeling this 

behavior, the position of each moth is updated concerning a flame using the following equation: 

𝑀𝑜𝑡ℎ = 𝑆 𝑀𝑜𝑡ℎ , 𝐹𝑙𝑎𝑚𝑒 (7) 

In this equation, Mi indicates the i
th

 moth, and Fj indicates the j
th

 flame, and S is a logarithmic spiral function used for 
updating the moths. Based on these issues, a logarithmic spiral is defined for the MFO algorithm as follows: 

𝑆(𝑀𝑜𝑡ℎ , 𝐹𝑙𝑎𝑚𝑒  ) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . 𝑒bt cos  2𝜋𝑡   + 𝐹𝑗 (8) 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 indicates the distance of the i
th

 moth for the j
th

 flame, t is a random number in [-1, 1], and b is a constant 

for defining the shape of the logarithmic spiral. Furthermore, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is calculated as follows: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒  = |𝐹𝑙𝑎𝑚𝑒     𝑀𝑜𝑡ℎ | (9) 

Mothi indicates the i
th
 moth, Flamej indicates the j

th
 flame, and Distancei is the distance. 

 

3. The proposed discrete optimization algorithm 

This section presents our proposed DMFO algorithm and DMFO-DE created by integrating the DE [54] and DMFO 

algorithms using learning automata. 

 

3.1. OBL 

OBL or Opposition-based Learning is a simple method that has been incorporated in several optimization algorithms 

to enhance their capabilities. In OBL, the opposite of each dimension of the opposition solution can be computed as 

shown in Equation 10: 

𝑥∗ = 𝑎  + 𝑏      𝑥 (10) 

Which ai and bi are the upper bound and lower bound of the i
th

 dimension of the solution x. 

3.2. DMFO algorithm 

To provide a discrete version of the MFO algorithm, we have to introduce a method to create a discrete initial 

population and then design the required operators to modify these discrete solutions and convert them to the other  

discrete solutions[55]. We used an opposition-based method for producing a discrete population, which has been 

shown in Figure 3. As shown in this figure, we have used the chaotic maps to produce random numbers between [0, 

1], and 𝑁𝑣𝑚 denotes the maximum number of available VMs in the fog computing environment. Using this method, 

a random integer number between [0, Nvm] is created by each solution's dimension. After creating the required number 

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛  𝑠𝑡𝑒𝑝 1 
𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑑 𝑠𝑡𝑒𝑝 1 

𝑚𝑜𝑡ℎ   =  𝑢𝑝𝑝𝑒𝑟𝑏   𝑙𝑜𝑤𝑒𝑟𝑏   ∗ 𝑟𝑎𝑛𝑑 + 𝑙𝑜𝑤𝑒𝑟𝑏  

𝑒𝑛𝑑 
𝑒𝑛𝑑 
𝑀𝑜𝑡ℎ𝐹 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹 𝑀𝑜𝑡ℎ  
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of solutions, the opposition of each solution is computed. However, the solution's opposite can be applied when it has 

a lower fitness value than a chaotic map solution. 

 
Figure 3: Population initialization in the DMFO algorithm 

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 4: Applied chaotic maps 

𝐅𝐨𝐫 i = 1 to n 
𝐅𝐨𝐫 j = 1 to d 

moth i, j = Floor Nvm ∗Chaotic_MAP()) 

𝐄𝐧𝐝 
Temp=OBL(moth i, j  
If Fitness(Temp)< mothi  𝐓𝐡𝐞𝐧 

moth i, j =Temp 

End 

𝐄𝐧𝐝 
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Figure 4 indicates various chaotic maps [56, 57] applied in the DMFO algorithm, which can be described as follows: 

 Figure 4.a shows the logistic map output over 80 iterations, and Equation 11 indicates the logistic map, where 

a=4.

 Equation 12 shows the circle map, in which P=0.4 is used. Figure 4.b shows the output of this map over 80 

iterations.

 Equation 13 defines the piecewise map, in which n=1.6, C=1.5, and P=0.5. Figure 4.c shows chaotic value 

distributions of this chaotic map for 80 iterations.

 Equation 14 defines the iterative map, where a=0.5 and b=0.2 are used. Figure 4.d shows the chaotic value 

distributions of this map for 80 iterations.

 Equation 15 indicates the Intermittency map, in which C=1.5, n=1.6, and P=0.5 are used. Figure 4.e depicts 

the output of the Intermittency map over 100 iterations.

 Equation 16 defines the Sine chaotic map, in which a=4 is used. Figure 4.f shows its values over the 100 

iterations.

𝐾 +1 = 𝑎𝑋   1     𝑋 (11) 

 

 

 
𝑋 +1 = 

⎧ 
𝑋  

𝑃 
⎪ 𝑋      𝑃  

0.5     𝑃  
⎨1    𝑃    𝑋  

 
0 $ 𝑋 < 𝑃  

 
𝑃 $ 𝑋 < 0.5 

0.5 $ 𝑋  < 1   𝑃  

 
 
 
 

(12) 

⎪  
0.5    𝑃  

1    𝑋  
⎩     𝑃 1  𝑃 $ 𝑋 < 1 

𝜀 + 𝑋  + 𝐶 𝑋   n 0 < 𝑋 $ 𝑃  

𝑋 +1 =  𝑋     𝑃  

1     𝑃  
𝑃 < 𝑋  < 1 

(13)
 

𝑋 +1 = 𝑋  + 𝑏   
𝑎 

(
2𝜋

)
 
sin 2𝜋𝑋    𝑚𝑜𝑑 1 

(14)
 

𝑋 +1 
= sin (

𝑎𝜋
) 

(15)
 

𝑋  

𝑋 
𝑎 

  (16) 
 +1 = 

4 
sin 𝜋𝑋  

This section uses genetic operators such as swap, crossover, and mutation to modify the basic MFO algorithm. In this 

equation, the mutation operator selects a random element for the j
th
 dimension. After 𝑀 is computed for each j=1...D, 

and 𝑀𝑖 is achieved, we should compute Equation 15. For this purpose, as indicated in Equation 36, we use a multi- 

point crossover operator on the 𝐹 and 𝑀 vectors: 

𝑀   =CrossOver(𝐹 , 𝑀 ) (17) 
  

Equation 18 indicates a two-point crossover operator. 
𝐹𝑖𝑗 𝑖𝑓 𝜃  < 𝑅𝑎𝑛𝑑 

𝑀  = 𝑀 
𝐹 

𝑖𝑗 𝑖𝑓 𝜃  < 𝑅𝑎𝑛𝑑 (18) 
𝑖𝑓 𝜃  ?: 𝑅𝑎𝑛𝑑 

𝑖𝑗 

Figure 5 indicates the effect of a crossover operator on two sample vectors. 

 
Figure 5: A sample two-point crossover 
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Figure 6 indicates the DMFO algorithm's pseudo-code, which benefits from the OBL method both in the initial population creation 

and during the iterations to search for the best solution. In each iteration, for each month, the algorithm may perform the crossover 

with a flame or with the Disctancei. It may also perform the swap operation one each moth or may perform mutation on it. 
 

Function DMFO 

Input: A random population 
Output: The best solution 

𝐅𝐨𝐫 i = 1 to n 
𝐅𝐨𝐫 j = 1 to d 

Moth i, j = Floor  Nvm ∗Chaotic_MAP()) 

𝐄𝐧𝐝 
Temp=OBL(moth i, j  
If  Fitness(Temp)< Mothi  𝐓𝐡𝐞𝐧 

Moth i, j =Temp 

End 

𝐄𝐧𝐝 
For k=1: Max_Iteration 

𝐅𝐨𝐫 i = 1 to n 
Calculate Distance(i) 

Z= Chaotic_MAP() 

If (Z<=0.25) 

// Swapping the Moth and Flame 

Xc1=Rand(1, n) 

Moth(i)=Crossover(flame(i),Moth(i), Xc); 

End 

If (0.25<=Z<0.5) 

// Swapping the Moth and Flame 

Xc2=Rand(1, n) 

Moth(i)=Crossover(flame(i), Distance(i), Xn); 

End 

If (0.5<=Z<0.75) 

// Computing M(i)= swap(flame i ); 

Ns=Rand(1,n) 

For i=1 to Nswap 

Xj1= Rand(1,n) 

Xj2= Rand(1,n) 

Swap(Moth(i, Xj1),Moth(i, Xj2) 

End 

End 

If (Z>=0.75) 

// Computing M(i)=Mutate(flame(i)); 

For i=1 to Nmutate 

Xj= Rand(1,n) 

Moth(i,Xj)= Floor Nvm ∗Chaotic_MAP()) 

End 

End 

OBL(i)= Opposition of the Moth(i) 

