
1

Using Differential Evolution and Moth-Flame Optimization for Scientific

Workflow Scheduling in Fog Computing

Omed Hassan Ahmed
1,2

, Joan Lu
1
, Qiang Xu

1
, Aram Mahmood Ahmed

3,4
, Amir Masoud Rahmani

5*
, and Mehdi Hosseinzadeh

6*

1
School of Computing and Engineering, University of Huddersfield, Huddersfield, England

2
University of Human Development,College of Science and Technology, Department of Information Technology,Sulaymaniyah,Iraq

3
Department of Information Technology, Sulaimani Polytechnic University, Sulaymaniyah, Iraq

4
International Academic Office, Kurdistan Institution for Strategic Studies and Scientific Research, Sulaymaniyah, Iraq

5
Future Technology Research Center, National Yunlin University of Science and Technology, Yunlin, Taiwan

6
Pattern Recognition and Machine Learning Lab, Gachon University, 1342 Seongnamdaero, Sujeonggu, Seongnam 13120, Republic of Korea

omed.ahmed@hud.ac.uk
1,2

, j.lu@hud.ac.uk
1
, q.xu2@hud.ac.uk

1
, aram.ahmad@spu.edu.iq

3,4
, rahmania@yuntech.edu.tw

5
, mehdi@gachon.ac.kr

6

Corresponding authors (Amir Masoud Rahmani, and Mehdi Hosseinzadeh)

Abstract: Fog computing is an interesting technology aimed at providing various processing and

storage resources at the IoT networks' edge. Energy consumption is one of the essential factors that

can directly impact the maintenance cost and CO2 emissions of fog environments. Energy

consumption can be mitigated by effective scheduling approaches, in which tasks are going to be

mapped on the best possible resources regarding some conflicting objectives. To deal with these

issues, we introduce an opposition-based hybrid discrete optimization algorithm, called DMFO-DE.

For this purpose, first, a discrete and Opposition-Based Learning (OBL) version of the Moth-Flame

Optimization (MFO) algorithm is provided, and it then is combined with the Differential Evolution

(DE) algorithm to improve the convergence speed and prevent local optima problem. The DMFO-

DE is then employed for scientific workflow scheduling in fog computing environments using the

Dynamic Voltage and Frequency Scaling (DVFS) method. The Heterogeneous Earliest Finish Time

(HEFT) algorithm is used to find the tasks execution order in the scientific workflows. Our

workflow scheduling approach mainly tries to decrease the scheduling process's energy

consumption by minimizing the applied Virtual Machines (VMs), makespan, and communication

between dependent tasks. For evaluating the performance of the proposed scheduling scheme,

extensive simulations are conducted on the scientific workflows with four different sizes. The

experimental results indicate that scheduling using the DMFO-DE algorithm can outperform other

metrics such as the number of applied VMs, and energy consumption.

Keywords: Fog Computing, Task, Workflow, Optimization, Makespan, Energy, DVFS.

1. Introduction:

Internet of things (IoT) is a collection of devices or things such as various home appliances [1, 2] that contain the

required software and hardware technologies for communicating with other things and systems [3]. These things can

gather monitoring data from their environment and are able to cooperate using unique addressing methods [4]. As a

result, IoT is successfully integrated with other contexts such as smart homes, smart cities, e-healthcare, transportation,

industries, agriculture, etc. However, IoT things often suffer from low computational, storage, and power resources

[5, 6]. Cloud computing [7] is a well-known technology that can deliver the required resources by the IoT from.

Typically, cloud computing benefit from a large number of VMs in its data centers and using proper resource

management techniques such as VM migration[8] and VM placement[9-11], can deliver the required resources by the

IoT. However, using cloud computing resources incurs long delays, which may be unacceptable in some applications.

Therefore, there is a desperate need for more resources at the edge of the IoT networks. Fog computing is new

technology to answer such requirements and is able to provide the required resources to facilitate task processing,

networking, and data storage[12] near the IoT networks [13]. Thus, fog computing can effectively reduce the

communication overheads and delay for the IoT networks while mitigating the workloads on cloud computing data

centers [14, 15]. Each fog server is a virtualized environment equipped with computational devices, a wireless

communication unit, and data storage cards. Many VMs can serve requests from mobile users, and IoT devices resided

in the fog servers. A mobile user can communicate directly with fog servers through a single-hop wireless connection

using a wireless interface, namely 4G LTE devices, WiFi, Bluetooth, etc. When fog computing receives more requests

than it can handle, it may offload some of its load to the cloud computing data centers, as needed [10, 16, 17]. Figure

1 depicts fog computing architecture in which, in the bottom layer, IoT devices are located [18].

mailto:j.lu@hud.ac.uk1
mailto:j.lu@hud.ac.uk1
mailto:rahmania@yuntech.edu.tw5
mailto:rahmania@yuntech.edu.tw5

2

Figure 1: Fog computing architecture

Then, fog computing resources are placed at the top of the IoT devices, and the top layer is Cloud computing, which

is a paradigm for hosting services over the Internet. Efficient resource management[19] is one of the essential

requirements of fog computing and can help provide high-quality IoT services. Task and workflow scheduling are

practical resource management approaches in the fog computing environments to assign a set of tasks requested by

the IoT to the most appropriate fog nodes [20-22]. Such fog scheduling schemes try to manage various fog virtual

resources and focus on user-specified constraints and deadlines. Also, scheduling approaches often minimize the

makespan, resource consumption, data transfer, and cost while ensuring the quality of service factors such as

deadlines[23, 24]. Task and workflow scheduling problems are proven to be NP-hard problems in fog computing [25-

27]. In this context, several heuristics and metaheuristic scheduling methods are widely studied by scheduling

independent tasks. Still, fewer researches have been presented for workflow scheduling in the fog computing context.

Based on their applied algorithm, workflow scheduling schemes can be classified as heuristic[28-38] and

metaheuristic schemes, which in the latter case different optimization algorithms, such as particle swarm optimization,

genetic algorithm, etc., are used in the metaheuristic fog scheduling approaches. For instance, in [39], Hosseinioun et

al. introduced a DVFS-based power-aware approach to save energy in fog computing, which schedules tasks in lower

voltage and frequency in slack times. They used IWO-CA, a hybrid evolutionary algorithm to order tasks regarding

task precedence. Also, in the scheduling approach provided in [40], the authors presented the TCaS algorithm based

on an evolutionary algorithm. They indicated that it could reduce the makespan and execution cost while meeting

users’ QoS and cost requirements. Besides, in [41], Aburukba et al. schedule the IoT tasks to reduce their execution

latency in fog-cloud computing. This scheme considers delays like waiting time, routing or queuing delay,

transmission delay, and processing time for processing IoT requests. Furthermore, they used genetic algorithms to

find the right solutions quickly and indicated that it improves the performance and latency while meeting the deadlines.

Also, the scheduling scheme provided in [42] applies the MFO algorithm to assign an optimal set of fog nodes to tasks

to meet the applications’ QoS requirements and mitigate their makespan. The authors have conducted their

experiments using the iFogSim toolkit and indicated that their scheme could reduce the execution time. Moreover, in

[43, 44], the bees life algorithm, which is an optimization approach for workflow scheduling in the fog is presented,

which optimizes the task distribution among fog nodes. This scheme is aimed to optimize the CPU execution time and

allocated memory. Also, in [45], Maio and Kimovski proposed an NSGA-II-based scheduling approach for data-

intensive workflows, which considers the response time, cost, and reliability. They extend a Fog simulation framework

to evaluate the cloud offloading suitability for data-intensive scientific workflows. They indicated that the use of fog

is beneficial for low computation and high data transmission tasks, making it the best choice for optimizing the

response time of data-intensive tasks. They indicated that their approach could reduce response time compared to

HEFT for small task sizes while slightly maintaining cost and reliability values. Besides, in [46], a particle swarm

optimization-based cost-aware scheduling approach for multiple workflows is presented.

These scheduling approaches consider various factors such as makespan, communication delay, cost, reliability[47],

security[48-50], etc. Furthermore, energy consumption is one of the critical factors considered in scheduling

schemes[51]. Different techniques are used in the literature to reduce the fog computing environments' energy

3

consumption, in which DVFS is one of them. DVFS is an interesting method that can reduce the processor’s frequency

to mitigate its power usage. However, reducing the processor’s frequency increases its execution time, and as a result,

the primary deadline and various Quality of Service (QoS) factors should not be neglected. Although numerous

researches have been carried out in the DVFS-based scheduling context in cloud computing platforms, very few

DVFS-based schemes are provided in the literature for fog computing environments. Thus, conducting further

investigation in the energy-efficient scheduling in the fog computing environments is an essential issue.

In the optimization algorithm context, the moth-flame optimization algorithm or MFO is an interesting algorithm

introduced by Mirjalili [52]. This algorithm is inspired by the movement of the moths for solving continuous

optimization problems. However, despite the MFO’s success in the continuous optimization context, it cannot handle

discrete problems without modification. For this purpose, in this article, we present DMFO, a discrete version of the

MFO algorithm, which uses genetic operators such as mutation and crossover to produce discrete solutions. But, the

MFO algorithm suffers from the low convergence speed and global search capability [53]. To handle these issues,

opposition-based learning (OBL) is used in the DMFO algorithm. The DMFO is combined with the DE algorithm to

provide a new hybrid, and discrete optimization algorithm denoted as DMFO-DE. In each iteration, the DMFO-DE

algorithm randomly executes one of the DMFO and DE algorithms. Their achieved results give a penalty or reward

to these algorithms using a Learning Automaton (LA). Using this technique, the algorithm that gets better results

achieves more chance to explore the problem space. However, to give both algorithms a chance to find better solutions,

every 30 rounds, the LA used for each algorithm is reset, increasing the exploration of the proposed algorithm. The

DMFO-DE algorithm is also used for DVFS-based scheduling of scientific workflows submitted to mitigate the fog

computing environment's energy consumption in the scheduling process. Furthermore, in this scheduling approach,

different chaotic maps are used to produce a discrete initial population. Besides, in this scheme, the HEFT scheduling

algorithm's task prioritization method is applied for finding the order of task execution in the scientific workflows.

Finally, to verify the proposed scheduling schemes' energy efficiency, several experiments with different size scientific

workflows are conducted. Our primary contributions in this paper can be listed as follows:

 Presenting a discrete version of the MFO algorithm, denoted as DMFO.

 Presenting DMFO-DE, a hybrid and OBL-based optimization algorithm using the DMFO and DE

optimization algorithms.

 Introducing a scientific workflow scheduling scheme using the DMFO-DE algorithm.

 Effective energy management using DVFS in the introduced workflow scheduling approach.

 Extensive simulations using the iFogSim simulator tool to verify the proposed algorithm's effectiveness in

terms of energy consumption and the number of applied VMs, with different DVFS settings.

The rest of this scheduling article is organized as follows: Section 2 gives an interesting review of the fog computing

domain's previously published scheduling approaches. Section 3 discusses the MFO algorithm. Section 4 presents the

proposed discrete version of the MFO algorithm, and Section 5 introduces our proposed workflow scheduling

framework. Moreover, Section 6 reports the experimental results, and finally, Section 7 puts forward the concluding

remarks and future study directions.

