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a b s t r a c t 

This paper addresses delayed (also known as anechoic) source separation when the source shape can be 

modeled by parameterized waveforms. An Alternating Least Squares (ALS) scheme is proposed to esti- 

mate the source shape parameters in a first step and both the mixing coefficients and the delays in a 

second step. For the challenging delay parameter estimation step, we adopt a strategy inspired by greedy 

algorithms. For highly correlated sources, the separation becomes ambiguous, and a second algorithm is 

proposed: a regularization term is added to favor slow delay evolution within each source. Results on 

synthetic and real data demonstrate the effectiveness of both algorithms compared to state-of-the-art 

methods for highly correlated Gaussian waveforms. 
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1. Introduction 

We consider the detection and estimation of patterns with

varying characteristics in a temporal sequence of signals. This

problem arises when dealing with decomposition of spectra, i.e. ,

the estimation of emission lines (the so-called peaks) in a series

of spectroscopic signals. The peak characteristics are assumed to

evolve slowly through the sequence. In optical spectroscopy, ac-

quisitions are obtained when varying a physical parameter. For in-

stance, in time-resolved photoelectron spectroscopy, several spec-

tra are acquired at different times [37] . In astrophysics, the study of

galaxy kinematics [11,43] leads to the acquisition of multispectral

images where each pixel identifies with a spectrum whose peaks

undergo varying delays due to the redshift and internal gas mo-

tions (Doppler effect). In chemometrics as well [20] , external varia-

tions such as temperature or viscosity induce a spectrum shift and

variation. 

In many applications, prior knowledge or experiments allow the

practitioner to model the peaks by a parameterized waveform, e.g. ,

Gaussian [24,43] or Lorentzian [14] functions. The first goal of this

work is to estimate the amplitudes, delays and shape parameters

of the peaks in each spectrum. The second goal is to match to-

gether the estimated peaks occurring in different spectra, that is

to assign a distinct label to each peak arising in a given spectrum.

We will assume that the shape parameters of the peaks having
∗ Corresponding author. 
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he same label are invariant from one spectrum to another. Fig. 1

hows an example of synthetic spectra and the expected output. 

The problem was addressed in the Bayesian framework for a

ne-dimensional sequence of spectra [24] , modeled as the sum of

aussian waveforms with Markovian priors on their parameters to

romote a slow evolution. The parameters and labels were then

stimated using a reversible jump Monte Carlo Markov chain al-

orithm. This method can deal with varying shape parameters of

he peaks having the same label but suffers from high computa-

ion time. 

Another statistical approach has been proposed in [44] , which

odels each signal in the sequence as a shifted version of a peri-

dic, unknown waveform. The shift and the amplitude of the func-

ion are also unknown. In contrast to our problem, the author con-

iders a unique waveform in each signal and there is no assump-

ion of slow evolution of the unknowns through the sequence. 

The problem can also be seen as a sparse approximation prob-

em using an overcomplete dictionary, constructed by sampling the

eak parameters in the case of parameterized peaks [1,3,39,45] .

rocessing multiple spectra can be addressed by estimating the

eak parameters separately for each spectrum, then matching the

eaks together. However, this approach does not take the slow

volution knowledge into account during peak estimation. Alter-

atively, joint sparse approximation use a common dictionary for

ll the signals. Most approaches assume that the data signals are

imultaneously sparse (they share a common support), which is

ften referred to as the Multiple Measurement Vector case [41] .

owever, simultaneous sparsity is a very restrictive assumption

hich does not hold when the peaks have different delays in

https://doi.org/10.1016/j.sigpro.2018.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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Fig. 1. (a) Synthetic sequence of spectra, each containing 3 Gaussian waveforms (peaks). (b) The peaks and their labels. Each color represents the peaks sharing the same 

label. 
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he spectra. Dynamic approaches like recursive sparse approxima-

ion [42] compute the sparse approximation of a spectrum from

he knowledge of the sparse approximation of the previous spec-

ra. Social sparsity was introduced in [18] by promoting a structure

etween the sparse representation of consecutive data signals with

ess restrictive support assumptions. However, these approaches

equire a precise definition of the neighborhood which is not al-

ays possible, and hence they are not well-suited to the problem

f peak estimation and labeling. Sparse approximation methods

ave also been used for deep learning [33] in case of a convolu-

ional dictionary. However, such approaches require a large dataset

f already decomposed data which is not always available. 

Finally, the problem can be seen as a delayed source separa-

ion problem [7] where peaks with the same label are associated

ith unknown sources, and observed spectra are seen as mix-

ures. The reader is referred to [30] for a review of source mix-

ng models, e.g , instantaneous, anechoic and echoic, and the re-

ated source separation approaches. Delayed source separation is

 specific case of convolutive source separation [5,17] where the

lter kernels are Dirac functions. The main advantage of this ap-

roach is that estimation and labeling of peaks are done simul-

aneously, thus avoiding a two-step approach. Note that in opti-

al spectroscopy, the number of sources is often smaller than the

umber of mixtures, yielding overdetermined source separation.

any contributions of the literature were addressed in audio sig-

al processing where delayed source separation is also referred to

s anechoic source separation. The sources are not parameterized

nd have to be estimated either in a blind or semi-blind frame-

ork. Since the problem is ill-posed, regularization is necessary,

.g. , by imposing non-negativity of the sources and mixing coef-

cients (see [28] in the case of instantaneous mixtures). Besides,

trong assumptions such as source independence and decorrelation

re often made. When dealing with delays, most approaches rely

n delay linearization strategies such as applying Taylor expan-

ion on the mixtures in the temporal domain [6,16] . Another strat-

gy is to analyze the mixtures in the frequency [26,32] or time-

requency [29,31] domains, so that delays become phases which

llows one to use instantaneous source separation approaches cou-

led with phase estimation methods. However, the independence

nd non-correlation assumptions are often not valid in many real-

orld applications [8] . Effort s have been done though to relax

hese assumptions. In [34] , the strong W-disjoint orthogonality as-

umption needed in the DUET algorithm [46] and the assump-

ion that the sources must be orthogonal in the time-frequency

omain are relaxed: each source must be dominant at least in

ne time-frequency window. However, this assumption becomes

nvalid when the evolution of a source delay is fast from one mix-

ure to another or when two delayed source signals significantly
verlap in some mixtures. In optical spectroscopy, some delayed

ource separation methods have been proposed. In [13,15] , a time

arping strategy was used to cancel the effect of the delays on

ach mixture after finding the delays over a predefined discrete

rid using an exhaustive search strategy. The sources and ampli-

udes were then estimated in the linear least squares sense. How-

ver, the exhaustive search is not feasible when the delays take

any values. In [27] , the Non-negative Matrix Factorization (NMF)

ethod was extended to consider delays: non-negative amplitudes

nd sources were found by using multiplicative updates, and de-

ays were estimated with a gradient descent algorithm coupled

ith a maximizing cross-correlation procedure to reduce the effect

f local minima. However, our experiments (see Section 5 ) showed

hat this method performs poorly for highly correlated sources. In

ddition, it is not straightforward to impose a slow evolution of

he delays. 

Hereafter, the terms mixture and source respectively represent

n observed spectrum and a peak having the same label in the

bserved spectra. An original algorithm is proposed to address de-

ayed source separation when the sources are defined as parame-

erized functions. The problem is stated as an optimization prob-

em in Section 2 and a sparse-based Alternating Least Squares

ALS) strategy is proposed in Section 3 . This method was sketched

n [25] but in this paper we provide more detailed problem for-

ulation and we analyze the separation limits of the method. The

atter limits motivate us to develop the brand new method of

ection 4 : the slow delay evolution prior is considered to better

iscriminate spectrally overlapping and similar sources. Finally, re-

ults on synthetic and real data are presented in Section 5 . 