If   Fitness(OBL(i))< Moth i   𝐓𝐡𝐞𝐧 
Moth i = OBL(i) 

End 

End 
End 

Figure 6: DMFO pseudo-code 
 

3.3. DE algorithm 

Differential evolution or DE is an easy to understand metaheuristic algorithm that iteratively searches the optimization 

problems' solution space to find the best solution. It works by having a population of candidate solutions that move 

around in the search space using a simple mathematical formula to combine existing agents' positions from the 

population. If the new position is an improvement, then it is accepted and forms part of the population. Otherwise, the 

new position is simply discarded. The process is repeated, and by doing so is hoped, but not guaranteed, that a 
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satisfactory solution will eventually be discovered. In the mutation phase, the solutions are updated using the following 

equation: 

𝑉  𝑡 + 1  = 𝑋 1 𝑡  + 𝐹. 𝑋 2 𝑡       𝑋    𝑡 (19) 

Where 𝑟1, 𝑟2, 𝑟 ∈ {1,2, … , 𝑁} are random numbers, and 𝐹 is a constant between [0, 2] and controls the amplification 

of the differential variation. In the crossover phase, the position of the solutions is updated as below: 

𝑉   𝑡 + 1 𝑖𝑓  𝑟𝑎𝑛𝑑𝑏  𝑗  $ 𝐶𝑅   𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟  𝑖  
𝑈 𝑡 + 1 = {  ,   𝑗 = 1,2, … , 𝐷 (20) 

𝑋   𝑡 𝑖𝑓 𝑟𝑎𝑛𝑑𝑏 𝑗 > 𝐶𝑅   𝑜𝑟 𝑗 =t 𝑟𝑛𝑏𝑟 𝑖  

Where j indicates the dimension, 𝑟𝑎𝑛𝑑𝑏 is a vector with random values in (0,1), 𝐶𝑅 is crossover constant, and 𝑟𝑛𝑏𝑟 
is a randomly chosen index. At last, to decide which solutions should become a member of generation 𝑡+ 1, the trial 

vector 𝑈  𝑡 + 1  is compared to the base solution 𝑋  𝑡  using the greedy selection mechanism. If the solution 𝑈  𝑡 + 
1 has a better cost than 𝑋 𝑡 , then the 𝑈 (t+1) replaces with 𝑋 𝑡 + 1 otherwise, the old 𝑋 𝑡 is kept. 

 
3.4. Learning Automata 

Typically, a learning automaton (LA) can be considered as a machine that can stochastically perform a finite number 

of actions. This environment responds to it the learning automata after evaluating the action, and these responses 

should be used in the LA as feedback to select its next action[58]. The LA uses this response, updates its internal state, 

and learns how to choose the best next action. With this process, the automaton gradually discovers the best action 

within its set. Generally, LA can be defined as (S, A, P, δ, ω), where S = {s1, s2, s3, . . . , sn} specifies the set of states 

of LA, A = {a1, a2, a3, . . . , an} is the set of actions which LA performs, and R = {r1, r2, r3, . . . , rn} is the set of 

responses received from the environment. Also, δ is a function that maps the current state of LA and the environment’s 

input to the next state of LA, and ω is a function that maps the LA’s current state and the environment‘s response to 

the LA state. In LA, the environment can have one of the following models: 

 P-Model: The output can take only two values, 0 or 1. 

 Q-Model: Finite output set with more than two values, between 0 and 1. 

 S-Model: The output is a continuous random variable in the range [0, 1]. 

Also, each LA action may be rewarded or penalized. When the action gets the reward, its probability increases, while 

all other actions decrease. Generally, the reward and penalty can be computed as follows: 

 Reward: 

 

 
 Penalty: 

Pi(n+1) = Pi(n)+ d[1- Pi(n)] (21) 

Pj(n+1) = (1-d)Pj(n) For all j<>i (22) 

 
 

Pi(n+1) = (1-e)Pj(n) (23) 

Pj(n+1) = e/(r-1)+(1-e)Pj(n) For all j<>i (24) 

In the preceding expressions, d is the reward parameter, and e is the penalty parameter. 

 

3.5. Hybrid DMFO-DE algorithm 

Typically, the non-hybrid metaheuristic algorithms rely only on some mathematical formula and may fall into local 

optima problem. For this purpose, hybrid metaheuristic algorithms are proposed in the literature to avoid their  

constituent algorithms' shortcomings and solve more complex problems. Generally, the following three models are 

used for integrating the optimization algorithms and creating new hybrid metaheuristic algorithms: 

 Serial method: Each of the metaheuristic algorithms will be executed serially, one after another. 

 Parallel method: The metaheuristic algorithms will be executed in parallel. In this case, each algorithm may 

operate on the whole population or a subpopulation. In the latter case, proper consideration should be made 

for sub-populations creation, integration, and management. 

 Conditional method: In this case, based on some conditions, only one of the optimization algorithms will be 

run in each iteration. This method incurs less overhead than the two previous methods and is used in our  

proposed hybrid algorithm. 

In this scheme, we combine the DE algorithm and our proposed DMFO algorithm to achieve better results. Figure 7 

depicts our proposed hybrid optimization protocol's flowchart, which conditionally executes the DE and DMFO  

algorithms. As shown in this figure, at first, the hybrid algorithm starts with a probability of 0.5 (P=0.5). Based on 

this random value, either DE or the DMFO algorithms should be executed. According to the achieved results, the 
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learning automata should be used to reward or penalize the executed algorithm. Using this method, the algorithm that 

has gained some improvements can find more chances to continue improving. However, when each of the algorithms 

cannot improve after a predefined number of iteration, variable P is used for selecting the algorithm should be reset 

to its initial value (P=0.5) to improve the exploration chance. This operation should be continued until a predefined 

number of iterations has been reached. Generally, the proposed hybrid DMFO-DE algorithm is lighter than the main 

MFO because instead of the MFO, the DE algorithm, which is much lighter, should be executed in some rounds. 

 
Figure 7: The DMFO-DE algorithm 
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This reduces the proposed algorithm's execution cost and alleviates the high costs of the sorting algorithms used in 

the MFO algorithm. Also, the DMFO-DE algorithm does not divide the population into two sub-population (swarm), 

and in each iteration, each of the applied algorithms works on the whole population. This hybridization method reduces 

the algorithms overhead than other hybrid optimization techniques, which need each participant algorithm to work a 

swarm on the result be integrated later. Thus, there will be no need for various swarm management operations  

necessary for multi-swarm algorithms. Furthermore, it is worth mentioning that in this algorithm, we have also used 

chaotic maps to produce the required random numbers. 

 
4. Workflow Scheduling Using DMFO-DE Algorithm 

This scheme's primary goal is to assign the most appropriate set of VMs to the IoT submitted workflows to minimize 

both workflow makespan and fog computing energy consumption. This section explains how the proposed  

DMFO-DE algorithm is used for efficient workflow scheduling in a fog computing environment to achieve such  

objectives. For this purpose, we first provide a formal formulation of the workflow scheduling problem. Table 1 

specifies the abbreviations applied in the rest of this section. 
Table 1: Abbreviations and Acronyms 

Abbreviation Description 

VMi i
th

 VM 

𝑁𝑣𝑚 Number of VMs 

Wi i
th

 workflow 

Ti i
th

 task 

𝐹𝑇 𝑇 , 𝑉𝑀𝑗  Finish time of ith task on the jth VM 

F_DVFSi Dynamic Voltage Frequency Scaling 

Frequencyi i
th

 frequency 

Voltagei i
th

 voltage 

𝑎𝑣𝑎𝑖𝑙(𝑉𝑀 ) The time that j
th

 VM will be available 

𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆k  The execution time of the task Ti with the k
th

 level DVFS 

𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀   The start time of the task Ti on the VMj 

𝐹𝑇(𝑇 , 𝑉𝑀 ) Finish time of the task Ti on the VMj 

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖   The average execution time of the task Ti 

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇 , 𝑇𝑗  Communication time of the data transfer between the Ti and Tj 

SlackTime Slack Time 

Predecessor(Ti) Predecessor set of task Ti 

Successor(Ti ) Successor set of task Ti 

Wcommunication The total amount of workflow communications 

Scommunication The required amount of scheduling communications 

𝑁𝑇𝑖 number of tasks in the i
th

 level of the workflow 

𝐸busy The energy consumption of the VMs 

𝐸ldle The energy consumption of idle periods 

 
4.1. DVFS 

Typically, the DVFS method reduces the CPU’s operational frequency and voltage to mitigate processors' energy 

consumption in the task execution. DVFS method can be incorporated in all computing systems, ranging from mobile 

devices to cloud computing DCs. However, reducing the CPU frequency mitigates its speed, and as a result, the  

workflow deadline may be missed unexpectedly. Thus, the DVFS-based scheduling frameworks' main task is to 

determine the minimum necessary operating frequency for the VMs that execute the workflow while meeting the 

workflow deadline. 
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Figure 8: Slack time 

As depicted in figure 8, when more frequency is used in DVFS-based scheduling [59, 60], the task is executed faster, 

but when a lower level of frequency is utilized, it takes longer to run the task. Figure 8.a shows the slack time, which 

can be used by DVFS-based scheduling. As shown in Equation 25, the slack time is the period between the deadline 

(𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 ) and the task finish time (𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒 (𝐹max)), when the processor is run with maximum possible 

frequency. 

