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Abstract. This paper proposes a parallel machine learning framework
for detecting Alzheimer’s disease through T1-weighted MRI scans lo-
calised to the hippocampus, segmented between the left and right hip-
pocampi. Feature extraction is first performed by 2 separately trained,
unsupervised learning based AutoEncoders, where the left and right hip-
pocampi are fed into their respective AutoEncoder. Classification is then
performed by a pair of classifiers on the encoded data from the AutoEn-
coders, to which each pair of the classifiers are aggregated together us-
ing a soft voting ensemble process. The best averaged aggregated model
results recorded was with the Gaussian Naïve Bayes classifier where sen-
sitivity/specificity achieved were 80%/81% respectively and a balanced
accuracy score of 80%.

Keywords: Machine Learning · Alzheimer’s Disease · AutoEncoder ·
Multi-layer Perceptron · Support Vector Machine · Gaussian Naïve Bayes.

1 Introduction

Dementia is a syndrome that causes a more than normal deterioration in cogni-
tive function to that caused by the usual affects of aging. Dementia is chronic
and/or progressive in nature. Globally an estimated 50 million people have some
form of dementia ca. 2020, according to the WHO (World Health Organisation)
[24].

Alzheimer’s Disease (AD) is the most common form of dementia contributing
around 60−70% of all dementia cases globally [24]. AD is predominantly found in
the aged population (65+), with the risk of AD doubling every 5 years after [1].
While AD is not currently curable, the symptoms of AD can be lessened with the
aid of prescription drugs: Acetylcholinesterase (AChE) inhibitors (early- to mid-
stage), Memantine (late-stage), antipsychotics (behavioural and psychological
symptoms of dementia (BPSD)) [17]. There are also therapies and activities
that are beneficial to patients diagnosed with AD [17], therefore it is pivotal
that patients are diagnosed accurately and as early, in the stages of their AD,
as possible. The earliest clinical stage to detect progression to either dementia,
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in general or specifically AD, is Mild Cognitive Impairment (MCI) [14]. MCI is
the "transitional stage between age-related cognitive decline and AD" [15].

AD is defined by the "observation of specific pathological lesions" [16], these
pathological lesions include: intracellular neurofibrillary tangles, extracellular β-
amyloid senile plaques and blood vessel deposits, and synaptic degradation and
neuronal atrophy of the brain [16]. As these pathological lesions are found in
a specific pattern associated with AD, it is possible with the use of Magnetic
Resonance Imaging (MRI) to detect the signs, or the absence of signs, of AD in a
patient. "MRI has attracted a significant interest in AD related studies because
of its completely non-invasive nature, high availability, high spatial resolution
and good contrast between different soft tissues" [15].

In recognition of the challenges diagnosing dementia and the potentials of
utilising recent machine learning techniques to facilitate clinical decision sup-
port, this paper proposes a parallel machine learning architecture where feature
extraction and classification are trained in pairs (left/right hippocampi). Deci-
sions from these pairs are then aggregated together using a soft voting ensemble
algorithm. In particular, the feature extraction is performed by an unsupervised
learning AutoEncoder and classification is performed by 3 different classifiers
(Multi-layer Perceptron, Support Vector Machine, and Gaussian Naïve Bayes).
Experimental results suggest this research is able to achieve comparable per-
formance when compared to other proposed solutions which require more data
points, than what is required for the proposed solution in this paper.

The reminder of this paper is organised as follows. Section II introduces the
related works. Section III describes data set and the proposed pipeline. Section
IV presents and discusses the experimental outcomes. Section V concludes the
paper and outlines ideas for further development.

2 Related Works

Recent advances in machine learning (ML) have lead to many successes in the
healthcare domain [3,22,4]. Numerous models [21,7,8,9,18,11,12] have been pro-
posed for ML driven AI for the detection of signs of AD, ranging from the binary
style classification of AD or CN (Cognitive normal), to multi-class classification
of AD, MCI (progressive MCI(pMCI), stable MCI(sMCI)), and CN. Models that
concentrate on multi-class classification introduce the capability of predicting the
likelihood of a patient transitioning through MCI-to-AD in a given time frame.

