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Spatially Constrained Online Dictionary

Learning for Source Separation
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Abstract—Whether in medical imaging, astronomy or

remote sensing, the data are increasingly complex. In

addition to the spatial dimension, the data may contain

temporal or spectral information that characterises the

different sources present in the image. The compromise

between spatial resolution and temporal/spectral resolution

is often at the expense of spatial resolution, resulting in a

potentially large mixing of sources in the same pixel/voxel.

Source separation methods must incorporate spatial in-

formation to estimate the contribution and signature of

each source in the image. We consider the particular case

where the position of the sources is approximately known

thanks to external information that may come from another

imaging modality or from a priori knowledge. We propose a

spatially constrained dictionary learning source separation

algorithm that uses e.g. high resolution segmentation map

or regions of interest defined by an expert to regularise the

source contribution estimation. The originality of the pro-

posed model is the replacement of the sparsity constraint

classically expressed in the form of an `1 penalty on the

localisation of sources by an indicator function exploiting

the external source localisation information. The model

is easily adaptable to different applications by adding

or modifying the constraints on the sources properties

in the optimisation problem. The performance of this

algorithm has been validated on synthetic and quasi-real

data, before being applied to real data previously analysed

by other methods of the literature in order to compare the
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results. To illustrate the potential of the approach, different

applications have been considered, from scintigraphic data

to astronomy or fMRI data.

Index Terms—Source separation, dictionary learning,

fMRI, scintigraphy, hyperspectral data.

I. INTRODUCTION

The issue of source separation, or unmixing, is well

known to the signal and image processing community.

It concerns a very large number of applications and can

occur under different conditions of source mixing. A

large part of the literature is devoted to blind source

separation (BSS) [1]–[3]. BSS methods allow to solve

cocktail party problems for which P signals (or images)

composed of a mixture of R sources are observed,

without any a priori on the properties of the sources.

If the number of sources involved in the mixtures is not

known a priori, then they must also be estimated [4],

[5]. Early BSS methods mainly comprised Independent

Component Analysis (ICA) and sparse decomposition

analysis. Many variants of the ICA approach have been

proposed in the literature to solve BSS problems. All

of them are based on the general principle of spatial

independence of the sources, which makes it possible to

estimate their temporal (or spectral) signatures.

For instance, in brain functional networks detection

in functional Magnetic Resonance Imaging (fMRI) data,

ICA is widely used to separate spatial sources by assum-

ing the independence of the temporal signals associated
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with each spatial source, i.e. functional network. Spatial

ICA has proven effective in [6], [7] for fMRI data, but

the main drawback of ICA approaches is the unknown

number of sources which is set arbitrarily and may lead

to a large number of nuisance sources, that must be

screened manually or by a semi-automatic method [8].

In contrast to the BSS problem, many unmixing

problems involve a dictionary of predefined sources. For

example, in hyperspectral imaging for remote sensing,

libraries of light spectra corresponding to the different

materials that may be observed in the scene are available,

so only the proportion of the different materials in

each pixel is estimated. Between these two extreme

cases, there are a large number of unmixing problems

where some information on the form or location of

the sources or the type of mixture is known. Sum-to-

one and positivity constraints on the coefficients of the

mixing matrix are classic in signal and image process-

ing. In remote sensing applications, hyperspectral data

linear unmixing is for instance carried out by methods

based on non-negative matrix factorization [9], [10]. In

recent years, sparse decomposition methods have been

widely used to solve source separation problems. The

sparsity constraint is another way to reduce the set

of solutions and can be combined with the two latter

constraints. The sparsity may concern the mixing itself,

i.e. for a given observed signal, only a few number of

sources is involved, or the decomposition of the sources

on a dictionary (wavelet, discrete cosine transform, or

custom atoms) [11]. Dictionary learning methods take

into account the spatial sparsity of the sources in the

form of `1 constraints on the mixing matrix in the

minimisation problem. Recently for fMRI application,

where sources are functional networks, sparse analysis

based on dictionary learning methods have proven to

be promising [12]–[15]. In hyperspectral imaging un-

mixing, with a library of spectra provided, Constrained-

Sparse Unmixing by variable Splitting and Augmented

Lagrangian (C-SUnSAL) [16] is a classical algorithm for

solving the optimisation problem with the sum-to-one,

positivity condition and an `1 constraint on the spatial

maps matrix.

In this paper, we are interested in the problem of

source separation in spatially structured data: 2D or

3D images that contain temporal information (fMRI,

scintigraphy) or light spectrum information (hyperspec-

tral imaging). We consider two categories of this kind

of unmixing problems. In the first one, for a given

pixel/voxel, different sources contribute to the mix in

the sense that the spatial resolution is not fine enough to

allow spatial separation of the sources. This is the case,

for example, with unmixing problems in remote sensing

[10] or fMRI applications [15], [17]. In this case, the

mixing matrix is a matrix of proportions, where for a

given pixel, the sum of the contributions of each source is

equal to 1. In the second category of unmixing problems,

the mixing is additive, the signals of the different sources

are superimposed, and their sum forms the observed

mixing signal. Decomposition of scintigraphic image

sequences into tissue images and their time-activity

curves, or unmixing of light sources in hyperspectral

data in astronomy are examples of this second category

of problems. In this case, the sum-to-one constraint is

not relevant, the coefficients of the mixing matrix are

the intensity of the contribution of each source in the

mixture. Since the observed signals are observed in the

form of images, the constraints that can be defined in the

optimisation problem should be related to the location of

the sources and not to their shape. In this context, this

article presents an unmixing method for cases where the

approximate position of the sources is available from

another imaging modality or from a priori knowledge.

We consider the case where no information on the

temporal or spectral signature of the different sources,
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or on their dependence is available. Unlike multimodal

image fusion problems, such as pansharpening [18], our

goal is not to produce a spatially and spectrally or tem-

porally well-resolved image. We rather aim at exploiting

segmentation information from a high spatial resolution

image in order to improve the unmixing of spectral or

temporal sources at a lower resolution image level. In the

case of multimodal observations, information regarding

the possible spatial location of sources is usually derived

from a high spatial resolution image that does not pro-

vide the second dimension, namely temporal or spectral

information. In some applications, such a segmentation

map is not available, but approximate spatial location

information can be provided by an expert who can define

regions of interest (ROIs) (see for example the unmixing

method for the highly realistic simulated renography

dataset in [19], [20]).

The contributions of this paper are the following:

• A generic dictionary learning method that intro-

duces a specific sparsity constraint on the spatial

localisation of sources from external knowledge.

Additional constraints on the mixing matrix (posi-

tivity and sum-to-one constraints) can be added or

removed depending on the application. In the same

way, constraints on the temporal/spectral signatures

can be added. We propose an algorithm that adapts

to any type of constraint in addition to the specific

spatial location constraint.

• An illustration of the potential of the approach, on a

variety of different applications, from scintigraphic

data to astronomy or fMRI data, with experimental

results on par with state-of-the-art algorithms in

these fields. The considered data are of very dif-

ferent natures, as well as the a priori information

available on the location of the sources. We thus

show that our algorithm is adaptable to different

types of data and different types of a priori knowl-

edge on the location of sources.

A previous work, published in [17], presented a par-

ticular version of this generic algorithm dedicated to

fMRI data unmixing where information on localisation is

provided by registering an anatomical atlas on the data.

