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A B S T R A C T   

This paper applies a generative deep learning model, namely a Variational Autoencoder, on probabilistic optimal 
power flows. The model utilizes Gaussian approximations in order to adequately represent the distributions of 
the results of a system under uncertainty. These approximations are realized by applying several techniques from 
Bayesian deep learning, among them most notably Stochastic Variational Inference. Using the reparameterization 
trick and batch sampling, the proposed model allows for the training a probabilistic optimal power flow similar to 
a possibilistic process. The results are shown by application of a reformulation of the Kullback-Leibler diver
gence, a distance measure of distributions. Not only is the resulting model simple in its appearance, it also shows 
to perform well and accurate. Furthermore, the paper also explores potential pathways for future research and 
gives insights for practitioners using such or similar generative models.   

1. Introduction 

In recent years, uncertainty has gained growing importance in the 
context of power systems. Integration of electric vehicles, growing 
shares of renewable generation and emancipation of individuals as 
active participants in the power grid have introduced more volatility 
into an already uncertain system. In addition to this has the increase in 
computational power of hardware allowed for development of tech
niques dealing more efficiently with uncertainty encountered in power 
systems [1]. 

One way to approach this uncertainty is presented by probabilistic 
methods. Such methods distinguish themselves from other approaches 
in their representation of uncertainty which comes in the form of 
probability density functions. This stands in contrast to other methods 
such as possibilistic and robust methods which respectively use fuzzy 
membership functions or uncertainty sets to express uncertainty [2]. 

Utilizing a distributional representation has the advantage of 
covering a continuous spectrum of potential outcomes, allowing to 
represent a wide range of probable outcomes. This gives probabilistic 
methods a large number of state-of-the-art applications in power sys
tems such as transmission expansion planning [3], line failure detection 
[4], generation scheduling [5] or grid operation under uncertainty [6]. 

The work presented here will focus on latter, grid operation under 
uncertainty, in specific the utilization of probabilistic load flows in the 
context of optimal power flows. Ref. [7] first formulated such probabi
listic optimal power flows as a network of dependent variables. In this 

work, uncertain nodal loads affect the distribution functions of the 
analyzed power lines. In order to deal with tractability limitations and 
efficiently solve the formulated decision problem the paper applies 
various approximations and assumptions. This includes limiting the 
dispatch actions to a single slack bus and assuming distributions of nodal 
loads to be known initially. Approaching such tractability limitations 
especially aids problems under large uncertainty space and/or problems 
with multiple sources of uncertainties as found in e.g. security analysis 
problems of modern (micro)grids [8–10] or modern multi-energy sys
tems [11]. 

Ref. [12] provides an overview of earlier works on probabilistic 
power flows, whose solution techniques can generally be classified as 
either analytical or numerical. 

A recent example for analytical models is Ref. [13], which adds 
predictability as an objective to the deterministic optimal power flow 
and solves it as a multi-objective problem and Ref. [14] which extends 
convexification used to solve an AC Optimal Power Flow (OPF) to the 
uncertainty set. Ref. [15] is another example of an analytical model and 
uses batches of scenarios for moment-matching of the distributions. In 
similar manner, Ref. [16] proposes using a batch sampling technique in 
order to update the probabilistic model. The model presented in sub
sequent sections of this paper will similarly focus on the strength of 
batch training. 

Compared to analytical are purely numerical models, often based on 
Monte-Carlo approaches, more difficult to scale. This has resulted in a 
family of hybrids between analytical and numerical models which most 
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of the recent publications on numerical models can be classified as. 
These models are also referred to as approximation-based. 

To be specific on these approximations, Gaussians are central to most 
of the work on probabilistic power flows. Ref. [17] discussed these 
Gaussian approximations in comparison to a traditional Monte-Carlo 
approach. A recent example for an approximation-based approach is 
given by Ref. [18], which uses polynomials as approximations. Another 
recent example is provided by Ref. [19], which was later extended in 
Ref. [20]. The paper proposes utilization of Graphical Processor Unit 
(GPU) acceleration technology in order to improve approximation effi
ciency. In similar manner, approaches making use of state-of-the-art 
machine learning techniques, specifically deep learning, have been 
proposed. These models are specifically designed to most optimally 
utilize GPU acceleration. Recent examples of such are Ref. [21] and 
Ref. [22] which both use standard neural networks and mean squared 
error as loss functions to train these neural networks. 