While binary classifiers offer less granularity in their classification (i.e. MCI
patients are usually coupled with AD), they do typically offer greater accu-
racy than those found with multi-class classification, around 80−95% according
to [20]. The popular OASIS dataset classifies any patient with greater than 0
Clinical Dementia Rating (CDR) as having AD, whereas the alternative ADNI
repository would classify a patient with a CDR of 0.5 as having MCI not AD
[13]. This stipulation would mean that the OASIS dataset would have a generally
higher sensitivity than other datasets, as it is more likely to predict AD than
CN.
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The capability of predicting when/if a patient is transitioning through MCI-
to-AD, allows for the patient to take quality of life improvements/preparations
for when they do transition into AD. While preventative measures are not proven
to work, cognitive stimulation therapy, has been proven to improve memory and
problem-solving skills [17]. As such, the multi-class classification is one of the
most researched areas in AI detection of AD, with it’s added granularity that
enables the ability to predict when a patient is going through the transition of
MCI-to-AD.

The popular machine learning methods used in AD classification include Con-
volutional Neural Networks (CNN), which was originally designed for objective
detection, and is able to learn image features of most importance that allow for
correctly classifying the image as an image of a patient with AD or CN. In exten-
sion to the multiple types of neural networks, deep learning neural networks are
also used in AD classification, these deep neural networks have achieved high
performances e.g. some GoogleNet and ResNet models have achieved accura-
cies in the 97.9% on 3 way class classification tasks [18]. In regards to a binary
classification task, AD vs CN, as used in this paper, deep neural network-based
utilizing a sparse AutoEncoder and CNN for subjects only 75 and over have
achieved 89.47% [18,19].

Another machine learning method showing promise in AD classification is
the utilisation of an AutoEncoder to perform unsupervised learning on feature
extraction. An AutoEncoder’s architecture is very similar to that of a CNN
except that it performs encoding (takes the data and encodes it to reduce it’s
size) and then decodes (takes the reduced data and tries to reconstruct the data
to be as close to the original input as possible).

Although AutoEncoders may have a vanishing gradient problem, which can
be mitigated by only allowing for the k highest hidden units to be active in any
given hidden layer, an AutoEncoder is promising choice for AD classification,
with its dimensionality reduction - it reduces the chance of data in the image,
that is not important to AD classification, from influencing the classifier as much.
This also inspires the underlying research to utilise AutoEncoders as a feature
extraction technique, followed by the use of powerful classifiers to construct
predictive models.

3 Method

3.1 Data Subjects, Acquisition, and Pre-processing

All data used during the experimentations relating to this paper were acquired
from the OASIS-1: Cross-sectional MRI Data in Young, Middle Aged, Nonde-
mented and Demented Older Adults dataset [13]. OASIS-1 contains 416 unique
subjects, age ranging from 18-96, with 100 of those subjects being older than 60
and have been clinically diagnosed with very mild to moderate Alzheimer’s dis-
ease. OASIS-1 contains age, education level (if present), CDR, MRI T1-weighted
scans, and sex for each unique subject.The dataset used had been pre-processed according to the methods set out
by [23], in which bias field correction was performed to reduce any bias field
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Table 1: OASIS-1 dataset [13] after stage 1 pre-processing [23]
N Age %SexF Education MMS CDR=0 CDR=0.5 CDR=1 CDR=2

AD 73 77.5± 7.4 63.0 2.7± 1.3 22.7± 3.6 0 45 26 2
CN 304 44.0± 23.3 62.2 3.5± 1.2 29.7± 0.6 124 0 0 0

corruption in the images, each image is then registered to the MNI space using a
linear algorithm. Once the MNI space is registered the images were then cropped
to remove the background, finally each image went through quality control where
a probability score was produced on how accurate the MNI registration was, any
images below .5 were removed automatically and images below .7 were manually
reviewed. During this quality control phase 39 non-usable data subjects were
removed as their MRI scans were not viable for use in ML (Table 1), during this
pre-processing stage the dataset was split into separate training and validation
sets (80/20 percentage split). After the pre-processing performed by [23], another
pre-processing stage was undertaken which primary goal was to separate and
crop the left and right hippocampus (Fig. 1), this allowed for the Neural Network
to train only on the hippocampi and effectively doubled the dataset, allowing
for a parallel computing approach where the left and right hippocampus are fed
into the two separate models with an aggregation process at the end which will
then calculate the prediction.

(a)

(b) (c)

Fig. 1: MRI Slices of subject sub-OASIS10003 after stage 1 and stage 2 pre-
processing.
Where a shows the centre slices after stage 1 pre-processing on MRI image of
subject sub-OASIS10003 and b and c shows the left and right hippocampus
slices, respectively, after stage 2 pre-processing on MRI image of subject sub-
OASIS10003
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3.2 Feature Extraction

Feature extraction is performed by unsupervised learning with an AutoEncoder,
two separate AutoEncoders are trained, left hippocampus and right hippocam-
pus models. The AutoEncoder performs feature extraction by reducing the size of
the data, it does this by removing detail in the image that are not of importance
to the classification layer.