The notations are as follows. Bold and lowercase variables cor-

espond to vectors. Bold and uppercase variables correspond to

atrices. The i -th row and j -th column of a matrix M are re-

pectively denoted as M i : and M : j . The notation (u ) + refers to

(u ) + = max (u, 0) . The arrow notations ↘ and ↗ respectively re-

er to the decrement and increment operators. 

. Parameterized source separation 

Let us consider I mixtures x i ( λ), each being the noisy sum of J

arameterized sources s ( λ; w j ) such that: 

 i (λ) = 

J ∑ 

j=1 

a i j s (λ − c i j ; w j ) + n i (λ) i = 1 , . . . , I (1)

here a i j ∈ R + is the amplitude of source j in mixture i (the appli-

ation considered in this paper shows emission lines but not ab-

orption lines), c i j ∈ R is the delay of source j in mixture i , w j ∈ R

s the shape parameter of source j , and n ( λ) represents observa-
i 
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tion and modeling errors. Throughout the paper, the number of

sources J is supposed to be known. Since the sources are parame-

terized, the delayed source separation problem comes to the esti-

mation of the amplitudes a ij , delays c ij and shape parameters w j .

For the sake of clarity, we will consider that the shape param-

eter is scalar, but the extension to a multidimensional parame-

ter is straightforward. Furthermore, the sources are supposed to

be modeled with the same parameterized function, however, the

proposed method works even when the functions are different. Of

course, using the same parameterized function yields highly corre-

lated sources; we will see that the proposed method remains ac-

curate in this case. 

It is known [29,35] that even in the noiseless case,

model (1) suffers from at least three indeterminacies, namely,

scale, permutation and phase inderminacies, the latter being re-

lated to the fact that a source signal is known up to some arbitrary

delay. The use of parameterized sources helps to overcome the

scale and the phase ambiguities by imposing their energy to be

equal to a specified value and to set their maximum amplitude

for λ = 0 . Besides, the permutation ambiguity cannot be alleviated

but does not yield any aftereffect. 

The delays are supposed to be discretized over a grid with step

�, thus c i j = � i j � with � i j ∈ N . Note that � may be lower than the

sampling step of the mixture signals, which is set to 1 without loss

of generality. In addition, the sources are supposed to be normal-

ized. As said before, normalization allows us to overcome the scale

indeterminacy. We denote by x i = 

[
x i (1) x i (2) . . . x i (N) 

]T 

the vector gathering the samples of the i -th mixture. Similarly, the

samples of each delayed source are gathered in a vector s [ � ij ; w j ]

defined as the unit-norm vector satisfying: 

s [ � i j ; w j ] ∝ 

[
s (1 − � i j �; w j ) s (2 − � i j �; w j ) . . . s (N − � i j �; w j ) 

]T 
, 

(2)

where ∝ refers to proportionality. Equation (1) now reads: 

x i = 

J ∑ 

j=1 

a i j s [ � i j ; w j ] + n i , i = 1 , . . . , I, (3)

where n i refers to the noise in mixture i . Supposing the noise to be

white and Gaussian, the maximum likelihood estimator is obtained

by minimizing the criterion: 

E(A , L , w ) = 

I ∑ 

i =1 

ε(A i : , L i : , w ) , (4)

where ε( A i : , L i : , w ) is the quadratic error related to mixture i : 

ε(A i : , L i : , w ) = 

∥∥∥x i −
J ∑ 

j=1 

a i j s [ � i j ; w j ] 

∥∥∥2 

2 

, (5)

and A ∈ R I×J 
+ , L ∈ N I×J , w ∈ R J + respectively gather the amplitudes a ij ,

delays � ij and shape parameters w j for mixtures i and sources j : 

A = 

⎡ 

⎢ ⎣ 

a 11 . . . a 1 J 

. . 

. 
. . . 

. . 

. 

a I1 . . . a IJ 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

A 1: 

. . 

. 

A I: 

⎤ 

⎥ ⎦ 

(6)

L = 

⎡ 

⎢ ⎣ 

� 11 . . . � 1 J 

. 

. 

. 
. . . 

. 

. 

. 

� I1 . . . � IJ 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

L 1: 

. 

. 

. 

L I: 

⎤ 

⎥ ⎦ 

(7)

w = 

[
w 1 . . . w J 

]T 
. (8)

Therefore, the source separation problem is formulated as the

following constrained minimization problem: 

min E(A , L , w ) . (9)

A ≥0 , L , w S  
. Sparse-based alternating least squares 

The optimization problem (9) is challenging because of the

on-convexity of the criterion E , induced by the nonlinearity of

odel (3) with respect to L and w . As an example, Fig. 2 displays

he variations of criterion E ( A, L, w ) with respect to L in the case of

 = 1 mixture and J = 2 sources: one can see that it admits multi-

le local minimizers as well as flat regions, making its optimization

ifficult even for this simple example. 

ALS is an iterative descent strategy in which criterion E is min-

mized with respect to a block of variables while fixing the others,

nd vice versa . The algorithm stops if the criterion decrease at one

teration becomes lower than a tolerance ρ . ALS is not guaranteed

o converge towards the global minimizer of (9) since it is a block

inimization of a non-convex criterion. However, this method is

ften used in delayed source separation, where e.g. , the sources,

elays and amplitudes are alternately estimated [15,26,29] . How-

ver, the latter methods suffer from several limitations, as stated

n Section 1 , making them unsuitable for the considered problem. 

The proposed ALS scheme is given in Algorithm 1 . The criterion

Algorithm 1: ALS scheme for min A , L , w 

E(A , L , w ) . 

Initialization : ̂  A = ̂

 L = 0 I×J , ̂ w ∼ U [ w min ,w max ] J 

1 do 

2 ( A 

0 
, L 0 , w 

0 ) ← ( ̂  A , ̂  L , ̂  w ) 

3 for i = 1 ↗ I do 

4 ( ̂  A i : , ̂
 L i : ) ← argmin 

A i : , L i : 

ε( A i : , L i : , ̂  w ) (see Algorithm 2 ) 

5 end 

6 ̂ w ← argmin 

w 

E 
(̂ A , ̂  L , w 

)
7 while E ( A 0 , L 0 , w 

0 ) −E ( ̂  A , ̂ L , ̂  w ) 

E( A 0 , L 0 , w 

0 ) 
≥ ρ

s alternately optimized with respect to the source shape param-

ters w on the one hand and the delays L and amplitudes A on

he other hand. The shape estimation subproblem is a continuous

on-linear least-squares problem: ̂ 

 ← argmin 

w 

E(A , L , w ) , (10)

nd is solved using the Levenberg-Marquardt algorithm [21] . In the

rst iteration, the shape parameters are initialized from the uni-

orm distribution U [ w min ,w max ] J 
where w min and w max are the ex-

reme values defined by the user. In the following iterations, w

s initialized with the estimates obtained at the previous iteration.

he amplitude and delay estimation is the main challenge: 

( ̂  A , ̂  L ) ← argmin 

A ≥0 , L 

E(A , L , w ) . (11)

t is detailed hereafter. 

.1. Amplitude and delay estimation 

It follows from (4) that problem (11) is separable to I indepen-

ent sub-problems: 

min 

 i : ≥0 , L i : 
ε(A i : , L i : , w ) ∀ i. (12)

e propose to minimize each ε( A i : , L i : , w ) using a sparse approx-

mation algorithm aiming to sparsely represent mixture i in an

vercomplete dictionary. This choice is justified because spectro-

copic signals contain very few peaks. 