Ref. [23] and Ref. [24] both utilize Kullback-Leibler divergence, a 
distributional distance function, as a loss function instead of mean 
squared error, allowing for distributional fit of the neural networks 
instead of comparing point estimates. However, and as shown later in 
this paper, the tractability of this loss function is poor, opening the 
possibility for methods improving on such. This is the work that the here 
presented paper and the model below expands on. In addition to the 
models presented in the deep learning literature on probabilistic power 
flows there exist other types of neural networks that are specifically 
designed for distribution fitting. An example of such is deep generative 
models [25].Implementing such a neural network for probabilistic 
optimal power flows is the research gap the here presented work aims to 
fill. 

The model presented in the proposed work combines the insights of 
the mentioned previous literature, by using a Monte Carlo based sam
pling technique and a loss function based on the Kullback-Leibler 
divergence to train a nonlinear Gaussian approximator (namely a 
Variational Autoencoder). This allows a better scalability of the 
Kullback-Leibler divergence compared to traditional approaches. Also, it 
opens probabilistic optimal power flow models up to implementation of 
new insights from the field of deep learning, such as the presented noise 
filtering via decoder-encoder models or utilization of batch gradients. 
Application of latter, i.e. batch gradient descent methods, can be seen 
similar to Ref. [16] (with the change that in the presented batch gradient 
descent these groups are random), which postulates that such grouping 
can drastically increase the performance of probabilistic optimal power 
flows. In addition and similar to the previously presented papers on deep 
learning, the model also profits from the state-of-the-art GPU accelera
tion techniques that modern machine learning methods use. 

In its essence, the suggested model can be considered an automati
zation technique for analytical probabilistic models such as Refs. [15, 
26] using non-linear deep-learning approximations instead of linear 
approximations, which are not scalable to train analytically. Conversely, 
the method compares to traditional stochastic power flow approaches 
such as Refs. [27,28] in that the proposed method is model-free (and 
thus doesn’t need to be adjusted to new constraints added to the opti
mization problem) and uses output distributions whereas these tradi
tional models are model-based and utilize fixed percentiles within the 
chance constraints. 

In summary, this paper provides the following contributions:  

• a model-free framework for probabilistic optimal power flows using 
deep learning.  

• an introduction on how to utilize Stochastic Variational Inference 
using Gaussian (or other) distributions to represent the uncertain 
results of solving a probabilistic optimal power flow model.  

• a demonstration on how this framework allows for parallelization in 
its training process  

• an introduction on how to utilize a Variational Autoencoder in order 
to solve test systems with large uncertainty space. 

The novelty of the proposed framework thus not only consists of the 
potential to train a probabilistic power flow, independent of the 
generative model, the utilized distributions or the topology of the power 
flow problem, the paper also proposes a number of methods that allow 
for parallelization in the training process. All of this is achieved via using 
a reformulation method, the so-called reparameterization trick, in order 
to train a probabilistic model in possibilistic manner.  

Nomenclature 
Index 
g  generation 
L  load 
n  sample index 
E  encoder network 
D  decoder network 
e  training epoch 
b  bus index 
d  encoding dimension 
Variables 
x  observations 
U  voltage magnitude 
θ  voltage angle 
Pg  active power of generator 
Qg  reactive power of generator 
z  latent variable 
Functions 
C  system cost 
c  generator cost 
P  active power injection 
Q  reactive power injection 
F  line flow 
p,q  distributions 
ELBO  Evidence Lower BOund 
MSE  Mean Squared Error 
Parameters 
F  line limit 
U,U  voltage magnitude limits 
θ,θ  voltage angle limits 
Pg ,Pg  active power generation limits 

Qg ,Qg  reactive power generation limits 
N  total number of scenarios 
φ  distribution parameters 
emax  total number of training epochs 
Uncertainties 
ξ  stochastic parameter 
ξ
′ scenario 

ϵ  noise  

2. Problem 

The proposed probabilistic optimal power flow (OPF),problem is a, 
variation of the traditional deterministic AC optimal power flow: 