2. MFO algorithm

MFO algorithm is a population-based algorithm inspired by the moths' movement and is used for solving continuous

optimization problems. Typically, moths fly by keeping a fixed angle to the moon that is an efficient method for

traveling in a straight path, but artificial lights trick the moths and show such behaviors. Because the light is close to

the moth, keeping a similar angle to the light source causes a moths' spiral fly path. In the MFO, the set of moths is

represented in a matrix as follows:

𝑀𝑜𝑡ℎ =
𝑀𝑜𝑡ℎ11 ⋯ 𝑀𝑜𝑡ℎ1𝑑

⋮ ⋱ ⋮
𝑀𝑜𝑡ℎ𝑛1 ⋯ 𝑀𝑜𝑡ℎ𝑛𝑑

 (1)

In which n determines the number of moths and d denotes their dimension. Besides, the fitness of the moths should

be maintained as follows:
𝑀𝑜𝑡ℎ𝐹1
𝑀𝑜𝑡ℎ𝐹2

𝑀𝑜𝑡ℎ𝐹 =
…

𝑀𝑜𝑡ℎ𝐹
n

 (2)

Flames are the other components of the proposed MFO algorithm and are stored in a matrix as follows:

𝐹𝑙𝑎𝑚𝑒1,1 ⋯ 𝐹𝑙𝑎𝑚𝑒1, 𝑑
𝐹𝑙𝑎𝑚𝑒 = ⋮ ⋱ ⋮

𝐹𝑙𝑎𝑚𝑒𝑛,1 ⋯ 𝐹𝑙𝑎𝑚𝑒𝑛, 𝑑
 (3)

4

Which n specifies the number of flames, and d determines the number of dimensions. Furthermore, it is assumed that

there is an array for storing the corresponding fitness values as follows:
𝐹𝑙𝑎𝑚𝑒𝐹1
𝐹𝑙𝑎𝑚𝑒𝐹2

𝐹𝑙𝑎𝑚𝑒𝐹 =
…

𝐹𝑙𝑎𝑚𝑒𝐹n

 (4)

In which n specifies the number of flames. It should be noted that both moths and flames are solutions, but they differ

in their updating method. The moths are search agents that can explore the search space, but flames are the best

solutions that have been reached so far. In this algorithm, each moth searches around a flame and updates the moth

when it finds a solution with a better fitness value. Figure 2 indicates the population initialization method in the MFO

algorithm.

Figure 2: Population initialization in the MFO algorithm

Furthermore, the upper bound and lower bound of the solutions are defined by two arrays: upperb and lowerb. These

arrays are defined as follows:

𝑢𝑝𝑝𝑒𝑟𝑏 = {𝑢𝑝𝑝𝑒𝑟𝑏1, 𝑢𝑝𝑝𝑒𝑟𝑏2, 𝑢𝑝𝑝𝑒𝑟𝑏3,…, 𝑢𝑝𝑝𝑒𝑟𝑏𝑛} (5)

In which, 𝑢𝑝𝑝𝑒𝑟𝑏 specifies the upper bound of the i
th

 dimension of each solution.

𝑙𝑜𝑤𝑒𝑟𝑏 = {𝑙𝑜𝑤𝑒𝑟𝑏1, 𝑙𝑜𝑤𝑒𝑟𝑏2, 𝑙𝑜𝑤𝑒𝑟𝑏3,…, 𝑙𝑜𝑤𝑒𝑟𝑏𝑛} (6)

In which, 𝑙𝑜𝑤𝑒𝑟𝑏 indicates the lower bound of the i
th

 dimension of each solution. For mathematically modeling this

behavior, the position of each moth is updated concerning a flame using the following equation:

𝑀𝑜𝑡ℎ = 𝑆 𝑀𝑜𝑡ℎ , 𝐹𝑙𝑎𝑚𝑒 (7)

In this equation, Mi indicates the i
th

 moth, and Fj indicates the j
th

 flame, and S is a logarithmic spiral function used for
updating the moths. Based on these issues, a logarithmic spiral is defined for the MFO algorithm as follows:

𝑆(𝑀𝑜𝑡ℎ , 𝐹𝑙𝑎𝑚𝑒) = 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . 𝑒bt cos 2𝜋𝑡 + 𝐹𝑗 (8)

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 indicates the distance of the i
th

 moth for the j
th

 flame, t is a random number in [-1, 1], and b is a constant

for defining the shape of the logarithmic spiral. Furthermore, 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 is calculated as follows:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = |𝐹𝑙𝑎𝑚𝑒 𝑀𝑜𝑡ℎ | (9)

Mothi indicates the i
th
 moth, Flamej indicates the j

th
 flame, and Distancei is the distance.

3. The proposed discrete optimization algorithm

This section presents our proposed DMFO algorithm and DMFO-DE created by integrating the DE [54] and DMFO

algorithms using learning automata.

3.1. OBL

OBL or Opposition-based Learning is a simple method that has been incorporated in several optimization algorithms

to enhance their capabilities. In OBL, the opposite of each dimension of the opposition solution can be computed as

shown in Equation 10:

𝑥∗ = 𝑎 + 𝑏 𝑥 (10)

Which ai and bi are the upper bound and lower bound of the i
th

 dimension of the solution x.

3.2. DMFO algorithm

To provide a discrete version of the MFO algorithm, we have to introduce a method to create a discrete initial

population and then design the required operators to modify these discrete solutions and convert them to the other

discrete solutions[55]. We used an opposition-based method for producing a discrete population, which has been

shown in Figure 3. As shown in this figure, we have used the chaotic maps to produce random numbers between [0,

1], and 𝑁𝑣𝑚 denotes the maximum number of available VMs in the fog computing environment. Using this method,

a random integer number between [0, Nvm] is created by each solution's dimension. After creating the required number

𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑛 𝑠𝑡𝑒𝑝 1
𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑑 𝑠𝑡𝑒𝑝 1

𝑚𝑜𝑡ℎ = 𝑢𝑝𝑝𝑒𝑟𝑏 𝑙𝑜𝑤𝑒𝑟𝑏 ∗ 𝑟𝑎𝑛𝑑 + 𝑙𝑜𝑤𝑒𝑟𝑏

𝑒𝑛𝑑
𝑒𝑛𝑑
𝑀𝑜𝑡ℎ𝐹 = 𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹 𝑀𝑜𝑡ℎ

5

of solutions, the opposition of each solution is computed. However, the solution's opposite can be applied when it has

a lower fitness value than a chaotic map solution.

Figure 3: Population initialization in the DMFO algorithm

(a) (b)

(c) (d)

(e) (f)

Figure 4: Applied chaotic maps

𝐅𝐨𝐫 i = 1 to n
𝐅𝐨𝐫 j = 1 to d

moth i, j = Floor Nvm ∗Chaotic_MAP())

𝐄𝐧𝐝
Temp=OBL(moth i, j
If Fitness(Temp)< mothi 𝐓𝐡𝐞𝐧

moth i, j =Temp

End

𝐄𝐧𝐝

6

Figure 4 indicates various chaotic maps [56, 57] applied in the DMFO algorithm, which can be described as follows:

 Figure 4.a shows the logistic map output over 80 iterations, and Equation 11 indicates the logistic map, where

a=4.

 Equation 12 shows the circle map, in which P=0.4 is used. Figure 4.b shows the output of this map over 80

iterations.

 Equation 13 defines the piecewise map, in which n=1.6, C=1.5, and P=0.5. Figure 4.c shows chaotic value

distributions of this chaotic map for 80 iterations.

 Equation 14 defines the iterative map, where a=0.5 and b=0.2 are used. Figure 4.d shows the chaotic value

distributions of this map for 80 iterations.

 Equation 15 indicates the Intermittency map, in which C=1.5, n=1.6, and P=0.5 are used. Figure 4.e depicts

the output of the Intermittency map over 100 iterations.

 Equation 16 defines the Sine chaotic map, in which a=4 is used. Figure 4.f shows its values over the 100

iterations.

𝐾 +1 = 𝑎𝑋 1 𝑋 (11)

𝑋 +1 =

⎧
𝑋

𝑃
⎪ 𝑋 𝑃

0.5 𝑃
⎨1 𝑃 𝑋

0 $ 𝑋 < 𝑃

𝑃 $ 𝑋 < 0.5

0.5 $ 𝑋 < 1 𝑃

(12)

⎪
0.5 𝑃

1 𝑋
⎩ 𝑃 1 𝑃 $ 𝑋 < 1

𝜀 + 𝑋 + 𝐶 𝑋 n 0 < 𝑋 $ 𝑃

𝑋 +1 = 𝑋 𝑃

1 𝑃
𝑃 < 𝑋 < 1

(13)

𝑋 +1 = 𝑋 + 𝑏
𝑎

(
2𝜋

)

sin 2𝜋𝑋 𝑚𝑜𝑑 1

(14)

𝑋 +1
= sin (

𝑎𝜋
)

(15)

𝑋

𝑋
𝑎

 (16)
 +1 =

4
sin 𝜋𝑋

This section uses genetic operators such as swap, crossover, and mutation to modify the basic MFO algorithm. In this

equation, the mutation operator selects a random element for the j
th
 dimension. After 𝑀 is computed for each j=1...D,

and 𝑀𝑖 is achieved, we should compute Equation 15. For this purpose, as indicated in Equation 36, we use a multi-

point crossover operator on the 𝐹 and 𝑀 vectors:

𝑀 =CrossOver(𝐹 , 𝑀) (17)

Equation 18 indicates a two-point crossover operator.
𝐹𝑖𝑗 𝑖𝑓 𝜃 < 𝑅𝑎𝑛𝑑

𝑀 = 𝑀
𝐹

𝑖𝑗 𝑖𝑓 𝜃 < 𝑅𝑎𝑛𝑑 (18)
𝑖𝑓 𝜃 ?: 𝑅𝑎𝑛𝑑

𝑖𝑗

Figure 5 indicates the effect of a crossover operator on two sample vectors.

Figure 5: A sample two-point crossover

7

Figure 6 indicates the DMFO algorithm's pseudo-code, which benefits from the OBL method both in the initial population creation

and during the iterations to search for the best solution. In each iteration, for each month, the algorithm may perform the crossover

with a flame or with the Disctancei. It may also perform the swap operation one each moth or may perform mutation on it.

Function DMFO

Input: A random population
Output: The best solution

𝐅𝐨𝐫 i = 1 to n
𝐅𝐨𝐫 j = 1 to d

Moth i, j = Floor Nvm ∗Chaotic_MAP())

𝐄𝐧𝐝
Temp=OBL(moth i, j
If Fitness(Temp)< Mothi 𝐓𝐡𝐞𝐧

Moth i, j =Temp

End

𝐄𝐧𝐝
For k=1: Max_Iteration

𝐅𝐨𝐫 i = 1 to n
Calculate Distance(i)

Z= Chaotic_MAP()

If (Z<=0.25)

// Swapping the Moth and Flame

Xc1=Rand(1, n)

Moth(i)=Crossover(flame(i),Moth(i), Xc);

End

If (0.25<=Z<0.5)

// Swapping the Moth and Flame

Xc2=Rand(1, n)

Moth(i)=Crossover(flame(i), Distance(i), Xn);

End

If (0.5<=Z<0.75)

// Computing M(i)= swap(flame i);

Ns=Rand(1,n)

For i=1 to Nswap

Xj1= Rand(1,n)

Xj2= Rand(1,n)

Swap(Moth(i, Xj1),Moth(i, Xj2)

End

End

If (Z>=0.75)

// Computing M(i)=Mutate(flame(i));

For i=1 to Nmutate

Xj= Rand(1,n)

Moth(i,Xj)= Floor Nvm ∗Chaotic_MAP())

End

End

OBL(i)= Opposition of the Moth(i)

If Fitness(OBL(i))< Moth i 𝐓𝐡𝐞𝐧
Moth i = OBL(i)

End

End
End

Figure 6: DMFO pseudo-code

3.3. DE algorithm

Differential evolution or DE is an easy to understand metaheuristic algorithm that iteratively searches the optimization

problems' solution space to find the best solution. It works by having a population of candidate solutions that move

around in the search space using a simple mathematical formula to combine existing agents' positions from the

population. If the new position is an improvement, then it is accepted and forms part of the population. Otherwise, the

new position is simply discarded. The process is repeated, and by doing so is hoped, but not guaranteed, that a

8

satisfactory solution will eventually be discovered. In the mutation phase, the solutions are updated using the following

equation:

𝑉 𝑡 + 1 = 𝑋 1 𝑡 + 𝐹. 𝑋 2 𝑡 𝑋 𝑡 (19)

Where 𝑟1, 𝑟2, 𝑟 ∈ {1,2, … , 𝑁} are random numbers, and 𝐹 is a constant between [0, 2] and controls the amplification

of the differential variation. In the crossover phase, the position of the solutions is updated as below:

𝑉 𝑡 + 1 𝑖𝑓 𝑟𝑎𝑛𝑑𝑏 𝑗 $ 𝐶𝑅 𝑜𝑟 𝑗 = 𝑟𝑛𝑏𝑟 𝑖
𝑈 𝑡 + 1 = { , 𝑗 = 1,2, … , 𝐷 (20)

𝑋 𝑡 𝑖𝑓 𝑟𝑎𝑛𝑑𝑏 𝑗 > 𝐶𝑅 𝑜𝑟 𝑗 =t 𝑟𝑛𝑏𝑟 𝑖

Where j indicates the dimension, 𝑟𝑎𝑛𝑑𝑏 is a vector with random values in (0,1), 𝐶𝑅 is crossover constant, and 𝑟𝑛𝑏𝑟
is a randomly chosen index. At last, to decide which solutions should become a member of generation 𝑡+ 1, the trial

vector 𝑈 𝑡 + 1 is compared to the base solution 𝑋 𝑡 using the greedy selection mechanism. If the solution 𝑈 𝑡 +
1 has a better cost than 𝑋 𝑡 , then the 𝑈 (t+1) replaces with 𝑋 𝑡 + 1 otherwise, the old 𝑋 𝑡 is kept.