.1.1. Dictionary formulation 

The dictionary is a block matrix [ S 1 , . . . , S J ] , with S j ∈ R 

N×M the

lock gathering M delayed versions of source j (see Fig. 3 ): 

 j = 

[
s [0 ; w j ] s [1 ; w j ] . . . s [ M − 1 ; w j ] 

]
. (13)



H. Mortada, V. Mazet and C. Soussen et al. / Signal Processing 158 (2019) 48–60 51 

Fig. 2. (a) A noisy mixture of two Gaussian sources ( I = 1 , J = 2 ) with a ∗11 = 6 . 0 , a ∗12 = 2 . 7 , � ∗11 � = 50 , � ∗12 � = 65 , w 

∗
1 = 5 , w 

∗
2 = 4 , N = 100 . (b) The criterion L 1: → 

ε(A ∗1: , L 1: , w 

∗) admits local minimizers and flat surfaces. The red × indicates the global minimizer. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 3. Sparse representation model of a mixture x i with J = 3 sources. Each block S j of the dictionary gathers the delayed versions of s [ � ij ; w j ]. The sparse representation is 

structured so that each block vector αij is 1-sparse. 
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ach mixture x i is approximated as: 

 i ≈
J ∑ 

j=1 

S j αi j (14) 

here αi j = [0 , . . . , a i j , . . . , 0] T ∈ R 

M + is a 1-sparse vector, so that

ach source appears at most once in each mixture (see Fig. 3 ). The

alue and index of the non-zero element in αij respectively indi-

ate the amplitude a ij and delay � ij . 

Thus, the optimization problem (12) can be rewritten as: 

min 

 j,αi j ≥0 

∥∥∥x i −
J ∑ 

j=1 

S j αi j 

∥∥∥2 

2 

s.t. ∀ j, ‖ αi j ‖ 0 ≤ 1 , (15)

here the � 0 “norm” ‖ · ‖ 0 counts the number of non-zero coeffi-

ients in a vector. 

.1.2. NN-OMP-like implementation for delayed source separation 

Greedy algorithms are effective and efficient when the spar-

ity level J is small and known [40] . In addition, their structure

s simple and can be easily adapted to the recovery of structured
parse representations. The non-negative orthogonal matching pur-

uit (NN-OMP) algorithm [4] is an iterative algorithm composed of

hree steps: 

1. the so-called forward selection step consists in choosing the

column of the dictionary that is the most positively correlated

with the residual; 

2. the amplitudes corresponding to the chosen columns are up-

dated by solving a non-negative least–squares estimation prob-

lem [19] ; 

3. the residual is updated by removing the contributions of the

chosen columns. 

NN-OMP considers the constraint in (15) to be 
∑ J 

j=1 
‖ αi j ‖ 0 ≤ J.

owever, this constraint does not enforce the sources to appear at

ost once in each mixture. Therefore, the proposed implementa-

ion ( Algorithm 2 ) consists in forcing the sparse vector to be struc-

ured in blocks, each αij being 1-sparse: 

1. the dictionary column that is the most positively correlated

with the residual is selected, yielding the corresponding sourcê j and its delay ̂ � 
i ̂  j 

(lines 2–6). The selected source ̂ j is then

added to the list J of selected sources (line 7) so that the dic-
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Algorithm 2: Implementation of ( ̂  A i : , ̂
 L i : ) ← argmin A i : , L i : 

ε(A i : , L i : , ̂  w ) . 

Initialization : ̂  A i : = ̂

 L i : = 0 1 ×J , J = ∅ , r i = x i 
1 for k = 1 ↗ J do 

2 for j ∈ { 1 , . . . , J}\J do 

3 ˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)
+ 

4 end 

5 ̂ j ← argmax 
j / ∈ J 

(
r T i s [ ̃  � i j ; ̂ w j ] 

)
+ 

6 ̂ � 
i ̂  j 

← 

˜ � 
i ̂  j 

7 J ← J ∪ { ̂  j } 
8 Update amplitudes ̂  A i J according to (16) 

9 r i ← x i −
∑ 

j∈J ̂
 a i j s [ ̂  � i j ; ̂ w j ] 

10 end 

11 if ε( A 

0 
i : , L 

0 
i : , ̂  w ) < ε( ̂  A i : , ̂

 L i : , ̂  w ) then ( ̂  A i : , ̂
 L i : ) ← ( A 

0 
i : , L 

0 
i : ) end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Switch percentage with respect to the ratio of Gaussian widths, for three 

SNRs. 
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tionary columns embedded in the blocks S j for sources j ∈ J 

will not be tested in the next iterations; 

2. the amplitudes of the selected sources gathered in J are es-

timated by solving the non-negative linear least–squares prob-

lem: 

̂ A i : ← argmin 

A i : 

ε(A i : , ̂
 L i : , ̂  w ) s . t . 

{
A i J ≥ 0 

A i J = 0 , 
(16)

where J̄ denotes the complementary subset of J (line 8); 

3. lastly, the residual vector r i is updated (line 9). 

The main difference between NN-OMP and our implementation

lies in the first step. Also, line 11 ensures a decrease of the cri-

terion by invalidating the estimates if they produce a criterion

value greater than the value obtained at the previous iteration of

Algorithm 1 . Furthermore, Algorithm 2 offers the possibility to ob-

tain a variable number of sources per mixture: an additional stop-

ping criterion may be added such that the loop breaks if the resid-

ual norm ‖ r i ‖ 2 becomes lower than a threshold, e.g. , related to the

noise variance. 

Finally, we also investigated recent methods to refine delay

estimation, which is constrained to be on a grid. Indeed, the

discretization induced by sampling the sources in the dictionary

yields a bias in the estimation, as already been discussed in [38] .

The easiest way to reduce this bias is to decrease the value of �,

but this results in a bigger dictionary, and in turn, in an increase

of the computational burden. So, we tested an interpolation exten-

sion proposed in [9,10] . It turned out that this extension is more

time-consuming than a simple decrease in the sampling step �.

Therefore, we rather choose to work with a fine grid. 

3.2. Shape discriminating limit 

Algorithm 1 is able to assign the estimated peaks to the right

source because the sources can be discriminated by their shape pa-

rameter (see Fig. 3 ). We are interested in finding the resolution

limit, that is the least difference between the shape parameters of

two sources beyond which the sources can be discriminated. For

this purpose, we consider I = 40 mixtures each with N = 200 sam-

ples, and J = 2 Gaussians sources of widths w 1 and w 2 and with

constant delays through the mixtures. We gradually vary the ratio

w 2 / w 1 from 0.5 to 1.5. For each ratio, we measure the switch per-

centage defined as the percentage of wrongly assigned peaks over

the total number of peaks (a peak is wrongly assigned if it belongs

to source 1 while it is assigned to source 2 and vice versa ). The ex-

periment is repeated for three SNRs ( Fig. 4 ). The SNR is defined as
en times the log-ratio of the mean energy of the noiseless mix-

ures with the noise variance σ 2 
n : 

NR = 10 log 10 

[
1 

σ 2 
n · I · N 

I ∑ 

i =1 

∥∥∥ J ∑ 

j=1 

a ∗i j s 
[
� ∗i j ; w 

∗
j 

]∥∥∥2 

2 

]
, (17)

here the ∗ symbol represents the value of the ground-truth pa-

ameters. The results show that for high SNR, the proposed method

an separate the sources whatever the ratio w 2 / w 1 (except of

ourse when both parameters are equal). The ability to separate

he sources decreases with the SNR. This motivates us to introduce

 regularization term to overcome this limitation. 