This paper is organised as follow: section II presents

the generic observation model and the dictionary learn-

ing approach for unmixing spatially structured data based

on the spatial location constraint. To the best of our

knowledge, a model with the same spatial constraint

does not exist, and section III presents models that are

related or could be adapted to the problem presented.

The performance and adaptability of the algorithm to

different applications are illustrated on synthetic data in

section IV and on real data in section V. Comparisons

of our approach with application-specific state-of-the-

art methods (Robust Unmixing of Dynamic Sequences

Using Regions of Interest [19] and expert manual eval-

uation [21]), and a dictionary learning algorithm with

C-SUnSAL as the solution to the optimisation problem

for spatial maps, are proposed on three different applica-

tions: unmixing in scintigraphic image sequences, fMRI

and hyperspectral astronomic datacubes.

II. MODEL AND METHOD

The classical linear model used in source separation

may be written as:

Y ' UA, (1)

where Y ∈ RN×P is the observed data. In spatio-

spectral separation, N can be interpreted as the spectral

length and in spatio-temporal separation N is the length

of the temporal signals. P is the number of voxels or

pixels, depending upon the dataset. Matrix U ∈ RN×R

contains the temporal/spectral signatures where R is the

number of sources. Matrix A ∈ RR×P , usually called
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mixing or abundance matrix, codes the fraction of the R

components contributions at each voxel or pixel.

A. Constrained optimisation formulation

Given the observation model ( 1), the following min-

imisation problem:

min
A,U

1

2
‖Y −UA ‖2F (2)

does not have a unique solution because of the joint

estimation of A and U, and the ill-posedness of the

problem. In order to restrain the number of solutions, we

introduce a specific constraint on the form of matrix A

defined according to some extra information from high

resolution (HR) segmentation of sources or source loca-

tions knowledge: we know which ROIs may contribute

to a given voxel, i.e. present a non-zero proportion at

this voxel. When the total number of sources R is high,

this a priori knowledge allows to constrain the possible

solutions of the minimisation problem. Some standard

constraints on matrix A, such as positivity of the mixing

coefficient, can be added in an additional constraint term

g(A). In the same way, some constraint on matrix U can

be modelled by a generic constraint h(U). In the most

general setting, the unmixing problem is recast as:

min
A,U

1

2
‖Y −UA‖2F + IM(Ã)(A) + g(A) + h(U), (3)

where the first term is the data fidelity term and the

second term IM(Ã)(A) is the indicator function on the

set M(Ã) of matrices having a structure similar to a

given binary “structure matrix” Ã, i.e. A ∈M(Ã) if and

only if A ∈ RR×P and coefficient Ai,j = 0 if Ãi,j =

0. Ã is a binary matrix, where element (Ã)r,i = 1 if,

according to a priori knowledge about spatial localisation

of the sources, the rth region of interest could exist in the

ith voxel, and 0 otherwise. This results in IM(Ã)(A) =

∞ if at least one element of A is non-zero while it is

zero in Ã, and 0 otherwise.

Estimating jointly U and A in eq. ( 3) is a typical

problem of dictionary learning (DL). But, unlike conven-

tional DL algorithms, there is no sparsity regularisation

term in the form of an `1 penalty: it is the sources

localisation information coded in the structural term

IM(Ã)(A) which enforces the sparse decomposition of

each voxel. A classical way to solve the joint estimation

problem is to optimise alternatively the cost function

eq. ( 3) along U and A as presented in algorithm 7.

1 Initialisation of binary matrix Ã

2 Initialisation of U(0), l = 0

3 while STOPPING CRITERIA 6= TRUE do

4 Minimisation of problem ( 3) with respect to A

5 Minimisation of problem ( 3) with respect to U

6 end

7 return U(l+1),A(l+1)

Algorithm 1: Alternated optimisation scheme of

the dictionary learning algorithm to solve generic

problem ( 3).

An example of a typical problem we propose to solve

is:

min
A,U

1

2
‖Y−UA‖2F+

µσ
2
‖U‖2F+IR+(A)+IS(A)+IM(Ã)(A),

(4)

where the first term is the data fidelity term, the second

term is a Tikhonov regularisation controlled by param-

eter µσ set to 10−4 to prevent bad conditioning. The

third term is a positivity constraint where IR+(A) =∞
if at least one of the elements of A is negative, and 0

otherwise. The fourth term in eq. ( 4) codes an optional

sum-to-one constraint on each column of matrix A,

IS(A) = ∞ if at least one column of A does not

sum to one, and 0 otherwise. In this case, g(A) =

IR+(A) + IS(A) and h(U) = µσ
2 ‖U‖2F .
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B. Estimation of the temporal / spectral signatures ma-

trix U

Considering that A is fixed, problem ( 3) becomes:

min
U

1

2
‖Y −UA ‖2F + h(U). (5)

In a generic case, h(U) may be the sum of convex

constraints but not necessarily differentiable. Let h(U)

be decomposed into the addition of a convex and differ-

entiable term hd(U) and a convex but non differentiable

term hnd(U). Problem ( 5) can be rewritten as:

min
U

fU (U) + hnd(U), (6)

where fU (U) = 1
2‖Y − UA ‖2F + hd(U) is convex.

In many differentiable applications, a Tikhonov reg-

ularisation term µσ
2 ‖U‖2F is introduced in hd(U) to

improve the conditioning of problem ( 3), µσ is set to

10−4 to prevent collinearity between columns of U.

The resulting optimisation problem requires proximal

gradient methods to estimate U such as the alternating-

direction method of multipliers (ADMM) [22], projec-

tions onto convex sets (POCS) or proximal gradient

descent algorithms, e.g. Fast Iterative Soft Thresholding

Algorithm (FISTA) [23], depending on the form of the

constraints in hd(U) and hnd(U). If hnd(U) 6= 0 then

solution of problem ( 6) with proximal gradient descent

is:

In the case of FISTA algorithm, proximal operator

and gradient are not evaluated at point U (k), but at an

intermediate point w(k) = U(k) +
(
t(k−1)−1
t(k)

)
(U(k) −

U(k−1)) where expression of t(k) is given in [23] for

increasing theoretically the convergence.

C. Estimation of the abundance / mixing matrix A

Consider that U is fixed, then problem eq. ( 3) be-

comes:

min
A

1

2
‖Y −UA‖2F +IM(Ã)(A) +g(A). (7)

1 Initialisation of U(0), k = 0

2 while STOPPING CRITERIA 6= TRUE do

3 for k ← 1 to proxsteps do

4 U(k+1) = proxhnd(U
(k) − λ∇fU (U(k)))

5 k = k + 1;

6 end

7 end

8 return U(k+1)

Algorithm 2: Proximal gradient algorithm for es-

timation of U, where proxhnd is the proximal op-

erator of hnd, ∇fU corresponds to the gradient of

function fU and λ is equal to the inverse of the

Lipschitz constant of ∇fU .