C(ξ) = min
U,θ,Pg ,Qg

c
(
Pg, ξ

)
(1a)  

s.t. Pg − PL(ξ) = P(U, θ) (1b)  

Qg − QL(ξ) = Q(U, θ) (1c)  

|F(U, θ)| ≤ F(ξ) (1d)  

U ≤ U ≤ U (1e)  

θ ≤ θ ≤ θ (1f)  

Pg(ξ) ≤ Pg ≤ Pg(ξ) (1g)  

Qg(ξ) ≤ Qg ≤ Qg(ξ) (1h) 

The problem objective (1a) is the minimization of the system cost of 
generation. In this variation, the cost function considers uncertainty, e.g. 
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in the form of fuel price fluctuations. 
The injections at a bus are defined via the balance of generation 

(demand) and load (supply). This is displayed for active power in 
constraint (1b) and for reactive power in (1c). In the considered example 
these inflexible loads are subject to uncertainty. 

The limits of line flows are considered in constraint (1d). In the 
proposed probabilistic case, these line flows are considered subject to 
uncertainties such as line outages. 

Constraint (1e) and (1f) respectively formulate the voltage magni
tude and voltage angle limits which are kept deterministic in the pre
sented model. 

The generation limits formulated in constraint (1g) and constraint 
(1h) are considered subject to uncertainty such as fluctuations of 
renewable power generation or generator outages. 

In the deterministic case, i.e. for a fixed ξ, this problem has been 
approached in a wide range of literature, which will not be expanded on 
further here. Instead, it will be assumed that the application of the AC 
OPF solver from the package Matpower [29] using Newton-Rhapson for 
stepwise improvement and Lagrangian relaxation to deal with con
straints as seen in Ref. [30] provides an adequate platform to obtain 
solutions for the problem without uncertainty. Even though these so
lutions are not global, the result of the decision variables are here 
assumed to give an appropriate observation for the outcome of the cost 
minimal point in case of a single, deterministic outcome denoted as ξ′ : 

C(ξ
′

) = min
x

c(x|ξ
′

) (2) 

Here, x represents a vector of the observations of the results for this 
specific scenario ξ′ : 

x =

⎡

⎢
⎢
⎣

U
θ

Pg
Qg

⎤

⎥
⎥
⎦ (3) 

Obtaining a possibilistic solution of problem (1), i.e. an expected 
value of the system cost, can be achieved in equal manner: 

C(ξ
′

) =
∑N

n=1
p
(
ξ
′

n

)
min

xn
c
(
xn
⃒
⃒ξ

′

n

)
(4) 

Here, p(ξ′

n) symbolizes the probability of scenario ξ
′

n whereas xn 

displays the optimal solution of this given scenario. Due to each such 
solution xn requiring a solution of its respective subproblem (1), solving 
for this expected value with a significantly large number of potential 
scenarios becomes intractable fast. This is especially problematic 
considering the AC power flow problem (1) itself is an NP-hard problem. 
Considering (continuous) distributions in parameters as the uncertainty 
set thus would lead to an unlimited number of potential scenarios. Thus, 
this means the extension of a computationally hardly tractable problem 
to an impossible problem: 

C(ξ) =
∫

p(ξ)min
xn

c(xn|ξ)dξ (5) 

Utilizing approximations as representations of these distributions 
has been at the core of probabilistic load flows and subsequently prob
abilistic optimal power flows since its initial appearance in literature 
[7]. In the presented method, function approximators from the family of 
deep learning, i.e. neural networks, will be utilized. Specifically, this 
paper explores how a generative, noise-filtering model can be applied to 
yield distribution approximations for the results of a probabilistic AC 
OPF with vast uncertainty space. 

3. Model 

Goal of the proposed model framework is to utilize a limited number 
of observations xn∀n = 1, ...,N in order to step-wise approximate the 
distributions of the system results as shown in Eq. (5). 

In this paper, this approximation is provided by a Variational 
Autoencoder (VAE) model [31]. This choice was made on one hand due 
to VAEs providing an established type of generative models in machine 
learning and on the other hand due to their noise-filtering capabilities. 
Nonetheless, future research expanding on this topic might explore 
other models from the family of generative machine learning models 
such as Generative Adversarial Networks (GANs). In addition to this, 
non-deep-learning approaches such as Bayesian networks could also be 
trained in similar manner [32]. 