. Slow delay evolution enforcement 

.1. Regularized criterion 

This section aims at promoting slow evolution for each source

elay L through the mixtures for two reasons. First, the slow evolu-

ion is, in practice, the consequence of a short acquisition time be-

ween measurements (such as in photoelectron spectroscopy [12] )

r neighboring sensors (such as in galaxy kinematics [11] or au-

io recorded mixtures [6] ). Second, it would help to discriminate

ighly correlated sources. To this end, a regularization term R ( L ) is

dded to the data-fit term E(A , L , w ) defined in (4) : 

 (A , L , w ) = E(A , L , w ) + τR (L ) (18)

here τ is the regularization parameter to be set by the user.

or the sake of clarity, we assume in the sequel that i is a one-

imensional index. The regularization term R ( L ) measures the sum

f squared differences between consecutive delays: 

 (L ) = 

I ∑ 

i =2 

J ∑ 

j=1 

(
� i j − � (i −1) j 

)2 
. (19)

Criterion F is optimized using Algorithm 3 which is based on

n ALS scheme. Since R ( L ) does not depend on w , the shape es-

imation (line 4) is identical to (10) . Thus, it is computed using

he Levenberg-Marquardt algorithm. On the contrary, the ampli-

ude and delay estimation step (line 3) differs from (11) - (12) be-

ause F does not read as a separable sum with respect to L i : . In-

eed, the terms (� i j − � (i −1) j ) 
2 appearing in the regularization term
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Algorithm 3: ALS scheme for min A , L , w 

F (A , L , w ) . 

Initialization : ̂  A = ̂

 L = 0 I×J , ̂ w ∼ U [ w min ,w max ] J 

1 do 

2 ( A 

0 
, L 0 , w 

0 ) ← ( ̂  A , ̂  L , ̂  w ) 

3 ( ̂  A , ̂  L ) ← argmin 

A , L 

F ( A , L , ̂  w ) (see Algorithm 4) 

4 ̂ w ← argmin 

w 

F 
(̂ A , ̂  L , w 

)
5 while F ( A 0 , L 0 , w 

0 ) −F ( ̂  A , ̂ L , ̂  w ) 

F ( A 0 , L 0 , w 

0 ) 
≥ ρ

R  

t

4
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Algorithm 5: Implementation of ˜ L : j ← argmax L : j 
∑ I 

i =1 

(r T 
i 

s [ � i j ; ̂ w j ]) 
2 + − τ

∑ I 
i =2 (� i j − � (i −1) j ) 

2 . 

Initialization : ̃  L : j = 0 I×1 

1 (i 0 , ̃  � i 0 j ) ← argmax 
i,� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ 

2 for i = (i 0 + 1) ↗ I do 

3 ˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ − τ (� − ˜ � (i −1) j ) 
2 

4 end 

5 for i = (i 0 − 1) ↘ 1 do 

6 ˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ − τ (� − ˜ � (i +1) j ) 
2 

7 end 

8 do 

9 ˜ L 
old 
: j ← ̃

 L : j 
10 i 0 ∼ U { 1 , ... ,I} 
11 for i = i 0 ↗ I and i = (i 0 − 1) ↘ 1 do 

12 if i = 1 then 

˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ 
− τ (� − ˜ � (i +1) j ) 

2 end 

13 if i = I then 

˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ 
− τ (� − ˜ � (i −1) j ) 

2 end 

14 if 1 < i < I then 

˜ � i j ← argmax 
� 

(
r T i s [ � ; ̂ w j ] 

)2 

+ 
− τ (� − ˜ � (i −1) j ) 

2 − τ (� − ˜ � (i +1) j ) 
2 end 

15 end 

16 while 
∥∥̃  L : j −˜ L 

old 
: j 

∥∥2 

2 
/ 
∥∥̃  L 

old 
: j 

∥∥2 

2 
< ξ

4

 

c  

t  

a  

t  

a  

{  

w

f

L̃

T  

a

∀  

P

L̃  

w

 

e  

c  

i  

T  

S  

a  

d  
 ( L ) not only depend on � ij but also on � (i −1) j . Let us now detail

he update rules for A and L . 

.2. Amplitude and slow delay estimation 

Algorithm 4 is proposed to optimize F ( A, L, w ) with respect to

Algorithm 4: Implementation of ( ̂  A , ̂  L ) ← argmin A , L 

F (A , L , ̂  w ) . 

Initialization : ̂  A = ̂

 L = L temp = 0 I×J , J = ∅ , r i = x i ∀ i 

1 for k = 1 ↗ J do 

2 for j ∈ { 1 , . . . , J}\J do 

3 Compute ̃  L : j defined in (22) using Algorithm 5 

4 end 

5 ̂ j ← argmax 
j / ∈ J 

I ∑ 

i =1 

(
r T i s [ ̃

 � i j ; ̂ w j ] 
)2 

+ − τ
I ∑ 

i =2 

(˜ � i j − ˜ � (i −1) j 

)2 

6 J ← J ∪ { ̂  j } 
7 L 

temp 

: ̂  j 
← ̃

 L 
: ̂  j 

8 A 

temp ← argmin 

A 

F ( A , L temp , ̂  w ) s . t . { A : J ≥ 0 , A : J = 0 } 
9 if F ( A 

temp 
, L temp , ̂  w ) > F ( ̂  A , ̂  L , ̂  w ) then Break end 

10 

(̂ A , ̂  L 
)

← 

(
A 

temp 
, L temp 

)
11 for i = 1 ↗ I do r i ← x i −

∑ 

j∈J ̂
 a i j s [ ̂  � i j ; ̂ w j ] end 

12 end 

13 if F ( A 

0 
, L 0 , ̂  w ) < F ( ̂  A , ̂  L , ̂  w ) then ( ̂  A , ̂  L ) ← ( A 

0 
, L 0 ) end 

 and L . It is a greedy algorithm in the spirit of Algorithm 2 , and,

n this way, reproduces the three steps of the NN-OMP framework

lready stated in Section 3.1.2 . However, Algorithm 4 takes all mix-

ures as inputs while Algorithm 2 considers a single mixture. The

stimation of the source delays in line 3 of Algorithm 4 is deferred

o Algorithm 5 . 

At each iteration, the source ̂ j inducing the largest decrease

f criterion F is selected (lines 2–5) and added to the list of se-

ected sources J (line 6). The corresponding delays L 
temp 

: ̂  j 
are com-

uted. Then, the amplitudes of the selected sources in J in all the

ixtures are estimated using a non-negative least squares solver

line 8). Finally, the residual vectors of all the mixtures are up-

ated (line 11). Note that adding a new source results in a de-

rease of the data-fit term E ( A, L, w ) but makes the regulariza-

ion term R ( L ) increasing. In other words, the criterion F (A , L , w ) =
(A , L , w ) + τR (L ) can either increase or decrease. Therefore, the

ondition in line 9 is set to break the loop in case of an increase of

 , so that Algorithm 4 is indeed a descent algorithm. Similarly, the

ondition in line 13 ensures a decrease of the criterion by invali-

ating the estimates if they produce a criterion value that is larger

han the value obtained at the previous iteration of Algorithm 3 . 
.3. Delay estimation with an ICM-like algorithm 

Let us now specify the rule for selecting the source ̂ j among all

andidate sources j / ∈ J . Since ̂ j is defined as the source yielding

he largest decrease of criterion F , lines 2–4 in Algorithm 4 aim

t estimating, for each source j that has not already been selected,

he value of the corresponding delays L : j (denoted by ˜ L : j ) as well

s the value of F obtained while considering the set of sources J ∪
 j} . To do so, one needs to consider the minimization of F ( A, L, w )

ith respect to A : j and L : j , while fixing the values of L : j ′ and A : j ′ 
or j ′ ∈ J : 

 

 : j ← argmin 

L : j 

min 

A : j ≥0 

I ∑ 

i =1 

∥∥∥r i − a i j s [ � i j ; ̂ w j ] 

∥∥∥2 

2 

+ τ
I ∑ 

i =2 

(� i j − � (i −1) j ) 
2 . 