Note that if this function is separable according to the

pixels/voxels i ∈ {1,. . . , P}, it leads to:

min
ai

1

2
‖yi −Uai‖2F+IM(ãi)(ai) +g(ai), (8)

where ai is a column vector from the matrix A. In that

case, the minimisation according A can be parallelised

w.r.t. the pixels to decrease the computation time. The

set of all the vectors with a structure similar to ai

is given by ãi, where ãi is a column of Ã. In a

generic case, g(A) may be the sum of convex constraints

but not necessarily differentiable. Let the constraints

g(A) + IM(Ã)(A) be decomposed into the addition of

a convex and differentiable term gd(A) and a convex

but non differentiable term gnd(A) that gathers non

differentiable terms in g(A) and IM(Ã)(A) which is

also non differentiable. Problem ( 7) can be rewritten as:

min
A

fA(A) + gnd(A), (9)

where fA(A) = 1
2‖Y −UA ‖2F + gd(A).

Minimisation of the objective function given by

eq. ( 9) belongs to the class of problems to which the

proximal gradient methods can be applied. As for the

estimation of U, different proximal gradient algorithm
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can be used. ADMM might be preferred when minimi-

sation problem ( 9) is not separable w.r.t. the voxels,

for example with total variation constraint on the spatial

abundance of each source. For the proposed applications

in this paper, only voxel-separable constraints on A

are used, then the FISTA algorithm is implemented for

estimating ai for i ∈ {1,. . . , P}.

Convergence towards a global minimum of DL algo-

rithms cannot be proven. In practice, a good initialisation

of A and the presence of pure pixels (as in remote

sensing applications) in each region guarantee a good

joint estimation of U and A. Previous work [17] has

demonstrated the importance of well-defining the spatial

constraint on abundance IM(Ã)(A) to ensure an accept-

able estimate of abundances and spectral or temporal

signatures.

III. RELATED WORKS

To our knowledge, the optimisation problem eq. ( 4)

is not solved in the state of the art with the spatial

constraint IM(Ã)(A). The closest form to it consists in

replacing the indicator on the support of matrix A by

a sparsity constraint of type `1. Without the sum-to-one

and positivity constraints, we would then have a classical

problem of online dictionary learning where coefficients

of the mixing matrix A and dictionary update are

optimised alternatively until convergence to an accept-

able solution. In presence of sum-to-one and positivity

constraints, estimation of matrix A must be adapted.

The constrained sparse unmixing by variable splitting

and augmented Lagrangian method (C-SUnSAL) [16]

is a possible candidate algorithm, widely used in the

community of hyperspectral imaging, that contains the

constraints of sum-to-one and positivity and an `1 con-

straint on the abundance map matrix. The optimisation

problem then takes the following form, which is close

to the problem we propose to solve:

min
A,U

1

2
‖Y−UA‖2F+

µσ
2
‖U‖2F+IR+(A)+IS(A)+‖A‖1,

(10)

where IR+(A) =∞ if at least one of the elements of A

is negative, and 0 otherwise. The fourth term in eq. ( 4)

codes an optional sum-to-one constraint on each column

of matrix A, IS(A) = ∞ if at least one column of A

does not sum to one, and 0 otherwise. Problem ( 10) can

be rewritten as:

min
A,U

1

2
‖Y −UA‖2F + h(U) + g(A) +‖A‖1, (11)

and it can be used to compare to results of our optimi-

sation problem ( 4) where only the sparsity constraint

on A changes. In the alternate optimisation scheme,

the FISTA estimation of mixing matrix A is replaced

by C-SUnSAL, while the estimation of U remains the

same. Here a simple ridge regression is necessary since

h(U) = µσ
2 ‖U‖2F is convex. For convenience purpose,

let us call this algorithm DL-C-SUnSAL (Dictionary

Learning-C-SUnSAL). As mentioned in the original

paper [16], sum-to-one or positivity constraints can be

dropped if necessary in the same way than our algorithm,

which makes it an ideal candidate to compare perfor-

mances. In the following, we provide comparisons with

this modified version of the optimisation problem solved

by DL-C-SUnSAL (the code distributed by the authors

of C-SUnSAL, with default parameters was used).

In the specific application of scintigraphic imagery, the

robust unmixing of dynamic sequences using regions

of interest (RUDUR) [19] is another unmixing method

based on an objective function minimisation that pro-

motes non-null abundances inside regions of interest

(ROIs) while relaxing the model outside ROIs. The

considered optimisation problem includes the same data

fidelity term, the Tikhonov regularisation on temporal

signature, but no sum-to-one constraint. The integration

of ROIs knowledge is formulated as a soft constraint
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based on the distance to the ROIs that replace our regu-

larisation IM(Ã)(A). This method has been compared

in [19] to different ROI-based algorithms commonly

used in scintigraphy such as FAMIS [20], FAROI [5],

FPLS [24], and another method based on variational

Bayesian approach [25]. Various results in [19] show that

RUDUR performs better at estimating spatial maps and

temporal signals than the other ROI-based algorithms. In

scintigraphic imagery, our method will therefore only be

compared to RUDUR by setting g(A) = IR+(A) and

h(U) = µσ
2 ‖U‖2F + IR+(U).

IV. EVALUATION ON SYNTHETIC DATASETS

In this section, we evaluate the unmixing perfor-

mance of our algorithm on two different synthetic

datasets. Dataset I was created to show unmixing of

signals/spectra taking into account different situations

that could occur in real applications such as fMRI or

astronomical data unmixing. The performance of the

proposed algorithm is compared to the adaptation of DL-

C-SUnSAL for dataset I. Dataset II is an example of

realistic synthetic data in scintigraphy used in [19], for

which the authors propose an unmixing method based

on prior knowledge of the location of the regions of

interest (RUDUR). The performance of our algorithm is

compared to RUDUR and DL-C-SUnSAL for dataset II.

A. Dataset I

1) Data description: Unmixing algorithms are often

sensitive to the assumption of pure pixels (i.e. each

source or region has an abundance of 1 in at least

one pixel of the image). To challenge this hypothesis,

synthetic temporal data were simulated. Seven temporal

signatures are mixed in a 120×120 pixels image. Ground

truth signals and locations for the different regions are

presented in Fig. 1. In Fig. 1a, we see a region 6 superim-

posed on two regions (2 and 5). Two other regions (3 and

4), partially covering each other, are included. Region 7

and region 1 are comprised of pixels not belonging to

any other region. Data was generated for different SNRs

ranging from -20dB to 20dB with a zero-mean Gaussian

white noise.

0 20 40 60 80 100
0

20

40

60

80

100 1

3 4

2 56

7

(a) Localisation map for the 7

different sources. Region 6 is a

difficult region, which overlaps

region 2 and region 5. Region

7 and 1 do not intersect any

other region. Regions 3 and 4

are partially overlapping.

−1

1
reg1

−1

1

reg2

−1

1
reg3

−1

1
reg4

−1

1
reg5

−1

1
reg6

0 200 400

−1

1
reg7

(b) Nature of signals

Fig. 1: Localisation map and temporal signatures used

to build synthetic data.

2) Algorithm details: We consider here the unmixing

problem ( 4). In that case we note:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = 0,

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+ IS(A)+ IM(Ã)(A).

Since hnd(U) = 0, the minimisation problem w.r.t. U

admits a simple solution: the ridge estimation. Minimi-

sation of the objective function given in eq. ( 9) is

more complex since the proximal operator of gnd(A) =

IR+(A)+IS(A)+IM(Ã)(A) = IM(Ã)∩S∩R+(A) must
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be computed. This function is separable according to the

pixels and computation can be parallelised. For a given

pixel i, the set M(ãi) ∩ S ∩ R+ is convex since the

intersection of any collection of convex sets is convex,

and IM(ãi)∩S∩R+(ai) is convex but non differentiable.