Both AutoEncoders used in this paper were trained using the Mean Squared
Error loss function with reduction set to summation, i.e., Sum Squared Error:

L(x, y) =
n∑

i=1

(Yi − Ŷi)2 (1)

where Yi is the target image which in the case of AutoEncoder’s is the input
image, as an AutoEncoder’s performance is evaluated by how closely the recre-
ated image is to the original image. Adam was used as the algorithm optimiser.
Each AutoEncoder had a starting learning rate of 10−3, each AutoEncoder was
trained using mini-batch gradient descent with an epoch of 50.

Since this is an unsupervised learning algorithm it is possible that the Au-
toEncoder will fixate on the wrong area of the image. To ensure that the Au-
toEncoder has fixated on the important details of the respective left and right
hippocampus, the AutoEncoders and all the classifiers were trained 10 times
with the average of the aggregation layer being recorded.

Both AutoEncoders had the same architecture, with the encoder starting
with a 3D convolutional layer, a 3D batch normaliser, leaky ReLU process fol-
lowed by a 3D pad max pool (custom operation that ensures no loss of data),
repeating 3 times (Fig. 2).

Conv3d

Weight <8x1x3x3x3>
Bias <8>

BatchNorm3d

Weight <8>
Bias <8>

LeakyReLu

Conv3d

Weight <16x8x3x3x3>
Bias <16>

BatchNorm3d

Weight <16>
Bias <16>

LeakyReLuPadMaxPool3d

Conv3d

Weight <32x16x3x3x3>
Bias <32>

BatchNorm3d

Weight <32>
Bias <32>

LeakyReLu PadMaxPool3d

Conv3d

Weight <1x32x3x3x3>
Bias <1>

ConvTranspose3d

Weight <1x32x3x3x3>
Bias <32>

BatchNorm3d

Weight <8>
Bias <8>

LeakyReLu CropPadMaxUnpool3d

Conv3d

Weight <8x1x3x3x3>
Bias <1>

CropPadMaxUnpool3d

ConvTranspose3d

Weight <32x16x3x3x3>
Bias <16>

LeakyReLu CropPadMaxUnpool3d

BatchNorm3d

Weight <32>
Bias <32>

Conv3d

Weight <16x8x3x3x3>
Bias <8>

BatchNorm3d

Weight <1>
Bias <1>

Sigmoid

Fig. 2: AutoEncoder architecture used for feature extraction

3.3 Classification

There were 3 different classification methods used during the course of ex-
perimentation, these are Gaussian Naïve Bayes (GNB), Multi-layer Perceptron
(MLP), and SVM. Each classification method had left and right hippocampus
pairs, this was to complement the left and right AutoEncoder pairs.

The 3 different classifiers, GNB, MLP, and SVM, were selected based on pre-
liminary testing and their general success/high utilization in certain classification
tasks [18,6].
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Gaussian Naïve Bayes (GNB) is an efficient, supervised, probabilistic learn-
ing algorithm applying a Gaussian variation on Bayes’ theorem (Eq. (2)). The
Gaussian variation applies the assumption of normal distribution as with the
dataset’s features being continuous, making GNB the most appropriate for the
dataset used.

P (xi|y) =
1√
2πσ2

y

exp

(
− (xi − µy)

2

2σ2
y

)
(2)

Multi-layer Perceptron (MLP) is a feedforward artificial neural network
used for classification and regression tasks. MLPs consist of multiple hidden
layers with multiple hidden nodes in each layer, they are often trained using back-
propagation, back-propagation was chosen to train the model as this enabled
supervised learning. During the training of the MLP the Adam optimizer and
the ReLu activation function were used.

Adam optimizer is seen as the best of both worlds as it combines parts of
RMSProp and Stochastic Gradient Descent (SGD) with momentum optimizers,
from RMSProp it uses squared gradients to scale the learning rate, and from
SGD with momentum it uses the moving average of the gradient instead of the
gradient itself [10].

Support Vector Machine (SVM) is a supervised learning algorithm for
classification and regression tasks. SVMs are highly efficient, simple classifiers,
however the efficiency is reduced when used in this papers classification task as
prediction probabilities are required for the aggregation layer, to allow for this
an expensive five-fold cross validation process is applied.

3.4 Aggregation

The aggregation layer consists of a soft voting process where each classification
method pair is combined to achieve a final prediction, allowing for the left and
right hippocampi to have equal influence on the final prediction. The soft voting
process is the average of each of the models probabilities with the class with the
highest probability being chosen (Eq. (3)).