3.4. Learning Automata

Typically, a learning automaton (LA) can be considered as a machine that can stochastically perform a finite number

of actions. This environment responds to it the learning automata after evaluating the action, and these responses

should be used in the LA as feedback to select its next action[58]. The LA uses this response, updates its internal state,

and learns how to choose the best next action. With this process, the automaton gradually discovers the best action

within its set. Generally, LA can be defined as (S, A, P, δ, ω), where S = {s1, s2, s3, . . . , sn} specifies the set of states

of LA, A = {a1, a2, a3, . . . , an} is the set of actions which LA performs, and R = {r1, r2, r3, . . . , rn} is the set of

responses received from the environment. Also, δ is a function that maps the current state of LA and the environment’s

input to the next state of LA, and ω is a function that maps the LA’s current state and the environment‘s response to

the LA state. In LA, the environment can have one of the following models:

 P-Model: The output can take only two values, 0 or 1.

 Q-Model: Finite output set with more than two values, between 0 and 1.

 S-Model: The output is a continuous random variable in the range [0, 1].

Also, each LA action may be rewarded or penalized. When the action gets the reward, its probability increases, while

all other actions decrease. Generally, the reward and penalty can be computed as follows:

 Reward:

 Penalty:

Pi(n+1) = Pi(n)+ d[1- Pi(n)] (21)

Pj(n+1) = (1-d)Pj(n) For all j<>i (22)

Pi(n+1) = (1-e)Pj(n) (23)

Pj(n+1) = e/(r-1)+(1-e)Pj(n) For all j<>i (24)

In the preceding expressions, d is the reward parameter, and e is the penalty parameter.

3.5. Hybrid DMFO-DE algorithm

Typically, the non-hybrid metaheuristic algorithms rely only on some mathematical formula and may fall into local

optima problem. For this purpose, hybrid metaheuristic algorithms are proposed in the literature to avoid their

constituent algorithms' shortcomings and solve more complex problems. Generally, the following three models are

used for integrating the optimization algorithms and creating new hybrid metaheuristic algorithms:

 Serial method: Each of the metaheuristic algorithms will be executed serially, one after another.

 Parallel method: The metaheuristic algorithms will be executed in parallel. In this case, each algorithm may

operate on the whole population or a subpopulation. In the latter case, proper consideration should be made

for sub-populations creation, integration, and management.

 Conditional method: In this case, based on some conditions, only one of the optimization algorithms will be

run in each iteration. This method incurs less overhead than the two previous methods and is used in our

proposed hybrid algorithm.

In this scheme, we combine the DE algorithm and our proposed DMFO algorithm to achieve better results. Figure 7

depicts our proposed hybrid optimization protocol's flowchart, which conditionally executes the DE and DMFO

algorithms. As shown in this figure, at first, the hybrid algorithm starts with a probability of 0.5 (P=0.5). Based on

this random value, either DE or the DMFO algorithms should be executed. According to the achieved results, the

9

learning automata should be used to reward or penalize the executed algorithm. Using this method, the algorithm that

has gained some improvements can find more chances to continue improving. However, when each of the algorithms

cannot improve after a predefined number of iteration, variable P is used for selecting the algorithm should be reset

to its initial value (P=0.5) to improve the exploration chance. This operation should be continued until a predefined

number of iterations has been reached. Generally, the proposed hybrid DMFO-DE algorithm is lighter than the main

MFO because instead of the MFO, the DE algorithm, which is much lighter, should be executed in some rounds.

Figure 7: The DMFO-DE algorithm

10

This reduces the proposed algorithm's execution cost and alleviates the high costs of the sorting algorithms used in

the MFO algorithm. Also, the DMFO-DE algorithm does not divide the population into two sub-population (swarm),

and in each iteration, each of the applied algorithms works on the whole population. This hybridization method reduces

the algorithms overhead than other hybrid optimization techniques, which need each participant algorithm to work a

swarm on the result be integrated later. Thus, there will be no need for various swarm management operations

necessary for multi-swarm algorithms. Furthermore, it is worth mentioning that in this algorithm, we have also used

chaotic maps to produce the required random numbers.

4. Workflow Scheduling Using DMFO-DE Algorithm

This scheme's primary goal is to assign the most appropriate set of VMs to the IoT submitted workflows to minimize

both workflow makespan and fog computing energy consumption. This section explains how the proposed

DMFO-DE algorithm is used for efficient workflow scheduling in a fog computing environment to achieve such

objectives. For this purpose, we first provide a formal formulation of the workflow scheduling problem. Table 1

specifies the abbreviations applied in the rest of this section.
Table 1: Abbreviations and Acronyms

Abbreviation Description

VMi i
th

 VM

𝑁𝑣𝑚 Number of VMs

Wi i
th

 workflow

Ti i
th

 task

𝐹𝑇 𝑇 , 𝑉𝑀𝑗 Finish time of ith task on the jth VM

F_DVFSi Dynamic Voltage Frequency Scaling

Frequencyi i
th

 frequency

Voltagei i
th

 voltage

𝑎𝑣𝑎𝑖𝑙(𝑉𝑀) The time that j
th

 VM will be available

𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆k The execution time of the task Ti with the k
th

 level DVFS

𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀 The start time of the task Ti on the VMj

𝐹𝑇(𝑇 , 𝑉𝑀) Finish time of the task Ti on the VMj

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖 The average execution time of the task Ti

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇 , 𝑇𝑗 Communication time of the data transfer between the Ti and Tj

SlackTime Slack Time

Predecessor(Ti) Predecessor set of task Ti

Successor(Ti) Successor set of task Ti

Wcommunication The total amount of workflow communications

Scommunication The required amount of scheduling communications

𝑁𝑇𝑖 number of tasks in the i
th

 level of the workflow

𝐸busy The energy consumption of the VMs

𝐸ldle The energy consumption of idle periods

4.1. DVFS

Typically, the DVFS method reduces the CPU’s operational frequency and voltage to mitigate processors' energy

consumption in the task execution. DVFS method can be incorporated in all computing systems, ranging from mobile

devices to cloud computing DCs. However, reducing the CPU frequency mitigates its speed, and as a result, the

workflow deadline may be missed unexpectedly. Thus, the DVFS-based scheduling frameworks' main task is to

determine the minimum necessary operating frequency for the VMs that execute the workflow while meeting the

workflow deadline.

11

Figure 8: Slack time

As depicted in figure 8, when more frequency is used in DVFS-based scheduling [59, 60], the task is executed faster,

but when a lower level of frequency is utilized, it takes longer to run the task. Figure 8.a shows the slack time, which

can be used by DVFS-based scheduling. As shown in Equation 25, the slack time is the period between the deadline

(𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒) and the task finish time (𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒 (𝐹max)), when the processor is run with maximum possible

frequency.

SlackTime = 𝑇𝑎𝑠𝑘𝐷𝑒𝑎𝑑𝑙𝑖𝑛𝑒 - 𝑇𝑎𝑠𝑘𝐹𝑖𝑛𝑖𝑠ℎ𝑇𝑖𝑚𝑒 (𝐹max) (25)

Figure 9 depicts some parts of a workflow that perform data aggregation and should be scheduled on the fog computing

environment. As shown in this figure, T1, T2, T3, T4, and T5 should be executed and completed before task T6 starts

to be executed.

Figure 9: Data aggregation point in a workflow

However, in some cases, T1 to T5 may be heterogeneous and may have different execution times. For example, as

shown in Figure 10, the task T1 is longer than other tasks, and as a result, the VMs which tasks T2 to T5 are allocated

to them should be idle after executing their task. Using the DVFS technique, we can mitigate the frequency of the

VM1 to VM5’s CPU to reduce their execution speed and energy consumption while meeting the deadline determined

by the task T1. Also, the deadlines may be specified by the user or by the scheduling algorithm itself. The primary

goal of DVFS-based scheduling is to detect the least possible frequency for each task, regarding their deadline can be

met. In this case, the least power is consumed for tasks and workflow executions.

Figure 10: Gant chart of some tasks in a workflow

12

 s

 s

 s

 m n

In this scheme, it is assumed that power consumption consists of static and dynamic and energy consumptions.

Energydynamic and Energystatic. Typically, in our scheduling approach, static energy consumption is ignored since

dynamic energy consumption is more time-consuming and expensive.

Energy = 𝐸𝑛𝑒𝑟𝑔𝑦stat + 𝐸𝑛𝑒𝑟𝑔𝑦dynam (26)

We compute 𝑃𝑜𝑤𝑒𝑟dynam or dynamic power consumption as follows:

𝑃𝑜𝑤𝑒𝑟dynam = 𝐾. 𝑣2 . 𝑓 (27)

In which K is the constant of dynamic power consumption and is related to the capacities of the devices Also, 𝑣2 is

the voltage of the s
th
 level, and the j

th
 VM, and f is the j

th
 VM frequency. By using this equation, the energy consumption

of the VMs can be computed as follows:
n n

𝐸busy = 𝐾 ∗ 𝑣2 ∗ 𝑓 s ∗ 𝐸𝑇 = 𝑃𝑜𝑤𝑒𝑟dynam ∗ 𝐸𝑇 (28)

 =1 =1

In which, 𝐸𝑇 is the execution time of the i
th
 task on the jth VM, and 𝑣 s indicates that the i

th
 is task is used on the jth

VM, with the s
th
 voltage level. Moreover, 𝑓 s is the frequency of processor j

th
 VM, at the s

th
 voltage level. Also, in the

idle periods of VMs, their voltage has to be set to the lowest level to save the most energy. The energy consumption

of idle periods for all available processors can be defined as follows:
p p

𝐸ldle = 𝑘 ∗ 𝑣2 ∗ 𝑓 m n ∗ 𝐼𝑇 = 𝑃𝑜𝑤𝑒𝑟 dle ∗ 𝐼𝑇 (29)

 =1 =1

In which 𝑣 m n and 𝑓 m n are the minimum voltage and frequency of the j
th

 VM, and 𝐼𝑇 is considered to be the idle

time of the j
th
 VM. According to these equations, the total energy consumption required for DAG scheduling in a fog

computing environment can be computed as follows:

𝐸total = 𝐸Busy + 𝐸ldle (30)

4.2. Problem formulation

This section provides a formal definition of the considered workflow model and the energy model. For this purpose,

we assumed that fog computing contains a collection of computational resources in the form of VMs, denoted by

VM={VM1, VM2, VM3, …}. The VMs can also work at different levels, such as F_DVFS={ F_DVFS1, F_DVFS2,

F_DVFS3, …}. F_DVFSi indicates the i
th

 setting for the fog processor's frequency and voltage and

F_DVFSi=(Frequencyi, Voltagei). Also, we assumed that F_DVFSi<F_DVFSj where i<j, or to be more specific,

Frequencyi<Frequencyj and Voltagei< Voltagej.