Computing the proximal operator of IM(ãi)∩S∩R+(ai)

will require the iterative algorithm projection onto con-

vex sets (POCS) as explained in the following. Details

of the proposed dictionary learning algorithm are given

in Algorithm 3. For solving the minimisation problem

w.r.t. A, FISTA was preferred for its rapid convergence:

its implementation for the ith pixel is given in lines 7 to

13 in Algorithm 3

In Algorithm 3, ∇fA(ωi) is the gradient of fA(ωi),

given by UT (Uωi − yi). The step size λ is set equal

to the inverse of the Lipschitz constant of ∇fA(ωi) i.e.

1/L, where L = ‖UTU‖F . The auxiliary variable

t(k+1) helps in the fast convergence of FISTA, ωi

calculates intermediate values based on a special linear

combination of the last two points bki and b
(k−1)
i ,

and prox refers to the proximal operator [23]. In our

case, the proximal operator is just the projection of

ω
(k)
i − λ∇fA(ω(k)

i ) in the positive orthant, with the

vector normalised to sum-to-one. This projection also

forces the elements of abundance matrix (A)r,i to be

non-zero only at positions where the region of interest r

projects on pixel/voxel i (IM(ã) constraint). The proxi-

mal operator of the function gnd is:

proxgnd(y) = argmin
x∈M(ã)∩S+

‖x− y‖2 = PM(ã)∩S+(y),

(12)

where P is the projection operator on set M(ã) ∩ S+.

The orthogonal projection of a vector y ∈ RR on

M(ã) ∩ S+ is obtained using the implementation of

the projection onto convex sets (POCS) method [26].

POCS algorithm alternates projection onto the simplex

S+ = R+ ∩ S and projection onto the set M(ã) of

1 Initialisation of A(0), l = 0

2 while STOPPING CRITERIA 6= TRUE do

3 Minimisation problem w.r.t U :

4 U(l+1) = YA(l)T (A(l)A(l)T + µσIR)
−1

5 Parallel minimisation w.r.t. the columns ai of

A :

6 for ai of A do

7 ω
(1)
i = a

(l)
i ,b

(0)
i = a

(l)
i

8 for k ← 1 to proxsteps do

9 b
(k)
i = proxgnd(ω

(k)
i − λ∇fA(ω

(k)
i ))

10 t(k+1) =
1+

√
1+4(t(k))

2

2

11 ω
(k+1)
i =

b
(k)
i +

(
t(k)−1
t(k+1)

)
(b

(k)
i − b

(k−1)
i )

12 end

13 a
(l+1)
i = b

(proxsteps)
i

14 end

15 l = l + 1;

16 end

17 return A, U

Algorithm 3: Alternate optimisation algorithm to

estimate A and U that combines three nested

iterative algorithms. At each iteration l, the A and

U matrices are updated. The estimation of A is

pixel-parallelised, i.e. for a given pixel i, the index

k refers to the iterations of the FISTA algorithm.

In each iteration k, the calculation of the proxgnd

requires an iterative POCS algorithm detailed in

II-C.

vectors having the same structure as ãi. Only a few

iterations are required for convergence of the POCS

algorithm.

The ground truth is given by the localisation map

in Fig. 1a. To initialise A(0), each region was dilated

with a 7 pixels square structuring element, and then

the proportion for each region over each pixel was
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calculated, respecting the sum-to-one condition. The

dilatation was done to introduce the uncertainty in the

localisation of regions; as the localisation is seldom

precise when dealing with real data. The algorithm used

for unmixing is given in Algorithm 3. 400 steps were

adopted for FISTA, in combination with 50 steps of

alternate optimisation. The weighting parameter in the

Tikhonov regularisation was set to 10−4 as no more

smoothing was required. A standard normalisation was

applied to the data before processing: yi = yi−µi
σi

, where

µi is the mean of the temporal signal yi of the ith pixel

and σi is the standard deviation of the timecourse of the

ith pixel.

3) Results and discussion: We observe that the time-

courses and the abundances for the seven regions are

well estimated even if the abundances are not perfectly

initialised. The mean squared errors (MSE) for the

estimation of the timecourses are displayed in table I,

The MSE in estimating the abundances are given in

table III. From table I and table III we see that for most

of the regions the errors decrease as SNR increases.

The spectral angle distances (SAD)(formula in Appendix

B) given in table II follow a similar trend, proving the

effectiveness of the unmixing method. In all the tables,

it can be observed that the proposed method due to

the unmixing performed solely in the interior of regions

has a better performance than DL-C-SUnSAL. DL-C-

SUnSAL requires time/spectral signals initialisation; this

information is provided by ridge estimation using our

initialisation of abundance maps that exploits a priori

knowledge on the spatial localisation of sources. The

estimated timecourses for each region were normalised

by standard deviation before calculating the SAD and

MSE. We also generated synthetic data, where region

6 was completely included in region 5. In this case,

due to noise, it was impossible to correctly estimate

the timecourse of the region included in the other (and

therefore its abundance).

Method -20dB -10dB 0dB 10dB 20dB

Proposed 9.5e-02 1.0e-02 1.1e-03 1.1e-04 1.1e-05
reg1

DL-C-SUnSAL 3.87e-01 6.91e-02 9.54e-03 1.23e-03 1.83e-04

Proposed 1.3e-01 1.3e-02 1.2e-03 1.2e-04 1.3e-05
reg2

DL-C-SUnSAL 6.65e-01 1.40e-01 1.29e-02 1.85e-03 1.66e-03

Proposed 2.2e-01 2.1e-02 2.4e-03 3.2e-03 4.0e-03
reg3

DL-C-SUnSAL 7.90e-01 1.04e-01 1.25e-02 5.58e-03 4.56e-03

Proposed 2.3e-01 2.2e-02 2.5e-03 3.2e-03 4.0e-03
reg4

DL-C-SUnSAL 7.98e-01 1.06e-01 1.25e-02 4.66e-03 3.81e-03

Proposed 1.3e-01 1.3e-02 1.3e-03 1.3e-04 1.3e-05
reg5

DL-C-SUnSAL 6.50e-01 1.29e-01 1.24e-02 1.81e-03 1.63e-03

Proposed 1.4e+00 3.4e-01 4.2e-02 4.3e-03 6.3e-04
reg6

DL-C-SUnSAL 1.88e+00 1.30e+00 7.98e-02 5.75e-03 3.97e-03

Proposed 9.6e-03 9.6e-04 9.6e-05 9.6e-06 1.0e-06
reg7

DL-C-SUnSAL 1.69e-01 5.03e-02 7.23e-03 9.40 e-04 1.04e-04

TABLE I: Region wise mean squared errors for U for

different SNRs. Best estimations for different cases have

been highlighted in bold.

Fig. 2 illustrates the convergence of the algorithm for

different SNRs. Fig. 2 plots ‖Y−UA‖F
‖η‖F , as a function of

the number of steps in the alternate minimisation and η

denotes the white Gaussian noise present in the dataset

at different SNRs. In the very first steps of the alternate

optimisation, we see that the curves decrease sharply

and ultimately settle around a particular value when

convergence is achieved. In Fig. 2 the -20dB and -10dB

curves converge to values less than 1 since some noise

remains in the estimated timecourses. The 0th iteration

shows the ratio ‖Y−UA‖F
‖η‖F calculated with the initial

enlarged A and U, estimated with ridge regression.