SlackTime = 𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒  - 𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒  (𝐹max) (25) 

Figure 9 depicts some parts of a workflow that perform data aggregation and should be scheduled on the fog computing 

environment. As shown in this figure, T1, T2, T3, T4, and T5 should be executed and completed before task T6 starts 

to be executed. 

 
Figure 9: Data aggregation point in a workflow 

 
However, in some cases, T1 to T5 may be heterogeneous and may have different execution times. For example, as 

shown in Figure 10, the task T1 is longer than other tasks, and as a result, the VMs which tasks T2 to T5 are allocated 

to them should be idle after executing their task. Using the DVFS technique, we can mitigate the frequency of the 

VM1 to VM5’s CPU to reduce their execution speed and energy consumption while meeting the deadline determined 

by the task T1. Also, the deadlines may be specified by the user or by the scheduling algorithm itself. The primary 

goal of DVFS-based scheduling is to detect the least possible frequency for each task, regarding their deadline can be 

met. In this case, the least power is consumed for tasks and workflow executions. 

 
Figure 10: Gant chart of some tasks in a workflow 
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In this scheme, it is assumed that power consumption consists of static and dynamic and energy consumptions.  

Energydynamic and Energystatic. Typically, in our scheduling approach, static energy consumption is ignored since 

dynamic energy consumption is more time-consuming and expensive. 

Energy = 𝐸𝑛𝑒𝑟𝑔𝑦stat + 𝐸𝑛𝑒𝑟𝑔𝑦dynam (26) 

We compute 𝑃𝑜𝑤𝑒𝑟dynam  or dynamic power consumption as follows: 

𝑃𝑜𝑤𝑒𝑟dynam   = 𝐾. 𝑣2 . 𝑓 (27) 

In which K is the constant of dynamic power consumption and is related to the capacities of the devices Also, 𝑣2 is 

the voltage of the s
th
 level, and the j

th
 VM, and f is the j

th
 VM frequency. By using this equation, the energy consumption 

of the VMs can be computed as follows: 
n n 

𝐸busy =     𝐾 ∗ 𝑣2 ∗ 𝑓 s ∗ 𝐸𝑇   =   𝑃𝑜𝑤𝑒𝑟dynam   ∗ 𝐸𝑇   (28) 

 =1 =1 
 

In which, 𝐸𝑇 is the execution time of the i
th
 task on the jth VM, and 𝑣 s indicates that the i

th
 is task is used on the jth 

VM, with the s
th
 voltage level. Moreover, 𝑓 s is the frequency of processor j

th
 VM, at the s

th
 voltage level. Also, in the 

idle periods of VMs, their voltage has to be set to the lowest level to save the most energy. The energy consumption 

of idle periods for all available processors can be defined as follows: 
p p 

𝐸ldle = 𝑘 ∗ 𝑣2 ∗ 𝑓 m n ∗ 𝐼𝑇 = 𝑃𝑜𝑤𝑒𝑟 dle ∗ 𝐼𝑇  (29) 

 =1 =1 

In which 𝑣 m n and 𝑓 m n are the minimum voltage and frequency of the j
th

 VM, and 𝐼𝑇 is considered to be the idle 

time of the j
th
 VM. According to these equations, the total energy consumption required for DAG scheduling in a fog 

computing environment can be computed as follows: 

𝐸total = 𝐸Busy + 𝐸ldle (30) 

 
4.2. Problem formulation 

This section provides a formal definition of the considered workflow model and the energy model. For this purpose, 

we assumed that fog computing contains a collection of computational resources in the form of VMs, denoted by 

VM={VM1, VM2, VM3, …}. The VMs can also work at different levels, such as F_DVFS={ F_DVFS1, F_DVFS2, 

F_DVFS3, …}. F_DVFSi indicates the i
th

 setting for the fog processor's frequency and voltage and 

F_DVFSi=(Frequencyi, Voltagei). Also, we assumed that F_DVFSi<F_DVFSj where i<j, or to be more specific, 

Frequencyi<Frequencyj and Voltagei< Voltagej. 

Besides, we deal with the workflows submitted to the fog environment as a directed acyclic graph (DAG). We indicate 

the set of workflows submitted to the fog by W={W1, W2, W3, …,Wn}, in which each workflow contains some tasks, 

Wi={T1, T2, T3, …}. Moreover, each workflow is considered a DAG, in which each node represents a task, and the 

edges specify data or control dependencies between tasks, in which Eij defines the edge between the Ti and Tj, when 

T� ≠ T�. Control dependency among tasks indicates that child tasks can be executed after all its parent tasks have fully 

executed, and their output data have been sent to it. Control dependencies only transfer the configuration parameters 

needed to execute the child task and transfer fewer data than data dependencies. However, the transferred data in the 

data dependencies are used as input data to the child process. In this scheme, the set of all direct predecessors of each 

workflow task can be computed as follows: 

Predecessor(Ti) = { 𝑇𝑗 | 𝑇𝑗, 𝑇𝑖    ∈ 𝐸} (31) 

Thus, regarding the entry task or tasks, their predecessor set should be empty, Predecessor(Tentry)={}. Furthermore, 

the set of all direct successors of each task can be computed as follows: 

Successor(Ti )= = { 𝑇𝑗 | 𝑇𝑖, 𝑇𝑗    ∈ 𝐸} (32) 
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Furthermore, their successor set will be empty for the exit task or tasks, Successor(Texit)={}. To compute the average 

computation time of the Ti, first Equation 33 indicates how 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆k or the execution time of the Ti 

in the k
th

 DVFS level should be computed: 

   𝑇𝑎𝑠𝑘_𝑙𝑒𝑛 𝑇    𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆    =  
 

(33) 
k 𝑉𝑀 𝑗, 𝐹_𝐷𝑉𝐹𝑆k  

In which, 𝑉𝑀 𝑗, 𝐹_𝐷𝑉𝐹𝑆k specifies the speed of the j
th
 VM using kth DVFS level, and 𝑇𝑎𝑠𝑘_𝑙𝑒𝑛 𝑇   specifies the 

length of the task in terms of the millions of instructions per second. Also, the average time to execute the task Ti on 

the j
th

 VM can be computed as follows: 

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀𝑗     = 
1

 
Ndvfs 

    𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆    

 

(34) 
 

𝑁𝑑𝑣𝑓𝑠 k 

k=1 

In which, Ndvfs is the number of DVFS levels in the VM. Furthermore, the average execution time of the task Ti on 

all VMs can be computed as follows: 

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇    =    
1

 
Nvm 

  𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒  𝑇 , 𝑉𝑀  ) 
 

(35) 
 

𝑁𝑣𝑚 , ,   
 =1 

In this scheme, the earliest start time of each task can be computed as follows: 

 
0 𝐼𝐹 𝑇1 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑟𝑦 𝑡𝑎𝑠𝑘 

𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀   =   
max {𝑎𝑣𝑎𝑖𝑙(𝑉𝑀 ), max 𝐹𝑇 𝑇𝑗  + 𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇 , 𝑇 ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑇𝑗 ∈ 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑇   

 
 
 
 

(36) 

 

Where 𝑎𝑣𝑎𝑖𝑙(𝑉𝑀 ) is the time which j
th

 VM becomes available to execute the requested task. In this scheme, the 

finish time of each task can be computed as follows: 

 
𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤𝑖 𝑖𝑓  𝑇  𝑖𝑠 𝑎𝑛 𝑒𝑥𝑖𝑡 𝑡𝑎𝑠𝑘 

𝐹𝑇(𝑇 , 𝑉𝑀 ) =    
𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀  + 𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (37) 

 
 

In which, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑤𝑖 denotes the deadline of the i
th

 workflow. Also, the communication time of the data transfer 

between the Ti and Tj can be computed as follows: 
 

 
 

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇 , 𝑇 =  

0 𝐼𝐹  𝑉𝑀 𝑇   = 𝑉𝑀(𝑇 ) 

 
  𝐷𝑎𝑡𝑎(𝑇 , 𝑇 )  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

⎩𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑉𝑀 𝑇𝑖 , 𝑉𝑀 𝑇𝑗   

 