Besides, we deal with the workflows submitted to the fog environment as a directed acyclic graph (DAG). We indicate

the set of workflows submitted to the fog by W={W1, W2, W3, …,Wn}, in which each workflow contains some tasks,

Wi={T1, T2, T3, …}. Moreover, each workflow is considered a DAG, in which each node represents a task, and the

edges specify data or control dependencies between tasks, in which Eij defines the edge between the Ti and Tj, when

T� ≠ T�. Control dependency among tasks indicates that child tasks can be executed after all its parent tasks have fully

executed, and their output data have been sent to it. Control dependencies only transfer the configuration parameters

needed to execute the child task and transfer fewer data than data dependencies. However, the transferred data in the

data dependencies are used as input data to the child process. In this scheme, the set of all direct predecessors of each

workflow task can be computed as follows:

Predecessor(Ti) = { 𝑇𝑗 | 𝑇𝑗, 𝑇𝑖 ∈ 𝐸} (31)

Thus, regarding the entry task or tasks, their predecessor set should be empty, Predecessor(Tentry)={}. Furthermore,

the set of all direct successors of each task can be computed as follows:

Successor(Ti)= = { 𝑇𝑗 | 𝑇𝑖, 𝑇𝑗 ∈ 𝐸} (32)

13

Furthermore, their successor set will be empty for the exit task or tasks, Successor(Texit)={}. To compute the average

computation time of the Ti, first Equation 33 indicates how 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆k or the execution time of the Ti

in the k
th

 DVFS level should be computed:

 𝑇𝑎𝑠𝑘_𝑙𝑒𝑛 𝑇 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆 =

(33)
k 𝑉𝑀 𝑗, 𝐹_𝐷𝑉𝐹𝑆k

In which, 𝑉𝑀 𝑗, 𝐹_𝐷𝑉𝐹𝑆k specifies the speed of the j
th
 VM using kth DVFS level, and 𝑇𝑎𝑠𝑘_𝑙𝑒𝑛 𝑇 specifies the

length of the task in terms of the millions of instructions per second. Also, the average time to execute the task Ti on

the j
th

 VM can be computed as follows:

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀𝑗 =
1

Ndvfs

 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝐹_𝐷𝑉𝐹𝑆

(34)

𝑁𝑑𝑣𝑓𝑠 k

k=1

In which, Ndvfs is the number of DVFS levels in the VM. Furthermore, the average execution time of the task Ti on

all VMs can be computed as follows:

𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 =
1

Nvm

 𝐴𝑣𝑒(𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀)

(35)

𝑁𝑣𝑚 , ,
 =1

In this scheme, the earliest start time of each task can be computed as follows:

0 𝐼𝐹 𝑇1 𝑖𝑠 𝑎𝑛 𝑒𝑛𝑡𝑟𝑦 𝑡𝑎𝑠𝑘

𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀 =
max {𝑎𝑣𝑎𝑖𝑙(𝑉𝑀), max 𝐹𝑇 𝑇𝑗 + 𝐶𝑜𝑚_𝑇𝑖𝑚𝑒(𝑇 , 𝑇) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑇𝑗 ∈ 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟 𝑇

(36)

Where 𝑎𝑣𝑎𝑖𝑙(𝑉𝑀) is the time which j
th

 VM becomes available to execute the requested task. In this scheme, the

finish time of each task can be computed as follows:

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤𝑖 𝑖𝑓 𝑇 𝑖𝑠 𝑎𝑛 𝑒𝑥𝑖𝑡 𝑡𝑎𝑠𝑘

𝐹𝑇(𝑇 , 𝑉𝑀) =
𝑆𝑇𝑖𝑚𝑒 𝑇 , 𝑉𝑀 + 𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (37)

In which, 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑤𝑖 denotes the deadline of the i
th

 workflow. Also, the communication time of the data transfer

between the Ti and Tj can be computed as follows:

𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇 , 𝑇 =

0 𝐼𝐹 𝑉𝑀 𝑇 = 𝑉𝑀(𝑇)

 𝐷𝑎𝑡𝑎(𝑇 , 𝑇)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎩𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑉𝑀 𝑇𝑖 , 𝑉𝑀 𝑇𝑗

(38)

In which, 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑉𝑀 𝑇 , 𝑉𝑀(𝑇) is the bandwidth between two VMs which execute the Ti and Tj tasks, and

𝐷𝑎𝑡𝑎(𝑇 , 𝑇) denotes the amount of data that should be transferred between these tasks. Moreover, as shown in Figure

10, the makespan of the workflow wi can be computed as follows:

makespan(wi)={ 𝑚𝑎𝑥 𝐹𝑇 𝑇 | 𝑇 ∈ 𝑤𝑖 } (39)

Generally, the scheduling algorithms may determine each task's following items: VM number, type of VM, DVFS

setting of VM, the fog environment, which should execute the task, task order, etc. Figure 11 indicates a sample

encoding in our proposed workflow scheduling scheme. As shown in this figure, each solution can be represented by

a two-dimensional array in which for each task, the VM, which will execute the task, and the VM’s DVFS level,

should be determined. This scheme assumes that each VM can be tuned to a limited set of the DVFS levels. As a

result, both the VM’s number and DVFS levels are discrete numbers and adjusted by the proposed DMFO algorithm.

14

Figure 11: A sample encoding in the proposed scheduling scheme

Equation 40 indicates the fitness function applied in this fog scheduling scheme:

1 𝑖𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑤𝑖 ?: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

Fitness =
𝛼 ∗

makespan 𝑤𝑖 + 𝛽 ∗
Nwvm

+ 𝛾 ∗
S ommun at on 𝑖𝑓 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑤𝑖 < 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒

(40)

𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒 𝑤
𝑖
 Nvm W ommun at on

α+β+ 𝛾 =1

In this equation, the Scommunication indicates the amount of the required amount of scheduling communications, and

the Wcommunication exhibits the total amount of workflow communications and Wcommunication≥Scommunication.

As shown in this equation, when dependent tasks are located in the same VM, their required communication cost is

zero. Equations 41 and 42 indicate how the scommunication and wcommunication can be computed regarding the

amount of data transfer between tasks and the amount of data transfer between VMs, respectively.

N

(41)

𝑊𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑚𝑚 𝑇 , 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟(𝑇)

 =1 =1

NVM

𝑆𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛 = 𝑐𝑜𝑚𝑚 𝑉𝑀 , 𝑉𝑀x

 =1 =1

If VMj=VMx Then comm=0

(42)

In which, L is the number of workflow levels, 𝑁𝑇𝑖 determines the number of tasks in the i
th
 level of the workflow, and

𝑐𝑜𝑚𝑚 𝑇 , 𝑠𝑢𝑐𝑒𝑠𝑠𝑜𝑟(𝑇) is the amount of communication between the Tj and its successor tasks. Furthermore,

𝑐𝑜𝑚𝑚 𝑉𝑀 , 𝑉𝑀x specifies the amount of communication between two VMs which execute two dependent tasks.

4.3. Finding task order

List-based scheduling methods first compute the workflow tasks' priorities in a DAG and rank them in non-increasing

order. HEFT is one of the most popular list scheduling method which has been provided in the literature. For finding

the order of task execution in the scientific workflows, we benefit from the task prioritization method supplied in the

HEFT or heterogeneous earliest finish time algorithm. HEFT is a heuristic scheduling method for inter-dependent

tasks onto a network of heterogeneous workers taking communication time into account. For inputs, HEFT takes a set

of tasks, represented as a directed acyclic graph, a collection of VMs, the times to execute each worker, and the times

to communicate each job's results between each pair of workers. It descends from list scheduling algorithms. HEFT

algorithm first determines the priorities of the tasks and then assigns tasks to the workers. The rank of each task

indicates its execution turn in the workflow scheduling. Thus, tasks with the lower rank will be executed first, and

tasks with the higher ranks will be executed later and will have the lowest priority for execution. Equation 43 indicates

the rank should be computed for each workflow task:

𝑅𝑎𝑛𝑘 𝑇𝑖 = 𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖 + {max(𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇𝑖, 𝑇𝑗 + 𝑅𝑎𝑛𝑘 𝑇𝑖 | 𝑇𝑗 ∈ Successor Ti } (43)

Where Ti is the i
th

 task in the workflow and 𝐴𝑣𝑒 𝐸𝑥𝑒𝑐𝑡𝑖𝑜𝑛_𝑇𝑖𝑚𝑒 𝑇𝑖 is the average execution cost of the i
th

 task.

As outlined before, Successor 𝑇𝑖 specifies the successor tasks of the Ti, and 𝐶𝑜𝑚_𝑇𝑖𝑚𝑒 𝑇𝑖, 𝑇𝑗 specifies the

communication cost between the Ti and Tj.

4.4. DMFO-DE based workflow scheduling
The pseudo-code of the DVFS-based workflow scheduling using DMFO-DE is shown in Figure 12. As shown in this

algorithm, first, the required parameters for running the algorithm are tuned. Then, the task prioritization method of

the HEFT algorithm is used to find the order of the task execution in the workflow, and then the

15

DMFO-DE algorithm is used to find the best possible location for the tasks. Then, tasks are allocated to the required

VM for execution by the order and setting specified in the best solution.

5. Results

This section presents the results of the experiments conducted to evaluate the performance of the proposed scheduling

framework. There are several interesting simulation frameworks for fog computing, such as iFogSim and

EdgeCloudSim. In this scheduling scheme, we have used the iFogSim simulator to conduct the required simulations,

an efficient open-source tool for modeling and simulating resource management in IoT[61] and fog/edge computing

networks. The iFogSim simulator works with the CloudSim, another open-source java-based simulator simulating

cloud computing environments and managing its resources. The iFogSim simulator applies the CloudSim to deal with

the events among fog computing components. In CloudSim, various entities such as data centers use message passing

for communication. The proposed workflow scheduling algorithm is evaluated on the scientific workflows such as

Epigenomics, CyberShake, LIGO, SIPHT, and Montage. Figure 13 shows the general structure of the employed

scientific workflows.

Procedure Fog_scheduling()

Input: Scientific Workflow Wi

DVFS levels

Deadline of Scientific Workflow Wi

Set the number of VMs and their features

Set the bandwidth among VMs

Read workflow data from its DAX file

Compute the workflow tasks’ rank based on the HEFT ranking method

Sort tasks in increasing order of their rank

Compute the workflow slack time

Allocate the slack time to the workflow levels

Set the objective function

Use the DMFO-DE optimization algorithm to obtain the best solution

For each Ti task in workflow Wi

Find the VMi and DVFS_Leveli from the best solution

Find the predecessor set of Ti

While(VMi is not idle or all Ti’s predecessor are not executed)

Wait

End

Allocate the DVFS levels to the VMs

Execute task Ti on the VMi

End

Figure 12: DVFS-based workflow scheduling using DMFO-DE

Figure 13.a depicts the Epigenomics workflow's architecture, a data processing workflow that indicates the genome

sequencing operations' execution and is applied by the Epigenome center. In this workflow, the DNA sequence data

is produced by a genetic analysis system, split into many chunks that can be processed in parallel. Furthermore, each

data chunk is converted to a format required by the sequence aligner. Then noisy sequences are filtered. Besides, a

map to detect the density of sequence at every genome position is created.

Also, Figure 13.b exhibits the SIPHT workflow structure, a program that uses a workflow for automating the search

for sRNA encoding-genes for all bacterial replicons[62]. It is created for a bioinformatics project at Harvard University

in searching for untranslated RNAs for regulating processes like virulence or secretion in bacteria. Furthermore,

Montage is an open-source toolkit for generating custom mosaics of the sky. It is presented as a workflow that can be

run in various Grid, cloud, and even fog computing environments. Figure 13.c shows the general structure of the

Montage workflow. Besides, Figure 13.d shows the structure of the LIGO workflow[63], which is applied to produce

16

and evaluate the gravitational waveforms for compact binary systems. In addition, Figure 13.e shows the general

structure of the CyberShake workflow, which is typically employed by the earthquake center of southern California

to analyze earthquake effects. The simplest structure in the scientific workflows is a task that processes input data to

create an output. These tasks can then be combined sequentially to produce a pipeline structure in which each task

input is the output of the previous task in the pipeline. Another structure is also denoted as data distribution or

partitioning tasks that divide their output data into several chunks to be used by several tasks. As an advantage, such

partitioning can lead to an increase in the parallelism level. On the other hand, data aggregation jobs aggregate several

jobs' outputs and generate a combined data product. Another data structure is the data redistribution task. The data

aggregated from the previous step can be distributed to several tasks in the next step to increase the parallelism.