B. Dataset II

In an effort to objectively evaluate the performances

of our approach, we propose to test and compare our

method on a more realistic synthetic data set of scintig-

raphy images created for the evaluation of the perfor-
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Method -20dB -10dB 0dB 10dB 20dB

reg1
Proposed 1.8e+01 5.8e+00 1.9e+00 5.9e-01 1.9e-01

DL-C-SUnSAL 3.62e+01 1.51e+01 5.60e+00 2.01e+00 7.76e-01

reg2
Proposed 2.0e+01 6.5e+00 2.0e+00 6.4e-01 2.0e-01

DL-C-SUnSAL 4.81e+01 2.16e+01 6.50e+00 2.46e+00 2.34e+00

reg3
Proposed 2.7e+01 8.3e+00 2.8e+00 3.2e+00 3.6e+00

DL-C-SUnSAL 5.28e+01 1.85e+01 6.41e+00 4.28e+00 3.87e+00

reg4
Proposed 2.7e+01 8.6e+00 2.9e+00 3.2e+00 3.6e+00

DL-C-SUnSAL 5.31e+01 1.87e+01 6.40e+00 3.91e+00 3.54e+00

reg5
Proposed 2.0e+01 6.5e+00 2.1e+00 6.5e-01 2.1e-01

DL-C-SUnSAL 4.76e+01 2.07e+01 6.38e+00 2.44e+00 2.32e+00

reg6
Proposed 7.1e+01 3.4e+01 1.2e+01 3.7e+00 1.4e+00

DL-C-SUnSAL 8.66e+01 6.94e+01 1.62e+01 4.35e+00 3.61e+00

reg7
Proposed 5.6e+00 1.8e+00 5.6e-01 1.8e-01 5.7e-02

DL-C-SUnSAL 2.37e+01 1.29e+01 4.87e+00 1.76e+00 5.85e-01

TABLE II: Region wise spectral angle distances (in

degrees) for U for different SNRs. Best estimations for

different cases have been highlighted in bold.

Method -20dB -10dB 0dB 10dB 20dB

reg1
Proposed 5.8e-04 6.1e-05 4.7e-06 3.2e-07 2.8e-08

DL-C-SUnSAL 4.74e-02 2.05e-02 3.70e-03 5.99e-04 2.62e-04

reg2
Proposed 2.2e-03 2.1e-04 3.8e-05 1.0e-04 1.3e-04

DL-C-SUnSAL 4.84e-02 2.40e-02 4.52e-03 7.79e-04 4.83e-04

reg3
Proposed 3.2e-03 3.4e-04 4.9e-05 5.6e-05 7.0e-05

DL-C-SUnSAL 3.34e-02 1.57e-02 3.38e-03 1.72e-03 1.51e-03

reg4
Proposed 3.4e-03 3.8e-04 5.4e-05 5.9e-05 7.1e-05

DL-C-SUnSAL 3.29e-02 1.54e-02 3.29e-03 1.61e-03 1.40e-03

reg5
Proposed 2.1e-03 2.0e-04 4.6e-05 1.1e-04 1.3e-04

DL-C-SUnSAL 4.83e-02 2.39e-02 4.48e-03 7.67e-04 4.64e-04

reg6
Proposed 9.2e-04 8.9e-05 7.0e-05 2.1e-04 2.6e-04

DL-C-SUnSAL 8.21e-03 2.91e-03 1.06e-03 2.72e-04 1.70e-04

reg7
Proposed 5.4e-03 5.4e-04 6.3e-05 9.4e-05 1.2e-04

DL-C-SUnSAL 2.75e-01 1.06e-01 2.27e-02 2.93e-03 4.68e-04

TABLE III: Region wise mean squared errors for A for

different SNRs. Best estimations for different cases have

been highlighted in bold.
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Fig. 2: Convergence curves plotted for different values

of SNR for Dataset I. The curves represent ‖Y−UA‖F
‖η‖F

plotted against the number of iterations.

mances of the state-of-the-art RUDUR method [19]. The

unmixing model has been adapted as explained at the

end of section III. We have reused their dataset and

the RUDUR code with the default parameters, as it is

distributed by the authors [19].

1) Data description: This second dataset provides a

first test case in which the method is confronted with

a real application, on physical model-based simulations

of scintigraphic images, with ground truth. It enables

a comparison with a recent reference method in the

field [19]. Region of interest-based unmixing methods

are common in scintigraphy [5], [20], [27]. All standard

methods are source separation methods. They estimate

the time activity curves (TACs) and emissions of a tracer

(a radioactive element) in the different body organs. A

dataset of scintigraphic data has been made available at

[28]. This dataset is based on a Monte Carlo simula-

tion of scintillation camera imaging [29]. The datacube

comprises images of size 21 × 26, with N = 60. The

dataset, containing R = 3 regions, is shown in Fig. 3. In

Fig. 3 the first row (a) shows the ground truths for the

spatial maps. In the second row (b) the ROI initialisation
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is presented. This initialisation is not the same as in [19]

as our method needs strictly greater initial ROIs than the

regions which need to be unmixed.

2) Algorithm details: RUDUR algorithm has a soft

constraint on the source locations which allows the

regions to unmix data even if the ROIs selected lie in

the interior of the actual locations of the regions. In our

model, we use a hard constraint on the locations of the

regions, through the regularisation term IM(Ã), so initial

ROIs should be strictly enclosing the regions for which

we want to estimate the timecourses. To achieve this,

the binary masks of ROIs used in [19] have been dilated

with a 5 pixels square structuring element.

We should note that this application corresponds to an

additive case of unmixing, so the sum-to-one constraint

was dropped off in our algorithm as well as for DL-C-

SUnSAL. Further, as scintigraphy timecourses should be

strictly positive (representing the emission of the tracer),

eq. ( 3) was changed to:

min
A,U

1

2
‖Y−UA‖2F+

µσ
2
‖U‖2F+IR+(A)+IM(Ã)(A)+IR+(U).

In this problem we note:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = IR+(U),

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+ IM(Ã)(A).

Due to the addition of IR+(U), the constraint of

positivity on the TACs, the ridge estimation step given in

step 4 of Algorithm 3 to solve for U had to be replaced

by FISTA steps to estimate U in each alternate step.

The corresponding proximal operator must be evaluated

for hnd(U) = IR+(U) that is a simple orthogonal

projection on the positive orthant. The initialisation of

the algorithm was done with the help of ridge estimation

using the initial dilated ROIs.

As the sum-to-one condition is dropped, the proximal

operator of the function gnd changes to:

proxgnd(y) = argmin
x∈M(ã)∩R+

‖x− y‖2 = PR+∩M(ã)(y),

(13)

where P is now the projection operator on the set R+ ∩
M(ã) which do not need anymore POCS algorithm to

be evaluated.

3) Results and discussion: We ran our algorithm with

500 steps of alternate optimisation. At each iteration l,

convergence is monitored by the optimisation gain κl

defined as:

κl =
‖Y −U(l)A(l)‖F − ‖Y −U(l−1)A(l−1)‖F

‖Y −U(l−1)A(l−1)‖F
,

(14)

which decreases to 10−15 at the 500th alternate step.