 
(38) 

In which, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑉𝑀 𝑇 , 𝑉𝑀(𝑇 )   is the bandwidth between two VMs which execute the Ti and Tj tasks, and 

𝐷𝑎𝑡𝑎(𝑇 , 𝑇 ) denotes the amount of data that should be transferred between these tasks. Moreover, as shown in Figure 

10, the makespan of the workflow wi can be computed as follows: 

makespan(wi)={ 𝑚𝑎𝑥 𝐹𝑇 𝑇       | 𝑇   ∈  𝑤𝑖 } (39) 

Generally, the scheduling algorithms may determine each task's following items: VM number, type of VM, DVFS 

setting of VM, the fog environment, which should execute the task, task order, etc. Figure 11 indicates a sample  

encoding in our proposed workflow scheduling scheme. As shown in this figure, each solution can be represented by 

a two-dimensional array in which for each task, the VM, which will execute the task, and the VM’s DVFS level,  

should be determined. This scheme assumes that each VM can be tuned to a limited set of the DVFS levels. As a  

result, both the VM’s number and DVFS levels are discrete numbers and adjusted by the proposed DMFO algorithm. 
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Figure 11: A sample encoding in the proposed scheduling scheme 

 
Equation 40 indicates the fitness function applied in this fog scheduling scheme: 

1 𝑖𝑓  𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑤𝑖  ?: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

Fitness =   
𝛼 ∗ 

makespan 𝑤𝑖  + 𝛽 ∗ 
Nwvm 

+ 𝛾 ∗ 
S ommun  at on 𝑖𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑤𝑖 < 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 

 
(40) 

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤
𝑖
  Nvm W ommun at on 

 
α+β+ 𝛾 =1 

In this equation, the Scommunication indicates the amount of the required amount of scheduling communications, and 

the Wcommunication exhibits the total amount of workflow communications and Wcommunication≥Scommunication. 

As shown in this equation, when dependent tasks are located in the same VM, their required communication cost is 

zero. Equations 41 and 42 indicate how the scommunication and wcommunication can be computed regarding the 

amount of data transfer between tasks and the amount of data transfer between VMs, respectively. 

N   
 

(41) 

𝑊𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =              𝑐𝑜𝑚𝑚 𝑇 , 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟(𝑇 )  

 =1 =1 

NVM  

𝑆𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =                𝑐𝑜𝑚𝑚 𝑉𝑀  , 𝑉𝑀x  

 =1  =1 

If VMj=VMx Then comm=0 

(42) 

In which, L is the number of workflow levels, 𝑁𝑇𝑖 determines the number of tasks in the i
th
 level of the workflow, and 

𝑐𝑜𝑚𝑚 𝑇 , 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟(𝑇 )    is the amount of communication between the Tj and its successor tasks. Furthermore, 

𝑐𝑜𝑚𝑚 𝑉𝑀 , 𝑉𝑀x specifies the amount of communication between two VMs which execute two dependent tasks. 

 
4.3. Finding task order 

List-based scheduling methods first compute the workflow tasks' priorities in a DAG and rank them in non-increasing 

order. HEFT is one of the most popular list scheduling method which has been provided in the literature. For finding 

the order of task execution in the scientific workflows, we benefit from the task prioritization method supplied in the 

HEFT or heterogeneous earliest finish time algorithm. HEFT is a heuristic scheduling method for inter-dependent 

tasks onto a network of heterogeneous workers taking communication time into account. For inputs, HEFT takes a set 

of tasks, represented as a directed acyclic graph, a collection of VMs, the times to execute each worker, and the times 

to communicate each job's results between each pair of workers. It descends from list scheduling algorithms. HEFT 

algorithm first determines the priorities of the tasks and then assigns tasks to the workers. The rank of each task  

indicates its execution turn in the workflow scheduling. Thus, tasks with the lower rank will be executed first, and  

tasks with the higher ranks will be executed later and will have the lowest priority for execution. Equation 43 indicates 

the rank should be computed for each workflow task: 

𝑅𝑎𝑛𝑘 𝑇𝑖    =  𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖    + {max(𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇𝑖, 𝑇𝑗   + 𝑅𝑎𝑛𝑘  𝑇𝑖    | 𝑇𝑗 ∈ Successor  Ti  } (43) 

 

Where Ti is the i
th

 task in the workflow and 𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖  is the average execution cost of the i
th

 task. 

As outlined before, Successor 𝑇𝑖 specifies the successor tasks of the Ti, and 𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇𝑖, 𝑇𝑗 specifies the 

communication cost between the Ti and Tj. 

4.4. DMFO-DE based workflow scheduling 
The pseudo-code of the DVFS-based workflow scheduling using DMFO-DE is shown in Figure 12. As shown in this 

algorithm, first, the required parameters for running the algorithm are tuned. Then, the task prioritization method of 

the HEFT algorithm is used to find the order of the task execution in the workflow, and then the 
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DMFO-DE algorithm is used to find the best possible location for the tasks. Then, tasks are allocated to the required 

VM for execution by the order and setting specified in the best solution. 

 

5. Results 

This section presents the results of the experiments conducted to evaluate the performance of the proposed scheduling 

framework. There are several interesting simulation frameworks for fog computing, such as iFogSim and 

EdgeCloudSim. In this scheduling scheme, we have used the iFogSim simulator to conduct the required simulations, 

an efficient open-source tool for modeling and simulating resource management in IoT[61] and fog/edge computing 

networks. The iFogSim simulator works with the CloudSim, another open-source java-based simulator simulating 

cloud computing environments and managing its resources. The iFogSim simulator applies the CloudSim to deal with 

the events among fog computing components. In CloudSim, various entities such as data centers use message passing 

for communication. The proposed workflow scheduling algorithm is evaluated on the scientific workflows such as 

Epigenomics, CyberShake, LIGO, SIPHT, and Montage. Figure 13 shows the general structure of the employed  

scientific workflows. 

Procedure Fog_scheduling() 

Input: Scientific Workflow Wi 

DVFS levels 

Deadline of Scientific Workflow Wi 

Set the number of VMs and their features 

Set the bandwidth among VMs 

 

Read workflow data from its DAX file 

Compute the workflow tasks’ rank based on the HEFT ranking method 

Sort tasks in increasing order of their rank 

 

Compute the workflow slack time 

Allocate the slack time to the workflow levels 

Set the objective function 

Use the DMFO-DE optimization algorithm to obtain the best solution 

 
For each Ti task in workflow Wi 

Find the VMi and DVFS_Leveli from the best solution 

Find the predecessor set of Ti 

 

While( VMi is not idle or all Ti’s predecessor are not executed ) 

Wait 

End 

Allocate the DVFS levels to the VMs 

Execute task Ti on the VMi 

 

End 

Figure 12: DVFS-based workflow scheduling using DMFO-DE 
 

Figure 13.a depicts the Epigenomics workflow's architecture, a data processing workflow that indicates the genome 

sequencing operations' execution and is applied by the Epigenome center. In this workflow, the DNA sequence data 

is produced by a genetic analysis system, split into many chunks that can be processed in parallel. Furthermore, each 

data chunk is converted to a format required by the sequence aligner. Then noisy sequences are filtered. Besides, a 

map to detect the density of sequence at every genome position is created. 

Also, Figure 13.b exhibits the SIPHT workflow structure, a program that uses a workflow for automating the search 

for sRNA encoding-genes for all bacterial replicons[62]. It is created for a bioinformatics project at Harvard University 

in searching for untranslated RNAs for regulating processes like virulence or secretion in bacteria. Furthermore,  

Montage is an open-source toolkit for generating custom mosaics of the sky. It is presented as a workflow that can be 

run in various Grid, cloud, and even fog computing environments. Figure 13.c shows the general structure of the  

Montage workflow. Besides, Figure 13.d shows the structure of the LIGO workflow[63], which is applied to produce 
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and evaluate the gravitational waveforms for compact binary systems. In addition, Figure 13.e shows the general  

structure of the CyberShake workflow, which is typically employed by the earthquake center of southern California 

to analyze earthquake effects. The simplest structure in the scientific workflows is a task that processes input data to 

create an output. These tasks can then be combined sequentially to produce a pipeline structure in which each task  

input is the output of the previous task in the pipeline. Another structure is also denoted as data distribution or 

partitioning tasks that divide their output data into several chunks to be used by several tasks. As an advantage, such 

partitioning can lead to an increase in the parallelism level. On the other hand, data aggregation jobs aggregate several 

jobs' outputs and generate a combined data product. Another data structure is the data redistribution task. The data  

aggregated from the previous step can be distributed to several tasks in the next step to increase the parallelism. 