(b) SIPHT workflow

(a) Epigenome workflow

(d) CyberShake workflow

(c) Montage workflow

(e) LIGO workflow

Figure 13: Applied scientific workflows

17

For evaluation of the scientific workflows, in [34], the authors provided a workflow generator tool that creates arbitrary

size scientific workflows XML format that contains data about the task size and the amount of communication between

dependent tasks. For conducting the required experiments and evaluating the proposed algorithm, as shown in Table

2, four synthetic Montage workflow with 30, 60, 100, and 1000 tasks are utilized to prepare their DAX. Regarding

the Epigenome, four synthetic workflows with 24, 46, 100, and 997 tasks are used, which the workflow generato r

provides their DAX. Besides, four synthetic SIPHT workflows with 30, 60, 100, and 1000 tasks are utilized.

Furthermore, the depicted results are averaged from 40 different runs of the investigated optimization algorithms.

Regarding the Epigenome, four synthetic workflows with 24, 46, 100, and 997 tasks are used, which the workflow

generator provides their DAX. Besides, four synthetic SIPHT workflows with 30, 60, 100, and 1000 tasks are utilized.

Furthermore, the depicted results are averaged from 40 different runs of the investigated optimization algorithms.

5.1. Fitness values

Table 2 indicates the parameters considered in the experiments conducted to verify the proposed scheduling

algorithm's effectiveness. As specified in Table 2, for all algorithms, 60 solutions are considered as their population,

and the exhibited results are the average of 30 different runs of the studied algorithms. Besides, we use two deadlines,

denoted as deadline1 and deadline2, in our experiments, which deadline 2 is more than deadline1. Table 3 lists the

parameter setting applied for different optimization algorithms in the conducted experiments. The WOA or Whale

Optimization Algorithm[64, 65] is proposed by Mirjalili et al. and is inspired by the humpback whales’ hunting

behavior. This algorithm can handle continuous optimization problems and benefits from humpback whales’ actions

such as searching the prey, bubbling, and encircling. Also, SCA or Sine-cosine algorithm is proposed by Mirjalili and

can be considered as a swarm-based optimization algorithm, in which the optimization process is performed using the

sine and cosine functions[66].
Table 2: Simulation parameters

Parameter Value

Available VMs 80 VMs

Available bandwidth 100 Mbps, 1000 Mbps

VM’s type Homogeneous

Epigenomics 24 Nodes DAX, 46 Nodes DAX, 100 Nodes DAX, 997 Nodes DAX

SIPTH 30 Nodes DAX, 50 Nodes DAX, 100 Nodes DAX, 1000 Nodes DAX

Montage 25 Nodes DAX, 50 Nodes DAX, 100 Nodes DAX, 1000 Nodes DAX

Algorithm runs 30

Number of solutions 60 solutions

Deadline1 Makespan + 0.2* makespan

Deadline2 Makespan + 0.4* makespan

DVFS levels 6 levels

Level Voltage Speed percentage

1 1.5 100%

2 1.4 90%

3 1.3 80%

4 1.2 70%

5 1.1 60%

6 1.0 50%

Table 3: The algorithms’ parameters

Algorithm Parameter Value

Proposed

DMFO-DE

α 0.4

β 0.3

𝛾 0.3

WOA

𝑟1, 𝑟2, and 𝑝 rand

𝑎 2 to 0

C 2 X 𝑟2

18

Figure 14 indicates the investigated optimization algorithms' fitness values achieved from scheduling workflow

Montage, LIGO, SIPHT, and Cybershake with 1000 tasks, as well as Epigenomics workflow with 997 tasks. Since

we have considered 80 VMs for the fog computing environment in these experiments, and the scheduling schemes

apply most of these VMs for scheduling the tasks in each workflow level, the fitness value will be close to one.

However, regarding the results shown by the various parts of Figure 13, our scheme can achieve the lowest fitness

value among several optimization algorithms for different optimization algorithms. On the other hand, since our

proposed DMFO-DE is a discrete algorithm and benefits from the OBL method, it can properly allocate the tasks to

the fog VMs to minimize its fitness function.

(a) Montage workflow with 1000 tasks (b) LIGO workflow with 1000 tasks

(c) Epigenomics workflow with 997 tasks (d) SIPHT workflow with 1000 tasks

(e) CyberShake workflow with 1000 tasks

Figure 14: Fitness values for workflows with 1000 tasks

Figure 15 indicates the investigated optimization algorithms' investigated fitness values applied to schedule Montage,

LIGO, and Cybershake workflows with 50 tasks, SIPHT workflows with 60 tasks, and Epigenomics workflow with

46 tasks. Again, in all studied algorithms, 60 solutions are used, and 30 different runs are averaged.

19

(a) Montage workflow with 50 tasks (b) LIGO workflow with 50 tasks

(c) Epigenomics workflow with 46 tasks (d) SIPHT workflow with 60 tasks

(e) CyberShake workflow with 50 tasks

Figure 15: Fitness values for workflows with 50 tasks

As shown in this figure, DMFO-DE can rapidly converge to the near-optimal solution and achieves better results than

other studied investigation algorithms. Since we have used 80 VMs in our simulations and these workflows use fewer

20

VMs, and as a result, the fitness value of these experiments will be less than the fitness of workflow scheduling with

1000 tasks. At first, the solution has one's fitness in all algorithms because the randomly created solutions provide

schedules that cannot satisfy the specified deadline. However, after the algorithms are executed, the optimization

algorithms can find better schedules and mitigate the fitness value, in which our scheme provides better results.

5.2. Energy consumption improvements

This subsection presents the improvements which have been achieved in the energy consumption context. In these

experiments, we employed Equation 44 for computing the percentage of the total energy consumption improvements.
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡

=
𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐸𝑛𝑒𝑟𝑔𝑦 𝑢𝑠𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐷𝑉𝐹𝑆 𝑏𝑎𝑠𝑒𝑑 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔

∗ 100
(44)

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑤𝑜𝑟𝑘𝑓𝑙𝑜𝑤 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔

In this equation, we first compute the energy consumption of the achieved scheduling for workflow, and then we

deduce it by the energy consumption of the DVFS-based workflow scheduling. Figures 16 to 25 depict the

experiments' results on the scientific workflows. Figure 16 indicates the energy reduction percentage in Montage

workflows with 25 and 50 tasks, and Figure 17 exhibits the energy consumption reduction for the Montage workflows

with 100 and 1000 tasks. It exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and BA

algorithms. As can be concluded from this figure, our approaches can better mitigate the energy required to schedule

different-sized Montage workflows and outperform other algorithms.

Figure 16: Energy consumption for Montage workflows with 30 and 50 tasks

Figure 17: Energy consumption for Montage workflows with 100 and 1000 tasks

21

Figure 18: Energy consumption for Epigenomics workflows with 24 and 46 tasks

Figure 18 indicates the percentage of the energy reduction in two Epigenomics workflows with 24 and 46 tasks. It

exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and BA algorithms. As can be concluded

from this figure, our approaches can better mitigate the energy required to schedule different-sized Montage

workflows and outperform other algorithms. Figure 19 indicates the percentage of the energy reduction in the 4
th

scenario, in which two Epigenomics workflows with 100 and 997 tasks are used. It exhibits the scheduling results

using the DMFO-DE, WOA, SCA, MFO, DE, and BA algorithms without DVFS. As can be concluded from this

figure, our approaches can minimize the energy required to schedule different size Montage workflows.

Figure 19: Energy consumption for Epigenomics workflows with 100 and 997 tasks

Figure 20 indicates the percentage of the energy consumption reduction when two LIGO scientific workflows with 30

and 50 tasks are applied. This figure exhibits the scheduling results using the DMFO-DE, WOA, SCA, MFO, DE, and

BA algorithms. As shown in this figure, our approaches can better mitigate the energy required to schedule different-

sized Montage workflows and outperform other algorithms.

22

Figure 20: Energy consumption for LIGO workflows with 30 and 50 tasks

Figure 21 indicates the percentage of the energy reduction when two LIGO workflows with 100 and 1000 tasks are

used. The experimental results exhibit that our workflow scheduling approach using DMFO-DE can decrease the

scheduling power consumption for different-sized Montage workflows and outperform the other algorithms.

Figure 21: Energy consumption for LIGO workflows with 100 and 1000 tasks

Figure 22 exhibits the percentage of energy consumption mitigation for workflow scheduling using SIPHT workflows

with 30 and 50 tasks. Figure 23 indicates the results of the same experiment for SIPHT workflows with 100 and 1000

tasks. Furthermore, Figures Figure 24 and 25 indicate the energy consumption experiment for the CyberShake with

four different sizes. As shown in all these figures, our proposed optimization algorithm achieves better results than

other algorithms.

At last, from the conducted experiments, it can be concluded that the following items are of the essential factors in

energy consumption reduction in DVFS-based scheduling:

 Workflow scheduling deadline.

 Number of VMs applied in the scheduling.

 The number of workflow tasks.

 The number of tasks that can be executed simultaneously in each level of the scientific workflows.

 The deadline distribution policy is applied to distribute the slack time among different workflow levels.

23

Figure 22: Energy consumption for SIPHT workflows with 30 and 50 tasks

Figure 23: Energy consumption for SIPHT workflows with 100 and 1000 tasks

Figure 24: Energy consumption for CyberShake workflows with 30 and 50 tasks

24

Figure 25: Energy consumption for CyberShake workflows with 100 and 1000 tasks

Table 4: Percentage of energy consumption improvement for scheduling with three DVFS levels with deadline1

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA

LIGO 1000
Ave: 40.12 39.01 36.49 32.53 30.27 29.33 27.81

Best: 40.86 39.97 37.07 33.12 31.03 30.15 28.59

LIGO 100
Ave: 33.48 30.25 27.61 23.52 21.72 20.19 19.11

Best: 34.12 31.08 28.31 24.26 22.34 20.98 19.87

LIGO 50
Ave: 23.91 21.28 20.62 18.11 16.57 15.93 15.32

Best: 24.75 21.89 21.38 18.96 17.72 16.74 16.14

LIGO 30
Ave: 19.83 17.05 16.58 14.674 13.29 12.95 11.27

Best: 20.71 17.92 17.19 15.11 14.08 13.67 11.84

Epigenomics 997
Ave: 39.87 38.14 37.62 33.95 29.61 26.24 24.88

Best: 40.52 38.96 38.30 34.72 30.35 26.99 25.51

Epigenomics 100
Ave: 33.84 31.97 31.65 29.53 26.47 23.22 21.53

Best: 34.48 32.58 32.30 30.19 27.13 23.96 22.65

Epigenomics 46
Ave: 22.29 21.34 20.64 19.62 17.69 16.44 16.28

Best: 22.92 21.99 21.27 20.25 18.21 17.05 16.93

Epigenomics 24
Ave: 21.53 18.66 18.43 16.86 14.76 13.69 13.14

Best: 22.37 19.27 19.16 17.38 15.49 14.43 13.75

SIPHT 1000
Ave: 39.27 36.46 35.61 33.60 28.43 26.22 24.51

Best: 40.15 37.08 36.24 34.29 29.33 26.95 25.10

SIPHT 100
Ave: 34.65 33.23 32.58 29.86 25.43 23.54 22.39

Best: 35.13 33.94 33.14 30.57 26.12 24.26 23.07

SIPHT 60
Ave: 25.75 22.98 22.36 19.45 17.94 17.12 16.81

Best: 26.58 23.64 22.83 20.13 18.56 17.73 18.54

SIPHT 30
Ave: 22.87 21.03 20.42 17.12 15.86 13.98 13.11

Best: 23.51 21.85 20.95 17.78 16.40 14.59 13.72

CyberShake 1000
Ave: 39.84 37.16 36.52 33.94 27.68 26.81 24.38

Best: 40.49 37.82 37.08 34.51 28.54 27.44 24.93

CyberShake 100
Ave: 33.76 32.39 31.67 29.59 26.14 24.28 22.92

Best: 34.42 32.88 32.19 30.60 26.77 24.89 23.58

CyberShake 50
Ave: 25.69 24.33 23.53 19.82 18.31 17.36 16.92

Best: 26.38 24.92 23.96 20.52 18.88 17.95 17.64

CyberShake 30
Ave: 23.57 22.42 21.38 17.64 15.28 14.93 13.47

Best: 24.23 22.90 21.82 18.25 15.84 15.66 14.05

Montage 1000
Ave: 38.51 34.26 33.64 29.57 27.85 26.37 24.05

Best: 39.27 35.05 34.15 30.14 28.38 27.92 24.66

Montage 100
Ave: 31.59 28.51 26.73 21.94 19.46 16.86 15.68

Best: 32.16 29.16 27.48 22.62 20.02 17.49 16.37

Montage 50
Ave: 22.81 20.28 18.46 16.58 14.69 13.53 12.27

Best: 23.49 21.06 19.08 17.12 15.46 14.07 12.82

Montage 25
Ave: 17.68 16.07 14.92 12.52 11.33 10.54 9.16

Best: 18.48 16.90 15.59 13.27 11.85 11.15 9.73

25

Table 4 indicates the energy consumption reduction results for conducting workflow scheduling when three DVFS

levels are incorporated with deadline2. Table 5 gives the results of the experiments conducted for workflow scheduling

with six DVFS levels with deadline2. As shown in this table, our proposed discrete and optimization algorithm can

outperform other algorithms regarding energy consumption reduction. Besides, Table 6 presents the same experiment

results when more deadline is considered for the scheduling process.