Estimated temporal signals and spatial maps were nor-

malised by the criteria given in [19] for comparison

with the provided ground truth. The normalised mean

squared error (NMSE) and normalised mean absolute

error (NMAE) for the estimated spatial maps and time

activity curves were calculated. In addition, we also

provide spectral angle distances (SAD) for the estimated

time activity curves. The formulae for NMAE, NMSE

and SAD are given in Appendix B. The quantitative

results on the synthetic scintigraphy data are given in

table IV. We observe that the signals estimated by our

method are close to those obtained by RUDUR, and

DL-C-SUnSAL is slightly better for the first two ROIs

but fails to estimate the TAC for ROI3. The NMSE

and NMAE for spatial maps calculated using the two

methods are given in table V. The errors on the spatial

maps were calculated by restricting the pixels of the

estimated maps to the initial ROIs. Errors are generally

lower in the case of DL-C-SUnSAL for the estimated

spatial maps and globally well controlled for RUDUR.
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ROI1 ROI2 ROI3

NMSE Proposed 0.049 0.046 0.011

NMSE RUDUR 0.031 0.047 0.009

NMSE DL-C-SUnSAL 0.006 0.025 0.089

NMAE Proposed 0.173 0.142 0.091

NMAE RUDUR 0.129 0.142 0.085

NMAE DL-C-SUnSAL 0.070 0.129 0.198

SAD Proposed 12.181 12.049 6.128

SAD RUDUR 9.561 12.362 5.373

SAD DL-C-SUnSAL 4.180 7.150 17.276

TABLE IV: Errors (NMAE and NMSE) and spec-

tral angle distances (in degrees) between the estimated

timecourses and the ground truth for the scintigraphy

dataset. Best estimations for different cases have been

highlighted in bold.

ROI1 ROI2 ROI3

NMSE Proposed 0.189 0.084 0.139

NMSE RUDUR 0.156 0.069 0.069

NMSE DL-C-SUnSAL 0.036 0.037 0.341

NMAE Proposed 0.433 0.304 0.419

NMAE RUDUR 0.351 0.267 0.343

NMAE DL-C-SUnSAL 0.158 0.196 0.654

TABLE V: Errors between the estimated spatial maps

for the different regions and the ground truth. The errors

given here were calculated by restricting the pixels of

the estimated spatial maps to the initial ROIs. Best

estimations for different cases have been highlighted in

bold.

The spatial maps unmixed by our method are pre-

sented in Fig. 3 (c) and those estimated by RUDUR and

DL-C-SUnSAL are displayed in Fig. 3 (d) and Fig. 3 (e)

respectively. Visually the maps estimated by RUDUR

and the proposed method are very similar in the interior

of ROIs although the errors are lower in the case of

RUDUR. The pixels outside the ROIs were not treated

by the algorithm proposed in this work, so they were

not taken into account to evaluate performances. The

last row(f) shows the TACs estimated by the proposed

method (in blue). We observe in Fig. 3 that our solution

is near the target solution (in dashed black) for all the

sources and is close to the solution provided by RUDUR.

For ROI3, DL-C-SUnSAL suffers from the lack of ROI-

based constraint and is more sensitive to the noise for

TAC estimation.

V. APPLICATION ON SEMI-REAL AND REAL DATA

In this section, we discuss the application of our

algorithm to sources unmixing of (semi-real) resting state

(rs) 3D fMRI data and on a real dataset of hyperspectral

astronomic images. In these two applications, in addition

to the 3D + time or hyperspectral data, a high resolution

segmentation map is available as a standard, with a

registration on the low resolution images containing the

sources to be separated.

A. Semi real rs-fMRI dataset

Resting state functional Magnetic Resonance Imaging

(rs-fMRI) has been widely used for studying brain func-

tional connectivity [30]. Rs-fMRI allows the observation

of changes in cerebral activity by analysing the blood-

oxygen-level-dependent (BOLD) signal [31]. At rest,

only spontaneous activity is measured, and a set of

anatomical regions with the same fluctuations are consid-

ered part of a common network. We apply the algorithm

on a single subject rs-fMRI. The motivation to work

on single subject has been detailed in [17]. Extended

analysis of this particular example is given here, with

regard to the pure pixel hypothesis which is not verified

for all sources here. The benefit of integrating a high

resolution (HR) anatomical atlas in the single-subject

case has also been demonstrated in this previous work.
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Fig. 3: Scintigraphic data. (a) Ground truth for spatial

maps, (b) Initial ROIs , (c) Spatial maps estimated by

the proposed algorithm, (d) spatial maps estimated by

RUDUR, (e) spatial maps estimated by DL-C-SUnSAL

(f) TACs estimated by RUDUR, DL-C-SUnSAL and our

method.

In order to test the proposed unmixing method, we use

data acquired in a preclinical study with an Alzheimer

mouse model; the studies on this data are given in [32],

[33]. The data consist of a 3D+t rs-fMRI and a 3D

anatomical image registered to the rs-fMRI image. The

anatomical image has a dimension of 256×256×34 and

0.08299×0.07812×0.4 mm resolution. Functional im-

ages have a spatio-temporal dimension of 147×87×27×
500 with 0.1445 × 0.2299 × 0.5 mm spatial resolution

and 2s for the temporal resolution. The high resolution

(HR) segmentation map comes from the mouse Allen

Brain Atlas (ABA) [34], shown in Fig. 4. This very

HR atlas provides a 3D MRI volume (template) and a

structural annotation volume, both at 25× 25× 25 µm

resolution with 228×160×264 voxels. The annotations

identify more than 600 different anatomical structures in

the mouse brain.

Fig. 4: Rs-fMRI data unmixing. 3D representation of

the segmentation map associated with the Allen Mouse

Brain Atlas [34]. Each colour represents a label associ-

ated with an anatomical region.

1) Validation dataset: A validation dataset is created

by introducing a set of synthetic temporal signatures in

seven small regions of the real Alzheimer mice dataset.

The seven regions, labelled ACAd1, ACAd5, ACAd6a,

ACAv1, ACAv5, ORBl1 and PL1, have been arbitrarily

chosen in the prefrontal cortex. A first synthetic signal

is obtained by averaging the real signals of the regions

ACAd1 and ACAd5, which were already highly corre-

lated in the real data. This signal is then modified to

create signals with arbitrary high correlation or anti-

correlation for the regions ACAd1, ACAd5, ACAd6a,

ACAv1, ACAv5, ORBl1 and PL1 (see details on these

signals in [17]). These correlations do not have a physical

significance, they are used as ground truth for evaluation

of the proposed algorithm performances [17].

The classical fMRI preprocessing pipeline of slice

timing and co-registration is applied on the rs-fMRI
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dataset. Also, the confounding signals are regressed

before analysing the data. The next step consists in

registering the spatially well-resolved ABA template

to the artificially augmented anatomical image (which

is already perfectly aligned with the rs-fMRI data).

The registration of the ABA mouse template to the

anatomical images provides the deformation field that

is applied to the HR segmentation map to transport

the different labelled regions on the augmented rs-fMRI

data. The spatial resolution of rs-fMRI data is augmented

by subdividing each original voxel into 3 × 6 × 2 high

resolution voxels. The registration of the anatomical

image to the augmented rs-fMRI leads to an increase

in its own resolution.