(20) 

he minimization of (20) with respect to A : j while fixing L : j has

 closed form solution: 

 i, a i j = 

(
r T i s [ � i j ; ̂ w j ] 

)
+ . (21)

lugging back (21) into (20), (20) simplifies to: 

 

 : j ← argmax 
L : j 

I ∑ 

i =1 

(
r T i s [ � i j ; ̂ w j ] 

)
2 
+ − τ

I ∑ 

i =2 

(� i j − � (i −1) j ) 
2 . (22)

hich is the cost function appearing at line 5 in Algorithm 4 . 

Because (22) is a combinatorial problem, we resort to the It-

rated Conditional Modes (ICM) algorithm [2] which is a popular

oordinate-wise optimization method in image processing. While

t converges to a local optimizer, it generally gives good results.

he proposed implementation to solve (22) is given in Algorithm 5 .

pecifically, at each iteration (lines 9–15), all mixtures i ∈ { 1 , . . . , I}
re swept using the following way: a starting mixture i 0 is ran-

omly chosen (line 10), then the delays in mixtures i + 1 to I are
0 
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Fig. 5. Examples of sparse model for J = 3 sources and I = 6 mixtures where the 

white and the colored squares respectively represent the zero and non-zero ampli- 

tudes. Each column corresponds to a mixture i , and is divided into J blocks repre- 

senting the sources (each source is indicated with a unique color). (a) Case of no 

delay regularization. (b) Case of a slow-moving regularization. (c) Case of a very 

strong regularization, resulting in a simultaneous sparse approximation with con- 

stant support for all mixtures. 
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sequentially estimated, and the same procedure is used for mix-

tures i 0 − 1 to 1. Whenever a mixture i ∈ { 1 , . . . , I} is visited, the

related delay ˜ � i j is estimated (in lines 12–14) by maximizing the

criterion in (22) with respect to � ij whilst fixing the other delays
 � i ′ j with i ′ � = i . The convergence is reached when the relative dis-

tance between the estimates of two consecutive iterates is smaller

than a tolerance threshold ξ (line 16). 

The initialization is performed in the same way (lines 1–7),

the major difference being that, at the first iteration, some delays

are not yet estimated and, in consequence, cannot be considered

in (22) . So, we simply discard the terms with unknown values from

the equation. Note also that the first mixture to be considered is

the one maximizing the data-fit term (line 1). 

4.4. Remarks 

If no regularization is considered ( i.e. , τ = 0 ), then F (A , L , w ) =
E(A , L , w ) . We then recommend to use Algorithm 1 rather than

Algorithm 3 since the former exploits the separability of the cri-

terion. Conversely, when τ tends to infinity, the delays related to

each source are necessarily constant: � i j = � i ′ j , ∀ i, i ′ . Therefore, the

sparse vectors αij ∀ i share a common support (see Fig. 5 (c)). The

estimation of L : j in (22) becomes: 

 L : j = [ ̃  � j , . . . , ̃  � j ] with 

˜ � j ← argmax 
� 

I ∑ 

i =1 

(
r T i s [ � ; ̂ w j ] 

)
2 
+ , (23)

and can be obtained using an exhaustive search by testing the

M possibilities for � . This is very similar to the S-OMP algo-

rithm [41] (which is a greedy algorithm for sparse recovery of

vectors having a common support) with the difference that the

vectors αij are 1-sparse. 
. Numerical results 

.1. Comparison on synthetic mixtures 

Algorithms 1 and 3 are compared with state-of-the-art methods

hat are able to separate highly correlated sources. 

.1.1. Evaluation of non-parameterized methods 

First of all, we evaluate two competing methods dealing with

elayed source separation [27] and convolutive source separa-

ion [5] . The latter estimates the impulse responses connecting

ach source to each mixture, whose location and intensity of the

aximum values yield the delays and amplitudes. 

The methods are evaluated on simulated data with I = 40 mix-

ures of N = 200 samples, J = 4 sources and SNR = 15 dB. The

ources are Gaussian, i.e. , s (λ; w j ) = exp (−λ2 / 2 w 

2 
j 
) . The ampli-

udes and delays of each Gaussian waveform are continuously gen-

rated from polynomials of degree 2, 3 or 4. Besides, the shape

arameters, i.e. , the standard deviations of the Gaussian sources

re set to w 

∗ = 

[
4 4 1 . 5 6 

]T 
. The data are displayed in

ig. 6 and show noticeable behavior: two sources (around λ = 50 )

re very close and highly correlated (Gaussians with same width,

qual to 4); there are several overlaps of the sources; and the num-

er of sources per mixture is not constant. 

The estimated sources with the non-parameterized meth-

ds [5,27] are shown in Fig. 7 , and the mixture reconstruction and

stimated amplitudes and delays are displayed in Fig. 8 . The mix-

ure reconstruction obtained with the method of [27] is half sat-

sfactory. On the one hand, the sources s 1 and s 2 are Gaussian-

haped and their amplitudes and delays roughly correspond to the

round truth. On the other hand, the sources s 3 and s 4 are bi-

odal (so they do not match with the ground truth) and actu-

lly fit the two ground-truth sources with similar shapes around

= 50 . Regarding the method of [5] , the estimated sources present

 dominant peak with small oscillations, so they are not close to

he ground truth. Besides, the mixture reconstruction is very noisy

nd the parameter estimates do not completely match with the

round-truth. In conclusion, this example shows that the methods

f [5,27] are not able to deal with highly correlated sources, partly

ecause they do not consider the highly informative knowledge of

arametric sources. 

.1.2. Comparison with a parameterized method 

We now compare the non-regularized and regularized meth-

ds (which respectively refer to Algorithms 1 and 3 ) with a

ayesian method [24] that explicitely exploits the knowledge of

arametrized source shapes for decomposing a sequence of spec-

ra. The methods are tested with the data displayed in Fig. 6 . The

hree methods model the sources by Gaussians so the shape pa-

ameter is the Gaussian width. This is a positive scalar, therefore a

rust-region reflective algorithm is used instead of the Levenberg-

arquardt algorithm because it is able to consider the positiv-

ty constraint. The stopping constant of the proposed methods is

= 10 −4 ; the delay sampling step is set to � = 0 . 2 ; the regular-

zation parameter is empirically tuned to τ = 1 . 5 · 10 −2 . The ICM

topping constant is set to ξ = 10 −4 . 

The results are displayed in Fig. 9 . The reconstruction of the

ixtures is equally good for the proposed methods and the

ethod of [24] . This is confirmed by Table 1 which compares the

ethods in terms of (i) computation time; (ii) Mean Squared Error

MSE) defined as 
∑ I 

i ‖ r i ‖ 2 2 / (N · I) ; (iii) amplitude, delay and shape

rror, defined as: 

‖ C 

∗ −̂ C ‖ 

2 
F 

‖ C 

∗‖ 

2 
F 

, 
‖ A 

∗ − ̂ A ‖ 

2 
F 

‖ A 

∗‖ 

2 
F 

and 

‖ w 

∗ − ̂ w ‖ 

2 
2 

‖ w 

∗‖ 

2 
2 

(24)
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Fig. 6. Synthetic data used for comparison: 40 mixtures with 4 sources and SNR = 15 dB. 