Table 5: Energy consumption ratio for workflow scheduling with six DVFS levels with deadline2

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA

LIGO 1000
Ave: 43.81 42.09 39.24 35.23 33.41 32.19 30.58

Best: 44.33 42.73 39.61 35.79 33.84 32.68 30.92

LIGO 100
Ave: 36.23 33.39 29.87 25.74 24.16 22.98 21.86

Best: 36.85 33.90 30.22 26.13 24.85 23.42 22.35

LIGO 50
Ave: 26.44 25.28 23.87 20.46 18.42 17.64 17.05

Best: 26.83 25.96 24.21 20.82 18.91 18.07 17.48

LIGO 30
Ave: 21.48 19.24 18.67 16.58 15.92 14.33 13.29

Best: 21.83 19.81 19.10 16.95 16.45 14.75 13.72

Epigenomics 997
Ave: 43.51 42.49 40.75 36.94 34.50 29.37 26.82

Best: 43.98 43.03 41.14 37.51 34.96 29.81 27.33

Epigenomics 100
Ave: 36.62 34.10 33.71 32.26 30.15 26.54 24.28

Best: 37.20 34.62 34.12 32.69 30.67 26.96 24.73

Epigenomics 46
Ave: 24.81 23.67 22.83 22.14 20.16 19.34 19.37

Best: 25.29 24.13 23.37 22.58 20.73 19.67 19.81

Epigenomics 24
Ave: 23.13 21.68 20.17 18.42 16.76 15.46 16.75

Best: 23.66 22.29 20.59 18.95 17.30 15.92 17.28

SIPHT 1000
Ave: 42.59 40.71 38.69 37.10 32.84 30.24 27.81

Best: 43.02 41.23 39.14 37.59 33.22 30.79 28.19

SIPHT 100
Ave: 37.82 36.18 35.87 32.86 28.97 26.67 25.35

Best: 38.27 36.84 36.25 33.31 29.37 27.11 25.81

SIPHT 60
Ave: 27.63 25.05 24.39 23.13 20.61 19.76 20.41

Best: 28.11 25.77 24.92 23.69 21.04 20.14 20.83

SIPHT 30
Ave: 24.33 23.28 22.13 19.66 17.80 16.22 16.67

Best: 24.69 23.87 22.64 20.15 18.29 16.75 17.29

CyberShake 1000
Ave: 42.49 41.09 39.56 37.23 31.86 29.57 28.90

Best: 42.83 41.75 40.12 37.71 32.25 29.92 29.45

CyberShake 100
Ave: 36.94 35.39 34.22 32.49 29.34 27.58 25.63

Best: 37.50 35.91 34.71 32.96 29.82 28.03 26.24

CyberShake 50
Ave: 27.62 26.16 25.84 23.31 21.68 20.34 19.34

Best: 28.07 26.80 26.23 23.72 22.05 20.62 19.76

CyberShake 30
Ave: 25.53 23.98 23.73 20.58 18.92 16.82 16.27

Best: 25.92 24.50 24.16 20.96 19.44 17.35 16.80

Montage 1000
Ave: 41.38 28.86 36.96 33.21 30.67 29.37 27.64

Best: 41.85 29.38 37.43 33.70 31.05 29.82 28.21

Montage 100
Ave: 34.87 31.37 29.70 24.62 23.40 20.48 20.11

Best: 35.38 31.82 30.18 24.99 23.83 20.89 20.56

Montage 50
Ave: 24.86 22.49 20.62 19.14 17.32 17.62 16.38

Best: 25.17 22.97 21.05 19.62 17.84 18.13 16.89

Montage 25
Ave: 19.67 17.19 16.37 15.10 14.69 13.57 12.29

Best: 20.10 17.74 16.82 15.58 17.12 13.91 12.74

5.3. Resource usage

This subsection indicates the improvements which have been achieved in the fog’s virtual resource usage. A reduction

in the number of applied virtual resources directly affects the execution costs of scientific workflows. Also, decreasing

the number of VMs, reduce energy consumption, and can lead to a more green fog computing environment. Besides,

using fewer VMs for each workflow, the throughput of the fog computing environment can be increased, and the fog

can handle more workflows. Table 7 indicates the experiments' results regarding the ratio of resource usage for each

workflow when deadline1 is used for scheduling. This table shows the experimental results for scientific workflows

such as Epigenomics, SIPTH, LIGO, CyberShake, Epigenomics, and Montage scientific workflows. Also, for each

26

type of workflow, four different size DAXs are used in the experiments. These results are also achieved by computing

the average of the 30 different executions of each optimization algorithm. As shown in this figure, our proposed

DMFO-DE algorithm can outperform other optimization algorithms such as WOA, SCA, MFO, DE, and BA in

reducing the number of VMs required to execute the workflow in a specific number of rounds.

Table 6: Energy consumption reduction for workflow scheduling with six DVFS levels and deadline2

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA

LIGO 1000
Ave: 44.93 43.86 42.61 39.53 37.41 36.91 34.82

Best: 45.70 44.37 43.12 40.87 38.86 37.39 35.26

LIGO 100
Ave: 37.35 35.46 32.47 29.14 28.66 26.28 23.61

Best: 37..83 36.38 32.85 29.63 29.10 26.75 24.05

LIGO 50
Ave: 30.26 28.44 27.74 24.82 21.32 20.37 19.96

Best: 30.63 29.03 28.26 25.36 21.74 20.74 20.52

LIGO 30
Ave: 25.81 23.32 22.77 20.48 18.25 17.88 17.32

Best: 26.32 23.80 23.25 20.90 18.69 18.29 17.79

Epigenomics 997
Ave: 44.11 43.09 42.24 40.44 37.58 31.74 30.62

Best: 44.57 43.62 42.87 40.89 38.08 32.20 31.25

Epigenomics 100
Ave: 39.32 38.26 37.21 36.16 36.12 30.11 27.72

Best: 39.81 38.85 37.68 36.72 36.57 30.58 28.30

Epigenomics 46
Ave: 27.36 26.47 25.99 26.85 24.22 22.33 21.79

Best: 27.84 26.93 26.53 27.46 24.73 22.79 22.15

Epigenomics 24
Ave: 26.80 25.72 24.32 22.28 19.15 18.71 18.15

Best: 27.41 26.20 24.86 22.79 19.61 19.28 18.62

SIPHT 1000
Ave: 46.54 43.51 42.89 41.55 36.45 34.49 31.51

Best: 46.97 44.05 43.47 41.97 36.93 34.92 31.98

SIPHT 100
Ave: 40.26 39.34 38.24 36.42 31.49 29.56 28.43

Best: 40.73 39.76 38.76 36.91 31.92 30.04 28.94

SIPHT 60
Ave: 30.13 39.17 28.89 27.93 23.46 22.60 23.71

Best: 30.67 39.72 29.47 28.47 23.89 23.08 24.12

SIPHT 30
Ave: 28.33 27.26 26.50 23.14 22.10 19.45 18.17

Best: 28.96 27.81 27.13 23.68 22.68 19.93 18.59

CyberShake 1000
Ave: 44.11 43.35 42.25 40.82 35.16 33.51 31.29

Best: 44.58 43.94 42.71 41.46 35.60 33.97 31.84

CyberShake 100
Ave: 39.89 38.37 37.12 36.11 33.42 31.74 28.72

Best: 40.35 38.94 37.64 36.71 33.87 32.17 29.08

CyberShake 50
Ave: 31.21 30.25 29.24 28.18 21.68 23.68 22.44

Best: 31.67 30.86 29.72 28.83 22.25 33.12 22.91

CyberShake 30
Ave: 28.13 27.05 26.46 24.68 18.92 19.37 18.74

Best: 28.72 27.69 26.82 25.11 19.43 19.82 19.23

Montage 1000
Ave: 45.68 42.64 40.23 37.17 30.67 33.58 31.94

Best: 46.07 43.19 40.68 37.68 31.15 34.03 32.46

Montage 100
Ave: 38.17 34.89 33.37 28.25 23.40 23.63 22.47

Best: 38.65 35.41 33.75 28.72 23.86 24.15 22.85

Montage 50
Ave: 27.26 25.38 24.96 23.48 17.32 20.84 19.18

Best: 27.71 26.02 25.62 23.94 17.80 21.35 19.73

Montage 25
Ave: 22.44 21.24 20.75 19.44 14.69 16.51 15.47

Best: 22.87 21.83 21.34 19.89 15.25 16.98 15.88

Table 8 exhibits the resource usage ratio in the experiments in which deadline2 is used for workflow scheduling. As

shown in this table, our proposed discrete and hybrid optimization algorithm gives better results than other

optimization algorithms in different scientific workflows such as Epigenomics, SIPTH, LIGO, CyberShake,

Epigenomics, and Montage. As shown in this table, our approaches can minimize the number of applied VMs in four

different size workflows. Since our algorithm is discrete and can handle discrete solutions, it can better handle discrete

problems such as scheduling, and it provides better results than the other algorithms. Also, by combining the MFO

and DE, it prevents the local optima problem, and as shown in previous subsections, it can converge faster to the near-

optimal results.