Synthetic signals are introduced in the standardised

artificially augmented fMRI data, which are then reduced

to the initial low resolution. These synthetic signals are

thus mixed with the real signals in the voxels containing

a portion of the seven selected regions. Since the atlas

has a much higher spatial resolution than the fMRI or

structural MRI data (up to a factor of 20 in one of

the dimensions), the temporal signatures of the different

anatomical regions are highly mixed within each low

resolution fMRI voxel. Let us note that the pure pixel

assumption is not verified in the regions where the sig-

nals were added. The minimum and maximum number

of overlapping regions on the voxels of each region is

given in table VI.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1

Min 4 2 4 4 6 4 2

Max 9 12 18 12 17 10 10

TABLE VI: Minimum and maximum number of regions

overlapping on the voxels for fMRI regions where sig-

nals were added.

2) Algorithm details: The unmixing problem corre-

sponds to the formulation given in eq. ( 4). Finally, DL

algorithm detailed in Algorithm 3 is performed at the

(low) resolution of the initial fMRI data Y ∈ RN×P ,

where N = 490 temporal samples and P = 21024 voxels

after extracting the brain. The initial abundance matrix

A(0) ∈ RR×P is constructed as follows. Let’s say that

each voxel i ∈ {1,. . . , P} was subdivided into J high

resolution voxels during the artificial augmentation step.

For each voxel i of Y and all regions r ∈ {1, . . . , R},
the element (A(0))r,i will contain the proportion of high

resolution voxels in voxel i, occupied by region r. If

region r is not transported to the low-resolution voxel i

then (A(0))r,i = 0. Matrix Ã which supports the spatial

constraint IM(Ã)(A) in eq. ( 3) is defined as: (Ã)r,i = 1

when (A(0))r,i > 0 and 0 elsewhere.

3) Results and discussion: The proposed DL method

is applied to the validation data set. Empirically, the

algorithm converges to an acceptable solution for A

and U after 500 iterations, see Fig. 5, corresponding

to a gain on the optimisation κl < 10−3 (eq. ( 14)).

For the estimation of A, the FISTA algorithm requires

a stopping criterion or a maximum number of itera-

tions. In our implementation, FISTA is stopped when

‖a(k−1)i − a
(k)
i ‖2 < 10−8 or k > 100. DL-C-

SUnSAL is not compared to the proposed approach as

in section IV-A, the results proved that proposed method

has a better performance than DL-C-SUnSAL for the

cases which could occur in fMRI datasets but with much

more significant overlaps for the ROIs. Additionally, DL-

C-SUnSAL and RUDUR do not respect the boundaries

of ROIs, which is important in this case. Moreover,

the optimisation problem of RUDUR has a positivity

constraint on the timecourses and cannot be used here.

The mean squared error (MSE) of the estimated time-

courses are given in table VII. Despite the strong mixing

in the voxels of the seven regions, our algorithm pro-
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last iterations.

ACAd1 ACAd5 ACAd6a ACAv1 ACAv5 PL1 ORBl1

MSE 0.0887 0.0578 0.0341 0.0292 0.0221 0.0266 0.0398

TABLE VII: Errors (NMAE and NMSE) and spec-

tral angle distances (in degrees) between the estimated

timecourses and the ground truth for the scintigraphy

dataset. Best estimations for different cases have been

highlighted in bold.

vides a very good estimate of the synthetic timecourses

introduced in the data. In neurosciences applications,

these timecourses are then used to build functional brain

networks.

B. Hyperspectral astronomic data

In order to confront our algorithm with an unmixing

problem on real data, we finally consider the problem

of unmixing sources in hyperspectral astronomic data.

Some datasets in this domain comprise of hyperspectral

datacubes and an external information on the spatial

location of the sources. We studied datacubes from

the MUSE instrument, the Multi Unit Spectroscopic

Explorer [35], installed at the Very Large Telescope,

which produces hyperspectral observations of the deep

sky. In these hyperspectral images, we can observe

hundreds or even thousands of galaxies. Depending on

their age, chemical composition, type, distance, etc,

these galaxies have different spectra. These spectra may

contain emission lines, continuous components, etc. One

of the main objectives of MUSE data analysis is the

detection of very distant galaxies, which therefore emit

very low light flux. Spectrum of distant galaxies consists

of a single emission line, the Lyman-α emission line,

which is a marker of the strong presence of hydrogen

in the galaxy. They are difficult to detect due to their

distance and their very faint intensity compared to closer

galaxies, and a strong noise affects the data. Moreover, if

two galaxies are aligned in the direction of observation,

their spectra will blend inside pixels of MUSE images.

Recently two articles [21], [36] were published around

a MUSE dataset called Ultra Deep Field (UDF) which

corresponds to an area of the sky previously observed

by the Hubble Space Telescope (HST). The HST ob-

servation is a spatially well-resolved image, of spatial

resolution 0.1×0.1 arcsec, for which there is a segmen-

tation map presented in [37]. Due to the difference in

resolution of the MUSE data, which is only 0.7 × 0.7

arcsec, two distinct sources in the HST image, may

overlap in the MUSE data creating a mix in the spectra.

In [21], [36], the information provided in the Rafelski

catalogue is exploited to perform the deblending and

prove that MUSE, despite its lower spatial resolution,

allows, thanks to the spectral information, to unmix two

spatially close or even superimposed sources. We have

selected the same portion of the image that is presented

in figure 21 of [21] where the objects identified by

ID#4451, ID#4460 and ID#4465 in [37] are spatially

superimposed in the MUSE observation. This gives a

25 × 25 pixels image with spectra composed of 3681

samples from 4750 to 9350 Angström (1 Ang = 0.1 nm).
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Fig. 6: UDF Hyperspectral astronomic data. On top,

from left to right, MUSE reconstructed white light

image, HST Rafelski segmentation map and narrowband

image centered on λ = 6242.5 Ang (position of the

emission line in estimated spectrum of source ID#4451).

The central Rafelski source denoted by red crosshair is

ID#4451. Bottom, from left to right: estimated spec-

trum by the proposed method and its comparison to

DL-C-SUnSAL for source ID#4451 over the whole

wavelength range and zoom on the Lyα emission line

estimated at λ = 6242.5.

A total of 9 galaxies are present in this field of view, with

three of them that are spatially close in the HST seg-

mentation map represented at the middle of the first row

in Fig. 6. The source ID#4465 is brighter than galaxies

ID#4451 and ID#4460. Its contribution is visible on the

white light image, obtained by averaging the datacube

with respect to the wavelength axis. A visible source on

the white light image indicates that its spectrum contains

a continuous component plus, possibly, some emission

lines. Contribution of source ID#4451 is embedded in

source ID#4465’s one. The objective of this section is to

show that knowing the spatial location of such a blended

source provides enough information to unmix spectra of

the different superimposed sources with our algorithm.