Fig. 7. Ground truth and estimated sources with the methods of [27] and [5] . 

Fig. 8. Results on the synthetic data of Fig. 6 . The columns respectively the reconstructed mixtures, the estimated delays and the estimated amplitudes. Each source is 

represented with unique color and marker. The ground truth delays and amplitudes are plotted in gray lines. 
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Fig. 9. Results on the synthetic data of Fig. 6 . The first column displays the reconstructed mixtures as well as the estimated sources. The second and third columns display 

the estimated delays and amplitudes. Each source is represented with unique color and marker. The ground truth delays and amplitudes are plotted in gray lines. 

Table 1 

Numerical performance of the compared methods on the synthetic 

mixtures plotted in Fig. 6 . The delay and amplitude error are defined 

in (24) . 

Non-regularized Regularized [24] 

Time (s) 1.4 0.5 44.2 

MSE 0.11 0.13 0.09 

Shape error 4 . 9 · 10 −3 7 . 0 · 10 −4 1 . 4 · 10 −3 

Delay error 8 . 4 · 10 −2 3 . 5 · 10 −5 1 . 2 · 10 −5 

Amplitude error 1 . 7 · 10 −2 6 . 1 · 10 −3 2 . 5 · 10 −3 
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where ‖ · ‖ F denotes the Frobenius norm and C = �L is the delay

matrix for the proposed methods. 

The estimated shape parameters are very close to the

ground-truth, respectively ̂ w = 

[
4 . 0 3 . 9 1 . 4 5 . 6 

]T 
and 

̂ w =[
3 . 9 4 . 0 1 . 4 5 . 9 

]T 
for the non-regularized and regularized

methods. With the method of [24] , the shape parameters can vary

within a source, and a source does not necessarily appear in all

the mixtures. But the variations remain small for the considered

data so that we can consider the means of the estimated shape pa-

rameters: ̂ w = 

[
3 . 9 3 . 9 1 . 5 6 . 0 

]T 
which is also close to the

ground-truth. 

Considering the non-regularized method, the delay and ampli-

tude estimates are not satisfactory despite the good reconstruc-

tion and source estimation. This can be explained by the fact

that when some sources have the same shape parameter, the

identification becomes ambiguous (see Section 3.2 ). On the con-

trary, the regularized method yields improved estimates as well

as the method of [24] . These results are numerically validated in

Table 1 . 

2  
.1.3. Conclusion 

These simulations show that a parametrized method is of inter-

st when dealing with highly correlated sources. The proposed reg-

larization ensures to separate correctly the sources with very sim-

lar shape parameters. The proposed methods give accurate results

ithin a very low computation time. On the contrary, the method

f [24] , while very effective, is 15 to 30 times slower than the pro-

osed methods. Note however, that the latter model is more versa-

ile since the shape parameter are allowed to vary within a source

nd additional priors on the shapes and amplitudes are considered.

.2. Influence of the SNR 

We now investigate the influence of the SNR on the perfor-

ance of the proposed methods. A first example of synthetic

ixtures with I = 15 and J = 2 is displayed in Fig. 10 to show

hat the proposed methods are robust to the SNR: the con-

lusion of Section 5.1 remains, that is, both proposed methods

ield good reconstruction and source quality whatever the SNR.

lso, Fig. 10 shows the benefit of using a regularization on the

elays. Recall that the permutation indetermination, which can be

learly noticed in this example, has no influence on the parameter

stimation. 

Furthermore, we perform statistical simulations to compare

oth proposed methods with the method of [24] . The methods

f [5] and [27] are not tested since they do not yield accurate

utputs. The simulations are set for SNR values varying between

 and 30 dB. For each SNR, 100 datasets with Gaussian sources are

enerated, each with I = 30 mixtures, J = 3 sources and N = 200

amples. The shape parameters are chosen randomly between 0.5

nd 5; the delays and amplitudes are generated by polynomial

unctions with random coefficients and degrees varying between

 and 4; the delay sampling step is equal to � = 0 . 2 ; the stopping
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Fig. 10. Synthetic data with 2 sources at two different SNR, and the related reconstruction and estimated sources with both proposed methods. 

c  

s  

e  

f  

e

 

t  

a  

n  

i  

t  

i  

t  

r  

t  

m  

o  

t  

t  

o  

m  

c

5

 

m  

a  

b  

t  

a  

a  

t  

e  

d  

r  

a  

o  

i  

b

 

e  

e  

a  

i  

s  

e  

m  

p  

t  

T  

s  

s  

f  

a  

i  

u  

L

 

m  

r  

e  

m  

o  

i  

s  

f  

s  

t  

w  

t  

a  

i  

v  

p

1 Note that choosing a model not “consistent” with the shape of real peaks may 

yield an increase of the number of estimated sources. 
onstant is set to ρ = 10 −4 for both proposed methods; the ICM

topping constant is set to ξ = 10 −4 and the regularization param-

ter is set to τ = 4 · 10 −3 . The results are shown in Fig. 11 where,

or each SNR, the average of the results obtained for the 100 gen-

rated datasets is plotted. 

As expected, the MSE decreases as the SNR increases for the

hree methods ( Fig. 11 a), and it should be noticed that the vari-

tions are very similar. The delay and amplitude errors of the

on-regularized method improve when the SNR increases but it

s shown that the non-regularized method has lower performance

han its competitors. On the contrary, the regularized method gives

mproved estimation of the amplitudes and delays. In addition, in-

roducing a regularization on the delays yields estimates that are

obust to the noise variation; this is not the case for the ampli-

udes for which no assumption of slow evolution is considered. The

ethod of [24] behaves similar to the regularized method in terms

f delay error, whilst its amplitude error is generally worse than

he proposed methods (except for low SNR). Again, it is shown

hat the method of [24] is much slower than the proposed meth-

ds (approximately 20 times slower). Therefore, the regularized

ethod is competitive with the method in [24] with much lower

omputation time. 

.3. Results on real photoelectron data 

Time-resolved photoelectron spectroscopy [37] is an experi-

ental tool which allows to study the energy relaxation occurring

fter absorption of a photon by an isolated molecule, atom or a

lend of both. The energy relaxation is probed by ionization of

he excited system with another delayed photon, thereby ejecting

 so-called photoelectron. The distribution of the photoelectrons

ccording to their energy is measured at different times to get a

emporal sequence of photoelectron spectra and is given by the

stimated source characteristics (amplitudes, delays, shapes). The

elays C indicate the energy from which photoemission is occur-

ing and the area under each source, which depends on both the

mplitudes A and shapes w , corresponds to the relative number

f emitted photoelectrons at the corresponding energy. The exper-

ment presented in this paper studies the relaxation of an atom of

arium [23,24] . 
The regularized method was applied to the sequence of photo-

lectron spectra shown in Fig. 12 : the goal is to determine how the

nergy, intensity, and width of the peaks ( i.e. , delays, amplitudes

nd shapes of the sources) evolve through the sequence, indicat-

ng the temporal changes undergone by the studied system. The

equence gathers I = 44 spectra (covering a duration of 3.47 ps),

ach of N = 181 samples (from 0.02 eV to 2.52 eV). The sources are

odeled by Gaussian functions, which is the usual model for the

eaks in photoelectron spectroscopy 1 . The grid sampling step is set

o � = 5 · 10 −4 and the regularization term is set to τ = 2 · 10 −5 .

he stopping constant ρ and the ICM stopping constant are re-

pectively set to ρ = 10 −4 and ξ = 10 −4 . Besides, the photoelectron

pectra include a background that must be estimated and removed

rom the spectra. The background in each mixture i is modeled

s an exponential of the form αi exp (−λ/β) . An additional step

s added to the ALS scheme in Algorithm 3 to estimate the new

nknowns (the I weights αi and a single β value) by using the

evenberg-Marquardt algorithm. 