27

Table 7: Resource usage ratio in workflow scheduling with deadline1

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA

LIGO 1000
Ave: 0.87 0.89 0.90 0.91 0.92 0.94 0.97

Best: 0.86 0.88 0.89 0.90 0.90 0.93 0.96

LIGO 100
Ave: 0.80 0.82 0.83 0.84 0.86 0.87 0.89

Best: 0.78 0.81 0.81 0.81 0.85 0.85 0.88

LIGO 50
Ave: 0.71 0.74 0.75 0.76 0.79 0.81 0.85

Best: 0.70 0.73 0.71 0.73 0.77 0.79 0.83

LIGO 30
Ave: 0.70 0.72 0.74 0.75 0.76 0.79 0.81

Best: 0.68 0.71 0.72 0.73 0.75 0.77 0.80

Epigenomics 997
Ave: 0.86 0.88 0.89 0.91 0.91 0.92 0.95

Best: 0.85 0.87 0.87 0.9 0.9 0.91 0.93

Epigenomics 100
Ave: 0.78 0.80 0.82 0.84 0.85 0.86 0.88

Best: 0.76 0.79 0.80 0.82 0.84 0.85 0.86

Epigenomics 46
Ave: 0.74 0.76 0.80 0.81 0.82 0.84 0.85

Best: 0.72 0.75 0.78 0.79 0.81 0.82 0.84

Epigenomics 24
Ave: 0.71 0.73 0.75 0.76 0.79 0.82 0.83

Best: 0.69 0.72 0.73 0.74 0.78 0.81 0.81

SIPHT 1000
Ave: 0.86 0.88 0.90 0.92 0.94 0.95 0.96

Best: 0.84 0.87 0.88 0.91 0.93 0.93 0.94

SIPHT 100
Ave: 0.76 0.80 0.82 0.84 0.85 0.88 0.90

Best: 0.74 0.78 0.81 0.82 0.84 0.87 0.88

SIPHT 60
Ave: 0.74 0.77 0.79 0.81 0.82 0.84 0.87

Best: 0.73 0.76 0.77 0.80 0.80 0.83 0.85

SIPHT 30
Ave: 0.72 0.74 0.76 0.77 0.80 0.82 0.83

Best: 0.70 0.73 0.75 0.75 0.78 0.80 0.81

CyberShake 1000
Ave: 0.84 0.85 0.86 0.87 0.89 0.9 0.93

Best: 0.82 0.84 0.84 0.85 0.87 0.89 0.92

CyberShake 100
Ave: 0.80 0.82 0.84 0.86 0.87 0.88 0.90

Best: 0.78 0.81 0.82 0.85 0.85 0.87 0.89

CyberShake 50
Ave: 0.73 0.75 0.78 0.81 0.83 0.84 0.86

Best: 0.72 0.74 0.76 0.80 0.82 0.82 0.85

CyberShake 30
Ave: 0.71 0.73 0.75 0.76 0.77 0.80 0.82

Best: 0.70 0.72 0.73 0.74 0.76 0.79 0.81

Montage 1000
Ave: 0.85 0.87 0.89 0.90 0.92 0.93 0.94

Best: 0.82 0.86 0.87 0.89 0.91 0.91 0.92

Montage 100
Ave: 0.77 0.80 0.83 0.85 0.86 0.88 0.89

Best: 0.75 0.79 0.81 0.83 0.84 0.87 0.87

Montage 50
Ave: 0.75 0.78 0.82 0.83 0.84 0.86 0.87

Best: 0.73 0.76 0.80 0.81 0.83 0.84 0.85

Montage 25
Ave: 0.71 0.73 0.74 0.77 0.78 0.83 0.84

Best: 0.70 0.72 0.72 0.76 0.76 0.81 0.82

5.4. Overheads

Typically, the MFO algorithm executes the Quicksort algorithm two times in each iteration for sorting flames and

their fitness values. Generally, in the average case, the Quicksort algorithm's performance is O(nlogn), and its worst-

case performance is O(n
2
), which can reduce the performance of the optimization process. As an advantage, our

proposed DMFO-DE algorithm incurs fewer processing overheads than the basic MFO algorithm because it needs

less execution of the MFO and is aided by the DE algorithm. Thus, using DE helps to explore the problem space better

and reduce the number of Quicksort executions. This subsection indicates the number of Quicksort algorithm’s

execution in the workflow scheduling process using MFO and the proposed DMFO-DE algorithms. Figure 26 shows

the number of times which the sorting algorithm is executed in the MFO and the DMFO-DE algorithms to schedule

the Montage workflows with 25 tasks in 150 rounds. As can be seen in this figure, the DMFO-DE algorithm, which

in some rounds uses the DE algorithm, needs to execute the sorting algorithm fewer times, and this makes it much

faster than the MFO.

Figure 26: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks

28

Table 8: Resource usage ratio in workflow scheduling with deadline2

Workflow Size Value DMFO-DE DMFO WOA SCA MFO DE BA

LIGO 1000
Ave: 0.79 0.80 0.85 0.87 0.87 0.88 0.89

Best: 0.77 0.79 0.83 0.86 0.85 0.87 0.88

LIGO 100
Ave: 0.72 0.76 0.78 0.80 0.81 0.83 0.85

Best: 0.70 0.75 0.76 0.79 0.80 0.82 0.83

LIGO 50
Ave: 0.68 0.70 0.72 0.75 0.77 0.78 0.81

Best: 0.67 0.71 0.71 0.74 0.75 0.77 0.79

LIGO 30
Ave: 0.64 0.68 0.73 0.74 0.76 0.77 0.79

Best: 0.63 0.66 0.71 0.72 0.75 0.76 0.78

Epigenomics 997
Ave: 0.77 0.81 0.84 0.85 0.87 0.89 0.90

Best: 0.76 0.79 0.82 0.84 0.86 0.88 0.88

Epigenomics 100
Ave: 0.74 0.77 0.81 0.82 0.83 0.82 0.84

Best: 0.73 0.76 0.80 0.80 0.81 0.83 0.82

Epigenomics 46
Ave: 0.69 0.72 0.73 0.74 0.76 0.77 0.79

Best: 0.67 0.71 0.72 0.73 0.75 0.76 0.78

Epigenomics 24
Ave: 0.63 0.67 0.71 0.72 0.75 0.76 0.76

Best: 0.62 0.66 0.70 0.70 0.73 0.74 0.75

SIPHT 1000
Ave: 0.79 0.81 0.84 0.86 0.87 0.89 0.92

Best: 0.77 0.80 0.83 0.84 0.86 0.88 0.90

SIPHT 100
Ave: 0.75 0.78 0.80 0.82 0.82 0.84 0.87

Best: 0.73 0.77 0.79 0.80 0.81 0.83 0.85

SIPHT 60
Ave: 0.71 0.75 0.78 0.79 0.81 0.82 0.84

Best: 0.70 0.74 0.76 0.77 0.80 0.81 0.83

SIPHT 30
Ave: 0.61 0.66 0.70 0.73 0.74 0.76 0.79

Best: 0.60 0.64 0.68 0.72 0.72 0.75 0.77

CyberShake 1000
Ave: 0.78 0.81 0.83 0.84 0.86 0.87 0.89

Best: 0.76 0.80 0.82 0.83 0.85 0.86 0.90

CyberShake 100
Ave: 0.72 0.73 0.75 0.78 0.81 0.83 0.84

Best: 0.71 0.73 0.74 0.76 0.78 0.82 0.82

CyberShake 50
Ave: 0.67 0.68 0.71 0.75 0.76 0.79 0.81

Best: 0.65 0.67 0.69 0.73 0.75 0.78 0.80

CyberShake 30
Ave: 0.61 0.66 0.67 0.71 0.74 0.76 0.77

Best: 0.60 0.65 0.64 0.69 0.72 0.75 0.75

Montage 1000
Ave: 0.73 0.75 0.78 0.81 0.84 0.88 0.90

Best: 0.71 0.74 0.76 0.79 0.82 0.86 0.88

Montage 100
Ave: 0.70 0.73 0.77 0.80 0.82 0.83 0.85

Best: 0.68 0.72 0.76 0.78 0.81 0.80 0.83

Montage 50
Ave: 0.66 0.69 0.71 0.72 0.76 0.79 0.82

Best: 0.64 0.68 0.70 0.70 0.74 0.77 0.81

Montage 25
Ave: 0.62 0.64 0.66 0.69 0.73 0.77 0.80

Best: 0.61 0.63 0.64 0.68 0.71 0.76 0.78

Figure 26: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks

29

Figure 27 shows the number of times the sorting algorithm is executed in the basic MFO algorithm and the DMFO-

DE algorithm for scheduling the Montage workflows with 50 tasks in 250 rounds. As shown in this figure, our

proposed algorithm needs fewer of the Quicksort algorithm’s execution. Figure 28 shows the number of times the

sorting algorithm is executed in the MFO and the DMFO-DE algorithm to schedule the Montage workflows with 100

tasks. As can be seen in this figure, the DMFO-DE algorithm, which uses the DE algorithm, needs to execute the

sorting algorithm fewer times, which makes it much faster than the MFO, and as a result, DMFO-DE can converge

more quickly. Figure 29 shows the number of sorting algorithm execution for scheduling the Montage workflows with

1000 tasks. As shown in Figures 26 to 29, since the LA rewards the MFO algorithm for its achieved results, MFO is

executed more than DE.

Figure 27: Sorting algorithm execution in the scheduling of Montage workflows with 50 tasks

Figure 28: Sorting algorithm execution in the scheduling of Montage workflows with 100 tasks

30

6. Conclusion

This article presented a discrete and opposition-based version of the MFO algorithm using mutation and crossover

operators. Then, we combined it with the DE algorithm and provided a hybrid discrete optimization algorithm called

DMFO-DE, which probabilistically execute one of the DMFO and DE algorithms. By using the learning automata, it

can decide to run which algorithm more. DMFO-DE incurs less processing overhead than the MFO algorithm and can

converge faster. Afterward, we employed the DMFO-DE algorithm for solving the DVFS-based scientific workflow

scheduling problem in the fog computing environment. This scheduling approach uses the HEFT algorithm to

recognize the priority of tasks in a workflow and then uses the DMFO-DE algorithm to assign the tasks to the most

appropriate VMs and allocate the best possible DVFS level VMs. Thus, in addition to reducing the scheduling

makespan, we try to minimize workflow scheduling's energy consumption. Extensive simulations are carried out on

three types of scientific workflows with different sizes. The obtained results indicated that our solution could

outperform workflow scheduling conducted using other optimization algorithms such as MFO, DE, and bat algorithm

in terms of the energy consumption and the number of applied VMs. Besides, the results show that our algorithm

achieves these results while having less overhead than the basic MFO algorithm.

In future studies, we try to deal with the fog computing environment's workflow scheduling problem by introducing

our multi-objective version of our hybrid optimization algorithm. Besides, dealing with multiple fog and environments

with unreliable virtual resources is exciting topics that we focus on in the future. Furthermore, enhancing fog

computing with multi-cloud environments can be further investigated in future studies.

References

[1] M. Masdari, S. M. Bazarchi, and M. Bidaki, "Analysis of secure LEACH‐based clustering protocols
in wireless sensor networks," Journal of Network and Computer Applications, vol. 36, pp. 1243‐
1260, 2013.

[2] M. Masdari, S. Barshande, and S. Ozdemir, "CDABC: chaotic discrete artificial bee colony
algorithm for multi‐level clustering in large‐scale WSNs," The Journal of Supercomputing, vol. 75,
pp. 7174‐7208, 2019.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, "Internet of things for smart cities,"
IEEE Internet of Things Journal, vol. 1, pp. 22‐32, 2014.

[4] L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey," Computer networks, vol.
54, pp. 2787‐2805, 2010.

[5] F. Wortmann and K. Flüchter, "Internet of things," Business & Information Systems Engineering,
vol. 57, pp. 221‐224, 2015.

[6] M. Hosseinzadeh, M. Masdari, A. M. Rahmani, M. Mohammadi, A. H. M. Aldalwie, M. K. Majeed,
et al., "Improved Butterfly Optimization Algorithm for Data Placement and Scheduling in Edge
Computing Environments," Journal of Grid Computing, vol. 19, pp. 1‐27, 2021.

[7] M. Masdari and A. Khoshnevis, "A survey and classification of the workload forecasting methods
in cloud computing," Cluster Computing, pp. 1‐26, 2019.

[8] M. Masdari and H. Khezri, "Efficient VM migrations using forecasting techniques in cloud
computing: a comprehensive review," Cluster Computing, pp. 1‐30, 2020.

[9] S. Gharehpasha, M. Masdari, and A. Jafarian, "Virtual machine placement in cloud data centers
using a hybrid multi‐verse optimization algorithm," Artificial Intelligence Review, vol. 54, pp.
2221‐2257, 2021.

[10] M. Masdari and M. Zangakani, "Green cloud computing using proactive virtual machine
placement: challenges and issues," Journal of Grid Computing, pp. 1‐33, 2019.

[11] S. Gharehpasha, M. Masdari, and A. Jafarian, "Power efficient virtual machine placement in
cloud data centers with a discrete and chaotic hybrid optimization algorithm," Cluster
Computing, vol. 24, pp. 1293‐1315, 2021.

[12] A. Shakarami, M. Ghobaei‐Arani, A. Shahidinejad, M. Masdari, and H. Shakarami, "Data
replication schemes in cloud computing: a survey," Cluster Computing, pp. 1‐35, 2021.

31

[13] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, "Fog computing and its role in the internet of
things," in Proceedings of the first edition of the MCC workshop on Mobile cloud computing,
2012, pp. 13‐16.

[14] L. M. Vaquero and L. Rodero‐Merino, "Finding your way in the fog: Towards a comprehensive
definition of fog computing," ACM SIGCOMM Computer Communication Review, vol. 44, pp. 27‐
32, 2014.