 
(b) SIPHT workflow 

 

 

 

 
 

(a) Epigenome workflow 

 

 

 

 

 

 

 

 

 

 
 

(d) CyberShake workflow 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Montage workflow 

 

(e) LIGO workflow 

Figure 13: Applied scientific workflows 
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For evaluation of the scientific workflows, in [34], the authors provided a workflow generator tool that creates arbitrary 

size scientific workflows XML format that contains data about the task size and the amount of communication between 

dependent tasks. For conducting the required experiments and evaluating the proposed algorithm, as shown in Table 

2, four synthetic Montage workflow with 30, 60, 100, and 1000 tasks are utilized to prepare their DAX. Regarding 

the Epigenome, four synthetic workflows with 24, 46, 100, and 997 tasks are used, which the workflow generato r 

provides their DAX. Besides, four synthetic SIPHT workflows with 30, 60, 100, and 1000 tasks are utilized.  

Furthermore, the depicted results are averaged from 40 different runs of the investigated optimization algorithms.  

Regarding the Epigenome, four synthetic workflows with 24, 46, 100, and 997 tasks are used, which the workflow 

generator provides their DAX. Besides, four synthetic SIPHT workflows with 30, 60, 100, and 1000 tasks are utilized. 

Furthermore, the depicted results are averaged from 40 different runs of the investigated optimization algorithms. 

 
5.1. Fitness values 

Table 2 indicates the parameters considered in the experiments conducted to verify the proposed scheduling  

algorithm's effectiveness. As specified in Table 2, for all algorithms, 60 solutions are considered as their population, 

and the exhibited results are the average of 30 different runs of the studied algorithms. Besides, we use two deadlines, 

denoted as deadline1 and deadline2, in our experiments, which deadline 2 is more than deadline1. Table 3 lists the 

parameter setting applied for different optimization algorithms in the conducted experiments. The WOA or Whale  

Optimization Algorithm[64, 65] is proposed by Mirjalili et al. and is inspired by the humpback whales’ hunting  

behavior. This algorithm can handle continuous optimization problems and benefits from humpback whales’ actions 

such as searching the prey, bubbling, and encircling. Also, SCA or Sine-cosine algorithm is proposed by Mirjalili and 

can be considered as a swarm-based optimization algorithm, in which the optimization process is performed using the 

sine and cosine functions[66]. 
Table 2: Simulation parameters 

Parameter Value 

Available VMs 80 VMs 

Available bandwidth 100 Mbps, 1000 Mbps 

VM’s type Homogeneous 

Epigenomics 24 Nodes DAX, 46 Nodes DAX, 100 Nodes DAX, 997 Nodes DAX 

SIPTH 30 Nodes DAX, 50 Nodes DAX, 100 Nodes DAX, 1000 Nodes DAX 

Montage 25 Nodes DAX, 50 Nodes DAX, 100 Nodes DAX, 1000 Nodes DAX 

Algorithm runs 30 

Number of solutions 60 solutions 

Deadline1 Makespan + 0.2* makespan 

Deadline2 Makespan + 0.4* makespan 

DVFS levels 6 levels 

Level Voltage Speed percentage 

1 1.5 100% 

2 1.4 90% 

3 1.3 80% 

4 1.2 70% 

5 1.1 60% 

6 1.0 50% 

 

Table 3: The algorithms’ parameters 

Algorithm Parameter Value 

Proposed 

DMFO-DE 

α 0.4 

β 0.3 

𝛾 0.3 

 
WOA 

𝑟1, 𝑟2, and 𝑝 rand 

𝑎 2 to 0 

C 2 X 𝑟2 
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Figure 14 indicates the investigated optimization algorithms' fitness values achieved from scheduling workflow  

Montage, LIGO, SIPHT, and Cybershake with 1000 tasks, as well as Epigenomics workflow with 997 tasks. Since 

we have considered 80 VMs for the fog computing environment in these experiments, and the scheduling schemes 

apply most of these VMs for scheduling the tasks in each workflow level, the fitness value will be close to one. 

However, regarding the results shown by the various parts of Figure 13, our scheme can achieve the lowest fitness 

value among several optimization algorithms for different optimization algorithms. On the other hand, since our  

proposed DMFO-DE is a discrete algorithm and benefits from the OBL method, it can properly allocate the tasks to 

the fog VMs to minimize its fitness function. 

  

(a) Montage workflow with 1000 tasks (b) LIGO workflow with 1000 tasks 

  

(c) Epigenomics workflow with 997 tasks (d) SIPHT workflow with 1000 tasks 

 

(e) CyberShake workflow with 1000 tasks 

Figure 14: Fitness values for workflows with 1000 tasks 

 

Figure 15 indicates the investigated optimization algorithms' investigated fitness values applied to schedule Montage, 

LIGO, and Cybershake workflows with 50 tasks, SIPHT workflows with 60 tasks, and Epigenomics workflow with 

46 tasks. Again, in all studied algorithms, 60 solutions are used, and 30 different runs are averaged. 
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(a) Montage workflow with 50 tasks (b) LIGO workflow with 50 tasks 

  
(c) Epigenomics workflow with 46 tasks (d) SIPHT workflow with 60 tasks 

 
(e) CyberShake workflow with 50 tasks 

Figure 15: Fitness values for workflows with 50 tasks 

 

As shown in this figure, DMFO-DE can rapidly converge to the near-optimal solution and achieves better results than 

other studied investigation algorithms. Since we have used 80 VMs in our simulations and these workflows use fewer 
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VMs, and as a result, the fitness value of these experiments will be less than the fitness of workflow scheduling with 

1000 tasks. At first, the solution has one's fitness in all algorithms because the randomly created solutions provide  

schedules that cannot satisfy the specified deadline. However, after the algorithms are executed, the optimization 

algorithms can find better schedules and mitigate the fitness value, in which our scheme provides better results. 

 

5.2. Energy consumption improvements 

This subsection presents the improvements which have been achieved in the energy consumption context. In these 

experiments, we employed Equation 44 for computing the percentage of the total energy consumption improvements. 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 

= 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔    𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑉𝐹𝑆 𝑏𝑎𝑠𝑒𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 

∗ 100 
(44) 

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 

In this equation, we first compute the energy consumption of the achieved scheduling for workflow, and then we  

deduce it by the energy consumption of the DVFS-based workflow scheduling. Figures 16 to 25 depict the 

experiments' results on the scientific workflows. Figure 16 indicates the energy reduction percentage in Montage  

workflows with 25 and 50 tasks, and Figure 17 exhibits the energy consumption reduction for the Montage workflows 

with 100 and 1000 tasks. It exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and BA 

algorithms. As can be concluded from this figure, our approaches can better mitigate the energy required to schedule 

different-sized Montage workflows and outperform other algorithms. 

 

Figure 16: Energy consumption for Montage workflows with 30 and 50 tasks 

 

Figure 17: Energy consumption for Montage workflows with 100 and 1000 tasks 
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Figure 18: Energy consumption for Epigenomics workflows with 24 and 46 tasks 

 
Figure 18 indicates the percentage of the energy reduction in two Epigenomics workflows with 24 and 46 tasks. It  

exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and BA algorithms. As can be concluded 

from this figure, our approaches can better mitigate the energy required to schedule different-sized Montage 

workflows and outperform other algorithms. Figure 19 indicates the percentage of the energy reduction in the 4
th

 

scenario, in which two Epigenomics workflows with 100 and 997 tasks are used. It exhibits the scheduling results  

using the DMFO-DE, WOA, SCA, MFO, DE, and BA algorithms without DVFS. As can be concluded from this 

figure, our approaches can minimize the energy required to schedule different size Montage workflows. 
 

Figure 19: Energy consumption for Epigenomics workflows with 100 and 997 tasks 
 

Figure 20 indicates the percentage of the energy consumption reduction when two LIGO scientific workflows with 30 

and 50 tasks are applied. This figure exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and 

BA algorithms. As shown in this figure, our approaches can better mitigate the energy required to schedule different- 

sized Montage workflows and outperform other algorithms. 
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Figure 20: Energy consumption for LIGO workflows with 30 and 50 tasks 

 

Figure 21 indicates the percentage of the energy reduction when two LIGO workflows with 100 and 1000 tasks are 

used. The experimental results exhibit that our workflow scheduling approach using DMFO-DE can decrease the 

scheduling power consumption for different-sized Montage workflows and outperform the other algorithms. 

 

Figure 21: Energy consumption for LIGO workflows with 100 and 1000 tasks 

 

Figure 22 exhibits the percentage of energy consumption mitigation for workflow scheduling using SIPHT workflows 

with 30 and 50 tasks. Figure 23 indicates the results of the same experiment for SIPHT workflows with 100 and 1000 

tasks. Furthermore, Figures Figure 24 and 25 indicate the energy consumption experiment for the CyberShake with 

four different sizes. As shown in all these figures, our proposed optimization algorithm achieves better results than 

other algorithms. 