ŷ = argmax
i

m∑
j=1

wjpij (3)

4 Results and Discussions

4.1 Results

Each classification method was run 10 times with the average of each methods
being recorded. As can be seen in Table 2, the accuracy of the models are fairly
consistent at 83%± 9% over both training and validation sets, while sensitivity
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(true positive rate) is concerning with 2 of the classification methods, MLP and
SVM, leaving an average percentage error of 53%± 33% over both training and
validation sets.

As can be seen in Table 3 the AUC values for each classification methods
are extremely good for both the left and right hippocampus, this shows that the
models, before aggregation, are highly capable of differentiating between both
classes.

Table 2: Average results over 10 runs foreach of the classification methods
Model MLP SVM GNB

Train Valid Train Valid Train Valid

Acc (Avg) .82 .87 .85 .90 .74 .81
Sen (Avg) .20 .52 .26 .59 .81 .80
Spe (Avg) .96 .95 .99 .98 .72 .81

BAcc (Avg) .58 .73 .63 .78 .76 .80

Table 3: Area Under Curve (AUC) Snapshot of 10th run of the classification
methods

Model MLP SVM GNB

Train Valid Train Valid Train Valid

AUC (Left) .93 .90 .99 .89 .93 .88
AUC (Right) .94 .91 .99 .92 .93 .89

The performance of the aggregated MLP model is highly biased to specificity
(true negative rate) with an average of 96%, while sensitivity suffers at 20% on
the training set, the model does perform much better on the validation set with
sensitivity/specificity at 52%/95%. The balanced accuracy - a metric that is the
average of sensitivity and specificity to adjust for the imbalance in the dataset -
achieves 53%/73% in the training/validation sets.

The performance of the aggregated SVM model are slightly better with accu-
racy reaching 85%/90% on the train/validation set. Sensitivity/specificity also
peak at 59%/98% respectively on the validation set. Balanced accuracy, influ-
enced by the increased sensitivity compared to MLP, achieved 63%/78% on the
training/validation sets.

The aggregated GNB out performed MLP and SVMwith sensitivity/specificity
reaching and average 80%/81% on the validation set. Accuracy at an average of
74%/81% has been sacrificed compared to MLP and SVM, whereas balanced ac-
curacy, influenced by the more higher sensitivity and specificity scores, is higher
at 76%/80% training/validation sets.

4.2 Discussions

Feature extraction has been successful using the unsupervised learning based
AutoEncoders, this is evident by the AUC scores in Table 3 where each of the
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models seem to have, almost, excellent performance in differentiating between the
AD and CN classes. The AutoEncoders never once fixated on the wrong features
in the MRI images supplied this is most likely due to the highly localised cropping
of the images before the unsupervised learning process (Figs. 1b and 1c).

While Pre-aggregation classification full results were not recorded a snapshot
of AUC were recorded, through the AUC scores some partial assessments can be
made of the performance of the models at this point. It is evident that the left
and right hippocampi models pre-aggregation perform extremely well in their
classification task, whereas once the aggregation layer has performed it’s task
the MLP and SVM aggregated models started to decline in accuracy.

Post-aggregation, the MLP and SVM aggregated models started to produce
a high bias towards CN classification, it is probable that this happened due to
the imbalance in the dataset where the training/validation sets have 4.17/4.13
times as many CN records as AD records, respectively. It is also probable that
the pre-aggregation SVM models were mis-reporting the prediction probabilities,
as SVM does not natively support prediction probabilities and this functionality
was artificially introduced to the SVM. With regards to the GNB aggregated
models, they didn’t seem to have the same issues as MLP or SVM, as they kept
both high sensitivity and specificity scores.

5 Conclusion
This paper has proposed a parallel machine learning framework where feature
extraction (by AutoEncoder) and classification (by Multi-layer Perceptron, Sup-
port Vector Machine, and Gaussian Naïve Bayes) are trained in pairs through
the left/right hippocampi of an image, before aggregating decisions through a
soft voting ensemble algorithm.

Overall the performance of the best averaged post-aggregation GNB model
is able to match, and succeed in some cases, that of other models proposed
[7,6,8,19] in the same area while only taking into account the single data point of
T1-weighted MRI scans localised to the hippocampi and not discounting training
data of those 74 and under. With the post-aggregation GNB model proposed in
this paper achieving exceedingly high sensitivity score, it is highly beneficial to
the medical field where an incorrectly predicted positive result is much more
detrimental than an incorrectly predicted negative result.

Future work may considering incorporating fuzzy logic system [2,5] to en-
hance the capability of working with imprecision and uncertainly that commonly
exist in the medical imaging.
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