The results obtained with the regularized method and the

ethod of [24] are presented in Fig. 13 : both approaches appear

oughly similar concerning delay and shape error. However, differ-

nces can be observed: (i) the estimated continuum provided is

uch smoother for the regularized method, which was a source

f noise in the method [24] ; (ii) the regularized method rather

mproves the shape of the main band by addition of nearby new

ources than focusing on the low intensity energy ones as seen

or method [24] . Such behavior looks reasonable according to the

hape of the decay simulated [22] . (iii) The method of [24] is able

o deal with a varying number of peaks through the mixtures,

hereas in the proposed method the J sources are present in all

he mixtures. Nevertheless, small amplitudes can be cancelled by

pplying a threshold. (iv) Last but not least, the proposed method

s about 560 times faster (7.5 seconds for the regularized method

ersus 70 minutes for the method of [24] ). In conclusion, the pro-

osed method appears to be both effective and efficient. 
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Fig. 11. Comparison of the non-regularized (green �) and the regularized (red ◦) proposed methods with the method of [24] (blue + ) with respect to the SNR. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Photoelectron spectra ( I = 44 mixtures). 
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Software 

The Matlab codes associated with this article are freely avail-

able at “http://miv.u-strasbg.fr/mazet/jointdec/ ”. 
. Conclusion 

This paper studies the delayed source separation when source

ignals are supposed to be parameterized, which is a valid as-

umption in many spectroscopy applications. An ALS scheme is

roposed to alternatively estimate the shape parameters and the

mplitudes and delays. For the challenging delay parameter esti-

ation step, we propose a greedy strategy using parametric dic-

ionaries whereas the sparse representation is structured to respect

he mixing model. We present two algorithms that follow the same

LS scheme: in the first, only the data-fit criterion is considered

hilst in the second an additional regularization term is added to

romote slow delay evolution within each source. The proposed

ethods outperform the state-of-the-art delayed source separation

ethods when sources are highly correlated. Furthermore, it is as

ffective as the best competitors with much lower computation

ime. Results on real data confirm the effectiveness and the effi-

iency of the proposed methods. Future works will be dedicated to

tudying the benefit of a warm-start initialization of A and L in Al-

orithms 2 and 4 , so as to benefit from the estimated parameters

f previous ALS iterations. Although this idea seems natural, the

pdate of delay parameters would then require to design discrete

earch algorithms having a more complex structure than greedy

earch algorithms. Another perspective of this work would be to

stimate the number of sources: strategies such as Akaike informa-

ion criterion or Bayesian information criterion [36] could be a first

http://miv.u-strasbg.fr/mazet/jointdec/
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Fig. 13. The reconstruction and the estimated continuum, delays and amplitudes using the regularized method (first column) and the method of [24] (second column). The 

estimated shape parameters of regularized method are ̂ w = [0 . 057 , 0 . 049 , 0 . 025 , 0 . 09 , 0 . 06] T and for the method of [24] after averaging the estimates for each source are ̂ w = [0 . 066 , 0 . 064 , 0 . 039 , 0 . 037 , 0 . 071 , 0 . 05] T . 
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tep to explore. Finally, a third perspective would be to deal with

ources whose shape parameters evolve through the mixtures. 

cknowledgment 

This work was supported by the DSIM project (grant ANR-14-

E27-0 0 05), C. Soussen ackowledges the partial support of the ANR

ECOSE project (ANR-15-CE23-0021). 

eferences 

[1] C.D. Austin , R.L. Moses , J.N. Ash , E. Ertin , On the relation between sparse re-
construction and parameter estimation with model order selection, IEEE J. Sel.

Top. Signal Process. 4 (3) (2010) 560–570 . 
[2] J. Besag , On the statistical analysis of dirty pictures, J. R. Statist. Soc. B 48 (3)

(1986) 259–302 . 
[3] S. Bourguignon , D. Mary , É. Slezak , Restoration of astrophysical spectra with
sparsity constraints: models and algorithms, IEEE J. Sel. Top. Signal Process. 5

(5) (2011) 1002–1013 . 
[4] A.M. Bruckstein , M. Elad , M. Zibulevsky , On the uniqueness of nonnegative

sparse solutions to underdetermined systems of equations, IEEE Trans. Inf.
Theory 54 (11) (2008) 4 813–4 820 . 

[5] M. Castella , S. Rhioui , E. Moreau , J. Pesquet , Quadratic higher order criteria

for iterative blind separation of a MIMO convolutive mixture of sources, IEEE
Trans. Signal Process. 55 (1) (2007) 218–232 . 

[6] G. Chabriel , J. Barrère , An instantaneous formulation of mixtures for blind sep-
aration of propagating waves, IEEE Trans. Signal Process. 54 (1) (2006) 49–58 . 

[7] P. Comon , C. Jutten , Handbook of Blind Source Separation: Independent Com-
ponent Analysis and Applications, Academic Press, 2010 . 

[8] J. Duan , Restoration and Separation of Piecewise Polynomial Signals. Appli-

cation to Atomic Force Microscopy, Université Henri Poincaré, Nancy, France,
2010 Ph.d. thesis . 

[9] C. Ekanadham , D. Tranchina , E.P. Simoncelli , Recovery of sparse translation-in-
variant signals with continuous basis pursuit, IEEE Trans. Signal Process. 59

(10) (2011) 4735–4744 . 

http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0001
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0002
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0003
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0004
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0005
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0006
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0007
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0008
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0009
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0009


60 H. Mortada, V. Mazet and C. Soussen et al. / Signal Processing 158 (2019) 48–60 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[10] K. Fyhn , S.H. Jensenand , M.F. Duarte , Compressive parameter estimation for
sparse translation-invariant signals using polar interpolation, IEEE Trans. Sig-

nal Process. 63 (4) (2015) 870–881 . 
[11] G. Gilmore , R.F. Wyse , K. Kuijken , Kinematics, chemistry, and structure of the

galaxy, Annu. Rev. Astron. Astrophys 27 (1) (1989) 555–627 . 
[12] E. Gloaguen , J.-M. Mestdagh , L. Poisson , F. Lepetit , J.-P. Visticot , B. Soep ,

M. Coroiu , A. Eppink , D.H. Parker , Experimental evidence for ultrafast elec-
tronic relaxation in molecules, mediated by diffuse states, J. Am. Chem. Soc.

127 (47) (2005) 16529–16534 . 

[13] R.A. Harshman , S. Hong , M.E. Lundy , Shifted factor analysis – part i: models
and properties, J. Chemom. 17 (7) (2003) 363–378 . 

[14] J.M. Hollas , Modern Spectroscopy, John Wiley & Sons, England, 2004 . 
[15] S. Hong , R.A. Harshman , Shifted factor analysis – Part II: algorithms, J.

Chemom. 17 (7) (2003) 379–388 . 
[16] N. Jiang , D. Farina , Covariance and time-scale methods for blind separation of

delayed sources, IEEE Trans. Biomed. Eng. 58 (3) (2011) 550–556 . 