At last, from the conducted experiments, it can be concluded that the following items are of the essential factors in 

energy consumption reduction in DVFS-based scheduling: 

 Workflow scheduling deadline. 

 Number of VMs applied in the scheduling. 

 The number of workflow tasks. 

 The number of tasks that can be executed simultaneously in each level of the scientific workflows. 

 The deadline distribution policy is applied to distribute the slack time among different workflow levels. 
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Figure 22: Energy consumption for SIPHT workflows with 30 and 50 tasks 

 
Figure 23: Energy consumption for SIPHT workflows with 100 and 1000 tasks 

Figure 24: Energy consumption for CyberShake workflows with 30 and 50 tasks 
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Figure 25: Energy consumption for CyberShake workflows with 100 and 1000 tasks 

 

Table 4: Percentage of energy consumption improvement for scheduling with three DVFS levels with deadline1 

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA 

LIGO 1000 
Ave: 40.12 39.01 36.49 32.53 30.27 29.33 27.81 

Best: 40.86 39.97 37.07 33.12 31.03 30.15 28.59 

LIGO 100 
Ave: 33.48 30.25 27.61 23.52 21.72 20.19 19.11 

Best: 34.12 31.08 28.31 24.26 22.34 20.98 19.87 

LIGO 50 
Ave: 23.91 21.28 20.62 18.11 16.57 15.93 15.32 

Best: 24.75 21.89 21.38 18.96 17.72 16.74 16.14 

LIGO 30 
Ave: 19.83 17.05 16.58 14.674 13.29 12.95 11.27 

Best: 20.71 17.92 17.19 15.11 14.08 13.67 11.84 

Epigenomics 997 
Ave: 39.87 38.14 37.62 33.95 29.61 26.24 24.88 

Best: 40.52 38.96 38.30 34.72 30.35 26.99 25.51 

Epigenomics 100 
Ave: 33.84 31.97 31.65 29.53 26.47 23.22 21.53 

Best: 34.48 32.58 32.30 30.19 27.13 23.96 22.65 

Epigenomics 46 
Ave: 22.29 21.34 20.64 19.62 17.69 16.44 16.28 

Best: 22.92 21.99 21.27 20.25 18.21 17.05 16.93 

Epigenomics 24 
Ave: 21.53 18.66 18.43 16.86 14.76 13.69 13.14 

Best: 22.37 19.27 19.16 17.38 15.49 14.43 13.75 

SIPHT 1000 
Ave: 39.27 36.46 35.61 33.60 28.43 26.22 24.51 

Best: 40.15 37.08 36.24 34.29 29.33 26.95 25.10 

SIPHT 100 
Ave: 34.65 33.23 32.58 29.86 25.43 23.54 22.39 

Best: 35.13 33.94 33.14 30.57 26.12 24.26 23.07 

SIPHT 60 
Ave: 25.75 22.98 22.36 19.45 17.94 17.12 16.81 

Best: 26.58 23.64 22.83 20.13 18.56 17.73 18.54 

SIPHT 30 
Ave: 22.87 21.03 20.42 17.12 15.86 13.98 13.11 

Best: 23.51 21.85 20.95 17.78 16.40 14.59 13.72 

CyberShake 1000 
Ave: 39.84 37.16 36.52 33.94 27.68 26.81 24.38 

Best: 40.49 37.82 37.08 34.51 28.54 27.44 24.93 

CyberShake 100 
Ave: 33.76 32.39 31.67 29.59 26.14 24.28 22.92 

Best: 34.42 32.88 32.19 30.60 26.77 24.89 23.58 

CyberShake 50 
Ave: 25.69 24.33 23.53 19.82 18.31 17.36 16.92 

Best: 26.38 24.92 23.96 20.52 18.88 17.95 17.64 

CyberShake 30 
Ave: 23.57 22.42 21.38 17.64 15.28 14.93 13.47 

Best: 24.23 22.90 21.82 18.25 15.84 15.66 14.05 

Montage 1000 
Ave: 38.51 34.26 33.64 29.57 27.85 26.37 24.05 

Best: 39.27 35.05 34.15 30.14 28.38 27.92 24.66 

Montage 100 
Ave: 31.59 28.51 26.73 21.94 19.46 16.86 15.68 

Best: 32.16 29.16 27.48 22.62 20.02 17.49 16.37 

Montage 50 
Ave: 22.81 20.28 18.46 16.58 14.69 13.53 12.27 

Best: 23.49 21.06 19.08 17.12 15.46 14.07 12.82 

Montage 25 
Ave: 17.68 16.07 14.92 12.52 11.33 10.54 9.16 

Best: 18.48 16.90 15.59 13.27 11.85 11.15 9.73 
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Table 4 indicates the energy consumption reduction results for conducting workflow scheduling when three DVFS 

levels are incorporated with deadline2. Table 5 gives the results of the experiments conducted for workflow scheduling 

with six DVFS levels with deadline2. As shown in this table, our proposed discrete and optimization algorithm can 

outperform other algorithms regarding energy consumption reduction. Besides, Table 6 presents the same experiment 

results when more deadline is considered for the scheduling process. 

 

Table 5: Energy consumption ratio for workflow scheduling with six DVFS levels with deadline2 

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA 

LIGO 1000 
Ave: 43.81 42.09 39.24 35.23 33.41 32.19 30.58 

Best: 44.33 42.73 39.61 35.79 33.84 32.68 30.92 

LIGO 100 
Ave: 36.23 33.39 29.87 25.74 24.16 22.98 21.86 

Best: 36.85 33.90 30.22 26.13 24.85 23.42 22.35 

LIGO 50 
Ave: 26.44 25.28 23.87 20.46 18.42 17.64 17.05 

Best: 26.83 25.96 24.21 20.82 18.91 18.07 17.48 

LIGO 30 
Ave: 21.48 19.24 18.67 16.58 15.92 14.33 13.29 

Best: 21.83 19.81 19.10 16.95 16.45 14.75 13.72 

Epigenomics 997 
Ave: 43.51 42.49 40.75 36.94 34.50 29.37 26.82 

Best: 43.98 43.03 41.14 37.51 34.96 29.81 27.33 

Epigenomics 100 
Ave: 36.62 34.10 33.71 32.26 30.15 26.54 24.28 

Best: 37.20 34.62 34.12 32.69 30.67 26.96 24.73 

Epigenomics 46 
Ave: 24.81 23.67 22.83 22.14 20.16 19.34 19.37 

Best: 25.29 24.13 23.37 22.58 20.73 19.67 19.81 

Epigenomics 24 
Ave: 23.13 21.68 20.17 18.42 16.76 15.46 16.75 

Best: 23.66 22.29 20.59 18.95 17.30 15.92 17.28 

SIPHT 1000 
Ave: 42.59 40.71 38.69 37.10 32.84 30.24 27.81 

Best: 43.02 41.23 39.14 37.59 33.22 30.79 28.19 

SIPHT 100 
Ave: 37.82 36.18 35.87 32.86 28.97 26.67 25.35 

Best: 38.27 36.84 36.25 33.31 29.37 27.11 25.81 

SIPHT 60 
Ave: 27.63 25.05 24.39 23.13 20.61 19.76 20.41 

Best: 28.11 25.77 24.92 23.69 21.04 20.14 20.83 

SIPHT 30 
Ave: 24.33 23.28 22.13 19.66 17.80 16.22 16.67 

Best: 24.69 23.87 22.64 20.15 18.29 16.75 17.29 

CyberShake 1000 
Ave: 42.49 41.09 39.56 37.23 31.86 29.57 28.90 

Best: 42.83 41.75 40.12 37.71 32.25 29.92 29.45 

CyberShake 100 
Ave: 36.94 35.39 34.22 32.49 29.34 27.58 25.63 

Best: 37.50 35.91 34.71 32.96 29.82 28.03 26.24 

CyberShake 50 
Ave: 27.62 26.16 25.84 23.31 21.68 20.34 19.34 

Best: 28.07 26.80 26.23 23.72 22.05 20.62 19.76 

CyberShake 30 
Ave: 25.53 23.98 23.73 20.58 18.92 16.82 16.27 

Best: 25.92 24.50 24.16 20.96 19.44 17.35 16.80 

Montage 1000 
Ave: 41.38 28.86 36.96 33.21 30.67 29.37 27.64 

Best: 41.85 29.38 37.43 33.70 31.05 29.82 28.21 

Montage 100 
Ave: 34.87 31.37 29.70 24.62 23.40 20.48 20.11 

Best: 35.38 31.82 30.18 24.99 23.83 20.89 20.56 

Montage 50 
Ave: 24.86 22.49 20.62 19.14 17.32 17.62 16.38 

Best: 25.17 22.97 21.05 19.62 17.84 18.13 16.89 

Montage 25 
Ave: 19.67 17.19 16.37 15.10 14.69 13.57 12.29 

Best: 20.10 17.74 16.82 15.58 17.12 13.91 12.74 

 
5.3. Resource usage 

This subsection indicates the improvements which have been achieved in the fog’s virtual resource usage. A reduction 

in the number of applied virtual resources directly affects the execution costs of scientific workflows. Also, decreasing 

the number of VMs, reduce energy consumption, and can lead to a more green fog computing environment. Besides, 

using fewer VMs for each workflow, the throughput of the fog computing environment can be increased, and the fog 

can handle more workflows. Table 7 indicates the experiments' results regarding the ratio of resource usage for each 

workflow when deadline1 is used for scheduling. This table shows the experimental results for scientific workflows 

such as Epigenomics, SIPTH, LIGO, CyberShake, Epigenomics, and Montage scientific workflows. Also, for each 
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type of workflow, four different size DAXs are used in the experiments. These results are also achieved by computing 

the average of the 30 different executions of each optimization algorithm. As shown in this figure, our proposed  