For defining the spatial constraint IM(Ã) required by

our model, the HST segmentation map provided by [37]

is used. This map is perfectly registered on the MUSE

data. Then by degrading the spatial resolution from 0.1

arcsec to 0.7 arcsec, we obtain binary masks for all the

objects present in the field. For the three central sources,

the obtained binary masks are shown on the first row

of Fig. 7. Mixing of the galaxy spectra corresponds to

an additive mixing, hence the sum-to-one constraint is

dropped, and we note:

fU(U) =
1

2
‖Y −UA‖2F +

µσ
2
‖U‖2F ,

hnd(U) = 0,

fA(A) =
1

2
‖Y −UA‖2F ,

gnd(A) = IR+(A)+ IM(Ã)(A).

One hundred alternated optimisation steps allow to reach

a gain eq. ( 14) equal to 10−10. It should be noted that the

background is considered here as a source, its mask is

available in the segmentation map and it is processed

in the same way as for the galaxies, to degrade its

resolution to the resolution of the MUSE data. The DL-

C-SUnSAL algorithm was tested on the dataset with

the same initialisation and provided a much noisier

spectrum. Even-though similar conclusions can be drawn

for the Lyα emission line in the estimated spectrum, its

presence is not distinguishable from the other emission

lines, especially at the end of the spectrum. The absence

of a hard spatial constraint in DL-C-SUnSAL resulted in

larger estimated spatial maps, and this can be observed

in Fig. 7. The failure of DL-C-SUnSAL is due to the

presence of a stronger noise at the end of the spectrum.

It is impossible to compare quantitatively the results

obtained with a ground truth, since no such information

exists for the MUSE data. However, same conclusions as

in [21] can be drawn about the spectrum estimated by our

algorithm for source #4451: at wavelength λ = 6242.5
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Fig. 7: Hyperspectral astronomic data. Top row, from

left to right, binary mask of sources ID#4451, ID#4460

and ID#4465. Middle row, from left to right, estimated

abundance map of sources ID#4451, ID#4460 and

ID#4465 by the proposed method. Bottom row, from left

to right, estimated abundance maps of sources ID#4451,

ID#4460 and ID#4465 by DL-C-SUnSAL method.

Ang, there is an emission line corresponding to object

#4451 of Rafelski’s catalogue. This emission line has

the characteristics of the Lyman-α line (Lyα), namely an

asymmetric profile as illustrated in Fig. 6. These results

are very similar to the ones presented in Figure 21 in [21]

that is reproduced in Fig. 8 by courtesy of the authors.

The similarity between results presented in Fig. 6 and

Fig. 8 confirms the interest of our generic approach to

solve this particular type of unmixing problem.

VI. DISCUSSION

The last application shows the ability of the pro-

posed algorithm to unmix hyperspectral data with a

spatially constrained dictionary learning algorithm. It

also underlines the necessity of having some external

knowledge about the localisation of sources in higher
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Fig. 8: Hyperspectral astronomic data. Reproduction

of figure 21 from paper [21]. On top, from left to

right, MUSE reconstructed white light image, HST im-

age, and HST Rafelski segmentation map. The central

Rafelski source denoted by red crosshair is ID#4451.

Bottom left: PSF weighted estimated spectrum of source

ID#4451 over the whole wavelength range (blue) and in

mirror, the noise standard deviation (magenta). Bottom

right: narrowband image centered on λ = 6242.5 Ang

(position of the emission line in estimated spectrum of

source ID#4451). Credit: Bacon et al. , A &A, vol. 608,

p. A1, 2017, reproduced with permission © ESO.

spatial resolution to improve classical dictionary learning

unmixing algorithm. In the case of MUSE data, such

information coming from the segmentation of another

telescope observation (here the Hubble Space Telescope)

is rarely available. Moreover, a good segmentation of

this additional image is also required. Besides, this a

priori knowledge of sources spatial localisation must

be precisely registered to the spectral/temporal data to

unmix. As for the fMRI application, in [17] the authors

showed that the estimated values were sensitive to the

quality of the localisation maps provided. As these

maps are used to define the regularisation term IM(ãi),

their precision influences the estimation of the tempo-

ral/spectral signatures and their abundances in strongly
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mixed voxels: the better the precision of the localisation

map, the better the estimation of the spectral/temporal

information associated to each source.

From an algorithmic point of view, the strong points

of the proposed approach are the small number of

parameters to be set and its genericity. The algorithm

has a single intrinsic parameter µσ used in the Tikhonov

regularisation, it has only to be set to a very low arbitrary

value, as explained in section II-B.

With the scintigraphy application, it has been shown

that it is easy to adapt the unmixing problem by

adding or removing constraints. In some applications,

the proportions of each region have a natural smooth

evolution from one pixel to another. A constraint for

spatial smoothing within the regions could be introduced

in a future variant of the algorithm. However, depending

upon the nature of the added constraint, it would increase

the complexity of the algorithm. For the current version,

the constraints that are in the form of indicator functions

would lead to the introduction of nested loops and

consequently to a significant increase in calculation time.

Concerning the execution time of the algorithm, the

main factors are the stopping criteria of the different

nested iterative algorithms and the size of the images to

be unmixed. Furthermore, the calculation time depends

much more on the spatial dimension of the image than on

the temporal/spectral dimension as the complexity lies in

the estimation of A, and to a lesser extent on the number

of regions. The algorithm approached convergence for

the astronomical data in a few minutes on a laptop,

whereas 1.5 days CPU time was necessary for the fMRI

data on a server with 32 cores, with a processing speed

of each core around 1603 Mhz. The applications we

presented do not require real-time processing, but a GPU

implementation would lead to a significant gain in speed

as the code is highly parallelisable.

VII. CONCLUSION

A method to unmix data consisting of an image and a

temporal or spectral dimension has been presented. The

proposed method proves effective in unmixing problems

where some prior information related to the ROIs is

available or where such information can be obtained

from a registered high resolution image. It should be

noted that the method does not take into consideration

the morphology, the local structure or the texture of

the sources, but only their approximate locations. The

spatial constraints are classically expressed as an `1-

penalty to promote sparsity of the mixture in each voxel.

Problems with such constraints are generally solved by

dictionary learning algorithms. The originality of the

proposed approach lies in the replacement of this penalty

by a constraint on the localisation of the different regions

of interests. In some of the examples presented in the

article, it has been shown that the algorithm can be

easily adapted for specific applications by introducing

or dropping constraints of sum-to-one on spatial maps

or positivity on timecourses. State-of-the-art results have

been obtained for three very different applications. The

comprehensiveness of the method makes it possible to

easily adapt it to other fields of application such as

remote sensing applications for which incorporation of

spatial information has been proved to enhance hyper-

spectral image unmixing performance [38]. The code

will be available soon online for the community.

APPENDIX A

FORMULAE

The formulae for the different criteria used to analyse

the experimental results are given below:

NMSE(UGTr , Ur) =

∑N
n=1(U

GT
r,n − Ur,n)2∑N

n=1(U
GT
r,n )2

, (15)

NMAE(UGTr , Ur) =

∑N
n=1 |UGTr,n − Ur,n|
|∑N

n=1(U
GT
r,n )|

, (16)
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SAD(UGTr , Ur) = cos−1
∑N
n=1 U

GT
r,n Ur,n√∑N

n=1 U
GT
r,n

2
√∑N

n=1 U
2
r,n

,

(17)

where UGTr is the ground truth temporal signal for rth

region, Ur is the estimated signal for the rth region, N

is the length of the temporal signal. NMAE and NMSE

can be written in a similar manner to evaluate spatial

maps.
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