[17] M. Kawamoto , Y. Inouye , Blind deconvolution of MIMO-FIR systems with col-
ored inputs using second-order statistics, IEICE Trans. Fundam. 86 (3) (2003)

597–604 . 
[18] M. Kowalski , K. Siedenburg , M. Dörfler , Social sparsity! neighborhood sys-

tems enrich structured shrinkage operators, IEEE Trans. Signal Process. 61 (10)
(2013) 2498–2511 . 

[19] C.L. Lawson , R.J. Hanson , Solving least squares problems, 15, Society for Indus-

trial and Applied Mathematics, SIAM, 1995 . 
[20] E.R. Malinowski , Factor analysis in chemistry, Wiley, 2002 . 

[21] D.W. Marquardt , An algorithm for least-squares estimation of nonlinear pa-
rameters, SIAM J. Appl. Math. 11 (2) (1963) 431–441 . 

[22] A. Masson , M. Heitz , J. Mestdagh , M. Gaveau , L. Poisson , F. Spiegelman , Coupled
electronic and structural relaxation pathways in the postexcitation dynamics of

Rydberg states of BaAr N Clusters, Phys. Rev. Lett. 113 (12) (2014) 123005 . 

[23] A. Masson , L. Poisson , M. Gaveau , B. Soep , J. Mestdagh , V. Mazet , F. Spiegelman ,
Dynamics of highly excited barium atoms deposited on large argon clusters. I.

General trends, J. Chem. Phys 133 (5) (2010) 054307 . 
[24] V. Mazet , S. Faisan , S. Awali , M. Gaveau , L. Poisson , Unsupervised joint de-

composition of a spectroscopic signal sequence, Signal Process. 109 (2015)
193–205 . 

[25] H. Mortada , V. Mazet , C. Soussen , C. Collet , Separation of delayed parameter-

ized sources, in: Proc. Eur. Sig. Proc. Conf., 2017, pp. 1080–1084 . 
[26] M. Mørup , K.H. Madsen , L.K. Hansen , Shifted independent component analysis,

in: Proc. ICA, 2007, pp. 89–96 . 
[27] M. Mørup , K.H. Madsen , L.K. Hansen , Shifted non-negative matrix factorization,

in: Proc. MLSP, 2007, pp. 139–144 . 
[28] S. Moussaoui , D. Brie , A. Mohammad-Djafari , C. Carteret , Separation of

non-negative mixture of non-negative sources using a Bayesian approach and

MCMC sampling, IEEE Trans. Signal Process. 54 (11) (2006) 4133–4145 . 
[29] D. Nion , B. Vandewoestyne , S. Vanaverbeke , K. Van D. A. , H. De Gersem , L. De
Lathauwer , A time-frequency technique for blind separation and localization of

pure delayed sources, in: Proc. LVA/ICA, 2010, pp. 546–554 . 
[30] P.D. O’Grady , B.A. Pearlmutter , S.T. Rickard , Survey of sparse and non-sparse

methods in source separation, Int. J. Imag. Syst. Tech. 15 (1) (2005) 18–33 . 
[31] L. Omlor , M.A. Giese , Anechoic blind source separation using Wigner

marginals, J. Mach. Learn. Res. 12 (2011) 1111–1148 . 
[32] W.S.B. Ouedraogo , B. Nicolas , B. Oudompheng , J.I. Mars , C. Jutten , A frequency

method for blind separation of an anechoic mixture, in: Proc. Eur. Sig. Proc.

Conf., 2014, pp. 521–525 . 
[33] V. Papyan , Y. Romano , J. Sulam , M. Elad , Theoretical foundations of deep learn-

ing via sparse representations: a multilayer sparse model and its connection to
convolutional neural networks, IEEE Signal Process. Mag. 35 (4) (2018) 72–89 . 

[34] M. Puigt , Y. Deville , Time–frequency ratio-based blind separation methods for
attenuated and time-delayed sources, Mech. Syst. Signal. Process. 19 (6) (2005)

1348–1379 . 

[35] B. Rivet , L. Girin , C. Jutten , Solving the indeterminations of blind source separa-
tion of convolutive speech mixtures, in: Proc. IEEE ICASSP, 2005, pp. 533–536 . 

[36] P. Stoica , Y. Selen , Model-order selection: a review of information criterion
rules, IEEE Signal Process. Mag. 21 (4) (2004) 36–47 . 

[37] A . Stolow , A .E. Bragg , D.M. Neumark , Femtosecond time-resolved photoelectron
spectroscopy, Chem. Rev 104 (4) (2004) 1719–1758 . 

[38] T. Trigano , Y. Sepulcre , Y. Ritov , Sparse reconstruction algorithm for nonho-

mogeneous counting rate estimation, IEEE Trans. Signal Process. 65 (2) (2017)
372–385 . 

[39] T. Trigano , I. Shevtsov , D. Luengo , Cosa: an accelerated ISTA algorithm for dic-
tionaries based on translated waveforms, Signal Process. 139 (2017) 131–135 . 

[40] J.A. Tropp , Greed is good: algorithmic results for sparse approximation, IEEE
Trans. Inf. Theory 50 (10) (2004) 2231–2242 . 

[41] J.A . Tropp , A .C. Gilbert , M.J. Strauss , Algorithms for simultaneous sparse ap-

proximation. part I: Greedy pursuit, Signal Process. 86 (3) (2006) 572–588 . 
[42] N. Vaswani , J. Zhan , Recursive recovery of sparse signal sequences from com-

pressive measurements: a review, IEEE Trans. Signal Process. 64 (13) (2016)
3523–3549 . 

[43] E. Villeneuve , H. Carfantan , Nonlinear deconvolution of hyperspectral data with
MCMC for studying the kinematics of galaxies, IEEE Trans. Image Process. 23

(10) (2014) 4322–4335 . 

[44] M. Vimond , Efficient estimation for a subclass of shape invariant models, Ann.
Stat. 38 (3) (2010) 1885–1912 . 

[45] M. Yaghoobi , L. Daudet , M.E. Davies , Parametric dictionary design for sparse
coding, IEEE Trans. Signal Process. 57 (12) (2009) 4 800–4 810 . 

[46] Ö. Yilmaz , S. Rickard , Blind separation of speech mixtures via time-frequency
masking, IEEE Trans. Signal Process. 52 (7) (2004) 1830–1847 . 

http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0010
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0011
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0012
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0013
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0014
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0015
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0016
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0017
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0018
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0019
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0020
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0021
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0022
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0023
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0024
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0025
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0026
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0027
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0028
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0029
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0030
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0031
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0032
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0033
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0034
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0035
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0036
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0037
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0038
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0039
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0040
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0041
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0042
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0043
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0044
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0045
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0046
http://refhub.elsevier.com/S0165-1684(18)30406-7/sbref0046

	Parameterized source separation for delayed spectroscopic signals
	1 Introduction
	2 Parameterized source separation
	3 Sparse-based alternating least squares
	3.1 Amplitude and delay estimation
	3.1.1 Dictionary formulation
	3.1.2 NN-OMP-like implementation for delayed source separation

	3.2 Shape discriminating limit

	4 Slow delay evolution enforcement
	4.1 Regularized criterion
	4.2 Amplitude and slow delay estimation
	4.3 Delay estimation with an ICM-like algorithm
	4.4 Remarks

	5 Numerical results
	5.1 Comparison on synthetic mixtures
	5.1.1 Evaluation of non-parameterized methods
	5.1.2 Comparison with a parameterized method
	5.1.3 Conclusion

	5.2 Influence of the SNR
	5.3 Results on real photoelectron data

	Software
	6 Conclusion
	Acknowledgment
	References