DMFO-DE algorithm can outperform other optimization algorithms such as WOA, SCA, MFO, DE, and BA in  

reducing the number of VMs required to execute the workflow in a specific number of rounds. 

 

Table 6: Energy consumption reduction for workflow scheduling with six DVFS levels and deadline2 

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA 

LIGO 1000 
Ave: 44.93 43.86 42.61 39.53 37.41 36.91 34.82 

Best: 45.70 44.37 43.12 40.87 38.86 37.39 35.26 

LIGO 100 
Ave: 37.35 35.46 32.47 29.14 28.66 26.28 23.61 

Best: 37..83 36.38 32.85 29.63 29.10 26.75 24.05 

LIGO 50 
Ave: 30.26 28.44 27.74 24.82 21.32 20.37 19.96 

Best: 30.63 29.03 28.26 25.36 21.74 20.74 20.52 

LIGO 30 
Ave: 25.81 23.32 22.77 20.48 18.25 17.88 17.32 

Best: 26.32 23.80 23.25 20.90 18.69 18.29 17.79 

Epigenomics 997 
Ave: 44.11 43.09 42.24 40.44 37.58 31.74 30.62 

Best: 44.57 43.62 42.87 40.89 38.08 32.20 31.25 

Epigenomics 100 
Ave: 39.32 38.26 37.21 36.16 36.12 30.11 27.72 

Best: 39.81 38.85 37.68 36.72 36.57 30.58 28.30 

Epigenomics 46 
Ave: 27.36 26.47 25.99 26.85 24.22 22.33 21.79 

Best: 27.84 26.93 26.53 27.46 24.73 22.79 22.15 

Epigenomics 24 
Ave: 26.80 25.72 24.32 22.28 19.15 18.71 18.15 

Best: 27.41 26.20 24.86 22.79 19.61 19.28 18.62 

SIPHT 1000 
Ave: 46.54 43.51 42.89 41.55 36.45 34.49 31.51 

Best: 46.97 44.05 43.47 41.97 36.93 34.92 31.98 

SIPHT 100 
Ave: 40.26 39.34 38.24 36.42 31.49 29.56 28.43 

Best: 40.73 39.76 38.76 36.91 31.92 30.04 28.94 

SIPHT 60 
Ave: 30.13 39.17 28.89 27.93 23.46 22.60 23.71 

Best: 30.67 39.72 29.47 28.47 23.89 23.08 24.12 

SIPHT 30 
Ave: 28.33 27.26 26.50 23.14 22.10 19.45 18.17 

Best: 28.96 27.81 27.13 23.68 22.68 19.93 18.59 

CyberShake 1000 
Ave: 44.11 43.35 42.25 40.82 35.16 33.51 31.29 

Best: 44.58 43.94 42.71 41.46 35.60 33.97 31.84 

CyberShake 100 
Ave: 39.89 38.37 37.12 36.11 33.42 31.74 28.72 

Best: 40.35 38.94 37.64 36.71 33.87 32.17 29.08 

CyberShake 50 
Ave: 31.21 30.25 29.24 28.18 21.68 23.68 22.44 

Best: 31.67 30.86 29.72 28.83 22.25 33.12 22.91 

CyberShake 30 
Ave: 28.13 27.05 26.46 24.68 18.92 19.37 18.74 

Best: 28.72 27.69 26.82 25.11 19.43 19.82 19.23 

Montage 1000 
Ave: 45.68 42.64 40.23 37.17 30.67 33.58 31.94 

Best: 46.07 43.19 40.68 37.68 31.15 34.03 32.46 

Montage 100 
Ave: 38.17 34.89 33.37 28.25 23.40 23.63 22.47 

Best: 38.65 35.41 33.75 28.72 23.86 24.15 22.85 

Montage 50 
Ave: 27.26 25.38 24.96 23.48 17.32 20.84 19.18 

Best: 27.71 26.02 25.62 23.94 17.80 21.35 19.73 

Montage 25 
Ave: 22.44 21.24 20.75 19.44 14.69 16.51 15.47 

Best: 22.87 21.83 21.34 19.89 15.25 16.98 15.88 

 
Table 8 exhibits the resource usage ratio in the experiments in which deadline2 is used for workflow scheduling. As 

shown in this table, our proposed discrete and hybrid optimization algorithm gives better results than other  

optimization algorithms in different scientific workflows such as Epigenomics, SIPTH, LIGO, CyberShake,  

Epigenomics, and Montage. As shown in this table, our approaches can minimize the number of applied VMs in four 

different size workflows. Since our algorithm is discrete and can handle discrete solutions, it can better handle discrete 

problems such as scheduling, and it provides better results than the other algorithms. Also, by combining the MFO 

and DE, it prevents the local optima problem, and as shown in previous subsections, it can converge faster to the near- 

optimal results. 
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Table 7: Resource usage ratio in workflow scheduling with deadline1 

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA 

LIGO 1000 
Ave: 0.87 0.89 0.90 0.91 0.92 0.94 0.97 

Best: 0.86 0.88 0.89 0.90 0.90 0.93 0.96 

LIGO 100 
Ave: 0.80 0.82 0.83 0.84 0.86 0.87 0.89 

Best: 0.78 0.81 0.81 0.81 0.85 0.85 0.88 

LIGO 50 
Ave: 0.71 0.74 0.75 0.76 0.79 0.81 0.85 

Best: 0.70 0.73 0.71 0.73 0.77 0.79 0.83 

LIGO 30 
Ave: 0.70 0.72 0.74 0.75 0.76 0.79 0.81 

Best: 0.68 0.71 0.72 0.73 0.75 0.77 0.80 

Epigenomics 997 
Ave: 0.86 0.88 0.89 0.91 0.91 0.92 0.95 

Best: 0.85 0.87 0.87 0.9 0.9 0.91 0.93 

Epigenomics 100 
Ave: 0.78 0.80 0.82 0.84 0.85 0.86 0.88 

Best: 0.76 0.79 0.80 0.82 0.84 0.85 0.86 

Epigenomics 46 
Ave: 0.74 0.76 0.80 0.81 0.82 0.84 0.85 

Best: 0.72 0.75 0.78 0.79 0.81 0.82 0.84 

Epigenomics 24 
Ave: 0.71 0.73 0.75 0.76 0.79 0.82 0.83 

Best: 0.69 0.72 0.73 0.74 0.78 0.81 0.81 

SIPHT 1000 
Ave: 0.86 0.88 0.90 0.92 0.94 0.95 0.96 

Best: 0.84 0.87 0.88 0.91 0.93 0.93 0.94 

SIPHT 100 
Ave: 0.76 0.80 0.82 0.84 0.85 0.88 0.90 

Best: 0.74 0.78 0.81 0.82 0.84 0.87 0.88 

SIPHT 60 
Ave: 0.74 0.77 0.79 0.81 0.82 0.84 0.87 

Best: 0.73 0.76 0.77 0.80 0.80 0.83 0.85 

SIPHT 30 
Ave: 0.72 0.74 0.76 0.77 0.80 0.82 0.83 

Best: 0.70 0.73 0.75 0.75 0.78 0.80 0.81 

CyberShake 1000 
Ave: 0.84 0.85 0.86 0.87 0.89 0.9 0.93 

Best: 0.82 0.84 0.84 0.85 0.87 0.89 0.92 

CyberShake 100 
Ave: 0.80 0.82 0.84 0.86 0.87 0.88 0.90 

Best: 0.78 0.81 0.82 0.85 0.85 0.87 0.89 

CyberShake 50 
Ave: 0.73 0.75 0.78 0.81 0.83 0.84 0.86 

Best: 0.72 0.74 0.76 0.80 0.82 0.82 0.85 

CyberShake 30 
Ave: 0.71 0.73 0.75 0.76 0.77 0.80 0.82 

Best: 0.70 0.72 0.73 0.74 0.76 0.79 0.81 

Montage 1000 
Ave: 0.85 0.87 0.89 0.90 0.92 0.93 0.94 

Best: 0.82 0.86 0.87 0.89 0.91 0.91 0.92 

Montage 100 
Ave: 0.77 0.80 0.83 0.85 0.86 0.88 0.89 

Best: 0.75 0.79 0.81 0.83 0.84 0.87 0.87 

Montage 50 
Ave: 0.75 0.78 0.82 0.83 0.84 0.86 0.87 

Best: 0.73 0.76 0.80 0.81 0.83 0.84 0.85 

Montage 25 
Ave: 0.71 0.73 0.74 0.77 0.78 0.83 0.84 

Best: 0.70 0.72 0.72 0.76 0.76 0.81 0.82 
 

5.4. Overheads 

Typically, the MFO algorithm executes the Quicksort algorithm two times in each iteration for sorting flames and 