[15] M. R. Hossain, M. Whaiduzzaman, A. Barros, S. R. Tuly, M. J. N. Mahi, S. Roy, et al., "A
scheduling‐based dynamic fog computing framework for augmenting resource utilization,"
Simulation Modelling Practice and Theory, p. 102336, 2021.

[16] M. Yannuzzi, R. Milito, R. Serral‐Gracià, D. Montero, and M. Nemirovsky, "Key ingredients in an
IoT recipe: Fog Computing, Cloud computing, and more Fog Computing," in 2014 IEEE 19th
International Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), 2014, pp. 325‐329.

[17] A. Shahidinejad, F. Farahbakhsh, M. Ghobaei‐Arani, M. H. Malik, and T. Anwar, "Context‐Aware
Multi‐User Offloading in Mobile Edge Computing: a Federated Learning‐Based Approach,"
Journal of Grid Computing, vol. 19, pp. 1‐23, 2021.

[18] P. Hu, S. Dhelim, H. Ning, and T. Qiu, "Survey on fog computing: architecture, key technologies,
applications and open issues," Journal of Network and Computer Applications, vol. 98, pp. 27‐42,
2017.

[19] A. Shahidinejad, M. Ghobaei‐Arani, and M. Masdari, "Resource provisioning using workload
clustering in cloud computing environment: a hybrid approach," Cluster Computing, vol. 24, pp.
319‐342, 2021.

[20] L. Yin, J. Luo, and H. Luo, "Tasks scheduling and resource allocation in fog computing based on
containers for smart manufacturing," IEEE Transactions on Industrial Informatics, vol. 14, pp.
4712‐4721, 2018.

[21] O. H. Ahmed, J. Lu, A. M. Ahmed, A. M. Rahmani, M. Hosseinzadeh, and M. Masdari, "Scheduling
of Scientific Workflows in Multi‐Fog Environments Using Markov Models and a Hybrid Salp
Swarm Algorithm," IEEE Access, vol. 8, pp. 189404‐189422, 2020.

[22] D. Tychalas and H. Karatza, "A scheduling algorithm for a fog computing system with bag‐of‐
tasks jobs: Simulation and performance evaluation," Simulation Modelling Practice and Theory,
vol. 98, p. 101982, 2020.

[23] J. C. Guevara and N. L. da Fonseca, "Task scheduling in cloud‐fog computing systems," Peer‐to‐
Peer Networking and Applications, vol. 14, pp. 962‐977, 2021.

[24] A. Arunarani, D. Manjula, and V. Sugumaran, "Task scheduling techniques in cloud computing: A
literature survey," Future Generation Computer Systems, vol. 91, pp. 407‐415, 2019.

[25] D. Rahbari and M. Nickray, "Low‐latency and energy‐efficient scheduling in fog‐based IoT
applications," Turkish Journal of Electrical Engineering & Computer Sciences, vol. 27, pp. 1406‐
1427, 2019.

[26] J. Wan, B. Chen, S. Wang, M. Xia, D. Li, and C. Liu, "Fog computing for energy‐aware load
balancing and scheduling in smart factory," IEEE Transactions on Industrial Informatics, vol. 14,
pp. 4548‐4556, 2018.

[27] M. S. U. Islam, A. Kumar, and Y.‐C. Hu, "Context‐aware scheduling in Fog computing: A survey,
taxonomy, challenges and future directions," Journal of Network and Computer Applications, p.
103008, 2021.

[28] S. Sharma and H. Saini, "A novel four‐tier architecture for delay aware scheduling and load
balancing in fog environment," Sustainable Computing: Informatics and Systems, vol. 24, p.
100355, 2019.

32

[29] H.‐Y. Wu and C.‐R. Lee, "Energy efficient scheduling for heterogeneous fog computing
architectures," in 2018 IEEE 42nd Annual Computer Software and Applications Conference
(COMPSAC), 2018, pp. 555‐560.

[30] W. Wang, G. Wu, Z. Guo, L. Qian, L. Ding, and F. Yang, "Data Scheduling and Resource
Optimization for Fog Computing Architecture in Industrial IoT," in International Conference on
Distributed Computing and Internet Technology, 2019, pp. 141‐149.

[31] B. M. Nguyen, H. Thi Thanh Binh, and B. Do Son, "Evolutionary algorithms to optimize task
scheduling problem for the IoT based bag‐of‐tasks application in cloud–fog computing
environment," Applied Sciences, vol. 9, p. 1730, 2019.

[32] Y. Wang, C. Guo, and J. Yu, "Immune Scheduling Network Based Method for Task Scheduling in
Decentralized Fog Computing," Wireless Communications and Mobile Computing, vol. 2018,
2018.

[33] L. F. Bittencourt, J. Diaz‐Montes, R. Buyya, O. F. Rana, and M. Parashar, "Mobility‐aware
application scheduling in fog computing," IEEE Cloud Computing, vol. 4, pp. 26‐35, 2017.

[34] Y. Yang, K. Wang, G. Zhang, X. Chen, X. Luo, and M.‐T. Zhou, "MEETS: Maximal energy efficient
task scheduling in homogeneous fog networks," IEEE Internet of Things Journal, vol. 5, pp. 4076‐
4087, 2018.

[35] D. Hoang and T. D. Dang, "FBRC: Optimization of task scheduling in fog‐based region and cloud,"
in 2017 IEEE Trustcom/BigDataSE/ICESS, 2017, pp. 1109‐1114.

[36] D. Rahbari, S. Kabirzadeh, and M. Nickray, "A security aware scheduling in fog computing by
hyper heuristic algorithm," in 2017 3rd Iranian Conference on Intelligent Systems and Signal
Processing (ICSPIS), 2017, pp. 87‐92.

[37] M. Abdel‐Basset, D. El‐shahat, M. Elhoseny, and H. Song, "Energy‐Aware Metaheuristic
algorithm for Industrial Internet of Things task scheduling problems in fog computing
applications," IEEE Internet of Things Journal, 2020.

[38] N. Kaur, A. Kumar, and R. Kumar, "A Novel Task Scheduling Model for Fog Computing," in
Inventive Communication and Computational Technologies, ed: Springer, 2021, pp. 845‐857.

[39] P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, and R. Ghaemi, "A new energy‐aware tasks
scheduling approach in fog computing using hybrid meta‐heuristic algorithm," Journal of Parallel
and Distributed Computing, 2020.

[40] H. T. T. Binh, T. T. Anh, D. B. Son, P. A. Duc, and B. M. Nguyen, "An evolutionary algorithm for
solving task scheduling problem in cloud‐fog computing environment," in Proceedings of the
Ninth International Symposium on Information and Communication Technology, 2018, pp. 397‐
404.

[41] R. O. Aburukba, M. AliKarrar, T. Landolsi, and K. El‐Fakih, "Scheduling Internet of Things requests
to minimize latency in hybrid Fog–Cloud computing," Future Generation Computer Systems,
2019.

[42] M. Ghobaei‐Arani, A. Souri, F. Safara, and M. Norouzi, "An efficient task scheduling approach
using moth‐flame optimization algorithm for cyber‐physical system applications in fog
computing," Transactions on Emerging Telecommunications Technologies, vol. 31, p. e3770,
2020.

[43] S. Bitam, S. Zeadally, and A. Mellouk, "Fog computing job scheduling optimization based on bees
swarm," Enterprise Information Systems, vol. 12, pp. 373‐397, 2018.

[44] R. Mahmud and R. Buyya, "Modelling and simulation of fog and edge computing environments
using iFogSim toolkit," Fog and edge computing: Principles and paradigms, pp. 1‐35, 2019.

[45] V. De Maio and D. Kimovski, "Multi‐objective scheduling of extreme data scientific workflows in
Fog," Future Generation Computer Systems, 2020.

33

[46] R. Ding, X. Li, X. Liu, and J. Xu, "A cost‐effective time‐constrained multi‐workflow scheduling
strategy in fog computing," in International Conference on Service‐Oriented Computing, 2018,
pp. 194‐207.

[47] S. Ghanavati, J. Abawajy, and D. Izadi, "Automata‐based Dynamic Fault Tolerant Task Scheduling
Approach in Fog Computing," IEEE Transactions on Emerging Topics in Computing, 2020.

[48] M. Masdari and M. Jalali, "A survey and taxonomy of DoS attacks in cloud computing," Security
and Communication Networks, vol. 9, pp. 3724‐3751, 2016.

[49] T. Jafarian, M. Masdari, A. Ghaffari, and K. Majidzadeh, "A survey and classification of the
security anomaly detection mechanisms in software defined networks," Cluster Computing, vol.
24, pp. 1235‐1253, 2021.

[50] G. Somani, M. S. Gaur, D. Sanghi, M. Conti, and R. Buyya, "DDoS attacks in cloud computing:
Issues, taxonomy, and future directions," Computer Communications, vol. 107, pp. 30‐48, 2017.

[51] R. Madhura, B. L. Elizabeth, and V. R. Uthariaraj, "An improved list‐based task scheduling
algorithm for fog computing environment," Computing, pp. 1‐37, 2021.

[52] S. Mirjalili, "Moth‐flame optimization algorithm: A novel nature‐inspired heuristic paradigm,"
Knowledge‐based systems, vol. 89, pp. 228‐249, 2015.

[53] D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, and Y. Deng, "An Improved Moth‐Flame
Optimization algorithm with hybrid search phase," Knowledge‐Based Systems, vol. 191, p.
105277, 2020.

[54] A. K. Qin, V. L. Huang, and P. N. Suganthan, "Differential evolution algorithm with strategy
adaptation for global numerical optimization," IEEE transactions on Evolutionary Computation,
vol. 13, pp. 398‐417, 2008.

[55] S. Gharehpasha and M. Masdari, "A discrete chaotic multi‐objective SCA‐ALO optimization
algorithm for an optimal virtual machine placement in cloud data center," Journal of Ambient
Intelligence and Humanized Computing, pp. 1‐17, 2020.

[56] M. François, T. Grosges, D. Barchiesi, and R. Erra, "Pseudo‐random number generator based on
mixing of three chaotic maps," Communications in Nonlinear Science and Numerical Simulation,
vol. 19, pp. 887‐895, 2014.

[57] J. A. González and R. Pino, "A random number generator based on unpredictable chaotic
functions," Computer Physics Communications, vol. 120, pp. 109‐114, 1999.

[58] K. S. Narendra and M. A. Thathachar, Learning automata: an introduction: Courier corporation,
2012.

[59] Z. Tang, L. Qi, Z. Cheng, K. Li, S. U. Khan, and K. Li, "An energy‐efficient task scheduling algorithm
in DVFS‐enabled cloud environment," Journal of Grid Computing, vol. 14, pp. 55‐74, 2016.

[60] C.‐M. Wu, R.‐S. Chang, and H.‐Y. Chan, "A green energy‐efficient scheduling algorithm using the
DVFS technique for cloud datacenters," Future Generation Computer Systems, vol. 37, pp. 141‐
147, 2014.

[61] S. Barshandeh, M. Masdari, G. Dhiman, V. Hosseini, and K. K. Singh, "A range‐free localization
algorithm for IoT networks," International Journal of Intelligent Systems.

[62] A. Mohammadzadeh, M. Masdari, F. S. Gharehchopogh, and A. Jafarian, "A hybrid multi‐
objective metaheuristic optimization algorithm for scientific workflow scheduling," Cluster
Computing, vol. 24, pp. 1479‐1503, 2021.

[63] A. Mohammadzadeh, M. Masdari, and F. S. Gharehchopogh, "Energy and Cost‐Aware Workflow
Scheduling in Cloud Computing Data Centers Using a Multi‐objective Optimization Algorithm,"
Journal of Network and Systems Management, vol. 29, pp. 1‐34, 2021.

[64] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Advances in engineering software,
vol. 95, pp. 51‐67, 2016.

[65] K. Asghari, M. Masdari, F. S. Gharehchopogh, and R. Saneifard, "A chaotic and hybrid gray wolf‐
whale algorithm for solving continuous optimization problems," Progress in Artificial
Intelligence, pp. 1‐26, 2021.