their fitness values. Generally, in the average case, the Quicksort algorithm's performance is O(nlogn), and its worst- 

case performance is O(n
2
), which can reduce the performance of the optimization process. As an advantage, our 

proposed DMFO-DE algorithm incurs fewer processing overheads than the basic MFO algorithm because it needs 

less execution of the MFO and is aided by the DE algorithm. Thus, using DE helps to explore the problem space better 

and reduce the number of Quicksort executions. This subsection indicates the number of Quicksort algorithm’s  

execution in the workflow scheduling process using MFO and the proposed DMFO-DE algorithms. Figure 26 shows 

the number of times which the sorting algorithm is executed in the MFO and the DMFO-DE algorithms to schedule 

the Montage workflows with 25 tasks in 150 rounds. As can be seen in this figure, the DMFO-DE algorithm, which 

in some rounds uses the DE algorithm, needs to execute the sorting algorithm fewer times, and this makes it much 

faster than the MFO. 



Figure 26: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks 
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Table 8: Resource usage ratio in workflow scheduling with deadline2 

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA 

LIGO 1000 
Ave: 0.79 0.80 0.85 0.87 0.87 0.88 0.89 

Best: 0.77 0.79 0.83 0.86 0.85 0.87 0.88 

LIGO 100 
Ave: 0.72 0.76 0.78 0.80 0.81 0.83 0.85 

Best: 0.70 0.75 0.76 0.79 0.80 0.82 0.83 

LIGO 50 
Ave: 0.68 0.70 0.72 0.75 0.77 0.78 0.81 

Best: 0.67 0.71 0.71 0.74 0.75 0.77 0.79 

LIGO 30 
Ave: 0.64 0.68 0.73 0.74 0.76 0.77 0.79 

Best: 0.63 0.66 0.71 0.72 0.75 0.76 0.78 

Epigenomics 997 
Ave: 0.77 0.81 0.84 0.85 0.87 0.89 0.90 

Best: 0.76 0.79 0.82 0.84 0.86 0.88 0.88 

Epigenomics 100 
Ave: 0.74 0.77 0.81 0.82 0.83 0.82 0.84 

Best: 0.73 0.76 0.80 0.80 0.81 0.83 0.82 

Epigenomics 46 
Ave: 0.69 0.72 0.73 0.74 0.76 0.77 0.79 

Best: 0.67 0.71 0.72 0.73 0.75 0.76 0.78 

Epigenomics 24 
Ave: 0.63 0.67 0.71 0.72 0.75 0.76 0.76 

Best: 0.62 0.66 0.70 0.70 0.73 0.74 0.75 

SIPHT 1000 
Ave: 0.79 0.81 0.84 0.86 0.87 0.89 0.92 

Best: 0.77 0.80 0.83 0.84 0.86 0.88 0.90 

SIPHT 100 
Ave: 0.75 0.78 0.80 0.82 0.82 0.84 0.87 

Best: 0.73 0.77 0.79 0.80 0.81 0.83 0.85 

SIPHT 60 
Ave: 0.71 0.75 0.78 0.79 0.81 0.82 0.84 

Best: 0.70 0.74 0.76 0.77 0.80 0.81 0.83 

SIPHT 30 
Ave: 0.61 0.66 0.70 0.73 0.74 0.76 0.79 

Best: 0.60 0.64 0.68 0.72 0.72 0.75 0.77 

CyberShake 1000 
Ave: 0.78 0.81 0.83 0.84 0.86 0.87 0.89 

Best: 0.76 0.80 0.82 0.83 0.85 0.86 0.90 

CyberShake 100 
Ave: 0.72 0.73 0.75 0.78 0.81 0.83 0.84 

Best: 0.71 0.73 0.74 0.76 0.78 0.82 0.82 

CyberShake 50 
Ave: 0.67 0.68 0.71 0.75 0.76 0.79 0.81 

Best: 0.65 0.67 0.69 0.73 0.75 0.78 0.80 

CyberShake 30 
Ave: 0.61 0.66 0.67 0.71 0.74 0.76 0.77 

Best: 0.60 0.65 0.64 0.69 0.72 0.75 0.75 

Montage 1000 
Ave: 0.73 0.75 0.78 0.81 0.84 0.88 0.90 

Best: 0.71 0.74 0.76 0.79 0.82 0.86 0.88 

Montage 100 
Ave: 0.70 0.73 0.77 0.80 0.82 0.83 0.85 

Best: 0.68 0.72 0.76 0.78 0.81 0.80 0.83 

Montage 50 
Ave: 0.66 0.69 0.71 0.72 0.76 0.79 0.82 

Best: 0.64 0.68 0.70 0.70 0.74 0.77 0.81 

Montage 25 
Ave: 0.62 0.64 0.66 0.69 0.73 0.77 0.80 

Best: 0.61 0.63 0.64 0.68 0.71 0.76 0.78 

 



Figure 26: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks 
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Figure 27 shows the number of times the sorting algorithm is executed in the basic MFO algorithm and the DMFO- 

DE algorithm for scheduling the Montage workflows with 50 tasks in 250 rounds. As shown in this figure, our 

proposed algorithm needs fewer of the Quicksort algorithm’s execution. Figure 28 shows the number of times the 

sorting algorithm is executed in the MFO and the DMFO-DE algorithm to schedule the Montage workflows with 100 

tasks. As can be seen in this figure, the DMFO-DE algorithm, which uses the DE algorithm, needs to execute the 

sorting algorithm fewer times, which makes it much faster than the MFO, and as a result, DMFO-DE can converge 

more quickly. Figure 29 shows the number of sorting algorithm execution for scheduling the Montage workflows with 

1000 tasks. As shown in Figures 26 to 29, since the LA rewards the MFO algorithm for its achieved results, MFO is 

executed more than DE. 

 
Figure 27: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks 

 

Figure 28: Sorting algorithm execution in the scheduling of Montage workflows with 100 tasks 
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6. Conclusion 

This article presented a discrete and opposition-based version of the MFO algorithm using mutation and crossover 

operators. Then, we combined it with the DE algorithm and provided a hybrid discrete optimization algorithm called 

DMFO-DE, which probabilistically execute one of the DMFO and DE algorithms. By using the learning automata, it 

can decide to run which algorithm more. DMFO-DE incurs less processing overhead than the MFO algorithm and can 

converge faster. Afterward, we employed the DMFO-DE algorithm for solving the DVFS-based scientific workflow 

scheduling problem in the fog computing environment. This scheduling approach uses the HEFT algorithm to  

recognize the priority of tasks in a workflow and then uses the DMFO-DE algorithm to assign the tasks to the most 

appropriate VMs and allocate the best possible DVFS level VMs. Thus, in addition to reducing the scheduling 

makespan, we try to minimize workflow scheduling's energy consumption. Extensive simulations are carried out on 

three types of scientific workflows with different sizes. The obtained results indicated that our solution could 

outperform workflow scheduling conducted using other optimization algorithms such as MFO, DE, and bat algorithm 

in terms of the energy consumption and the number of applied VMs. Besides, the results show that our algorithm 

achieves these results while having less overhead than the basic MFO algorithm. 

In future studies, we try to deal with the fog computing environment's workflow scheduling problem by introducing 

our multi-objective version of our hybrid optimization algorithm. Besides, dealing with multiple fog and environments 

with unreliable virtual resources is exciting topics that we focus on in the future. Furthermore, enhancing fog  

computing with multi-cloud environments can be further investigated in future studies. 
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