This paper will however, due to the popularity of deep-learning 
based models, explore the proposed VAE model. The reason for this is 
that it provides a generalization of other deep generative models such as 
GAN style networks [33]. This model consists of three components:  

• an encoder neural network that creates a noiseless representation of 
the observations.  

• a latent variable z that is this noiseless representation. 
• a decoder neural network that recreates observations under consid

eration of external noises ϵ. 

3.1. Distributional representation 

The proposed schematic for the probabilistic AC OPF problem is 
shown in Fig. 1. The output of the model is a parametric generative 
model pφ(x|z) for the distributions of the observations of the decision 
variables x depending on the latent distribution of the encoding p(z). 
The basis for this distribution is the posterior distribution qφ(z|x) that 
defines the distribution of the latent variables depending on given ob
servations x. 

The goal of this problem is to define parameters for both distribu
tions adequately to receive close to a perfect match qφ(z|x) = pφ(z|x). 
However, the VAE will not reach this perfect match for all possible 
outcomes of x. This is by design, as the model aims to approximate the 
output to the input after accounting for the noise, resulting in a match of 
qφ(z|x) ≈ pφ(z|x) where the difference between the distributions is the 
random noise, which is thus filtered out. 

Fig. 1. Generative Model - Variational Autoencoder.  
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3.2. Loss function 

This distribution fitting problem becomes the problem of finding the 
optimal distribution parameters φ which consist of the weights and 
biases of the neural networks that are the encoder and the decoder. As 
shown in Ref. [34], maximization of a bound based on Jensens 
inequality named the Evidence Lower BOund (ELBO) can be utilized to 
solve this problem: 

max
φ

ELBO(φ) =

max
φ

Ez∼qφ(z|x)

[

logpφ(x|z)
]

− KL
(

p(z)|qφ(z|x))
(6) 

The ELBO is based on a non-negative distance measure of distribu
tions, referred to as the Kullback-Leibler (KL) divergence: 

KL(p(z)|qφ(z|x)) =Ez∼qφ(z|x)
[
logp(z) − logqφ(z|x)

]
(7) 

In fact, and as described in detail in Ref. [34], the ELBO is a refor
mulation of the KL divergence that circumvents the intractability caused 
by term logqφ(z|x). This is because in order to evaluate the KL diver
gence, the distribution qφ(z|x) would have to been known. Having this 
information would mean that the result of the VAE is already known, 
rendering the model redundant. Instead, however, the only information 
given is samples of x (and thus samples of z ∼ qφ(z|x)). As the decision 
vector x contains continuous variables at an infinite amount of samples 
of x, the distribution would be known and taking the KL divergence 
would be possible. As every sample is the solution of a deterministic 
optimal power flow and thus requires computation (i.e. computational 
time), instead of the KL divergence an approximation of the distribution 
in form of the VAE is derived. 

3.3. Training process 

Yielding the parameters of this approximation based on the ELBO (as 
a negative loss function), in specific optimization of the distribution 
parameters φ, is conducted via Stochastic Variational Inference (SVI) 
[34]. SVI is a Monte-Carlo method which allows to conduct 
sub-sampling of data, here observations x, in order to update these 
distribution parameters. In other words, it allows to utilize a limited 
number of N observations in order to update the posterior distributions. 
In order to simplify training, the algorithm can make use of the repar
ameterization trick [31]. In this concept, the noise parameters ϵ are 
considered known and thus deterministic for a given observation. This 
separates the noise and the parameters of the distributions from each 
other, allowing to learn the parameters via back-propagation similar to 
traditional machine learning applications. An illustrative example in the 
appendix explains this technique in detail. 

Algorithm 1 sums the training process for the decision problem up. 
As it can be observed, this algorithm makes use of training on a number 
of N samples at the same time, via batch gradient descent [35]. 

3.4. Computational efficiency 

The computational efficiency of the proposed framework is its 
strength: training the network weights and biases φ is a GPU-centric 
task, which profits from recent advantages in GPU-acceleration tech
nology in step (g) and (h). Opposing to this, finding the AC OPF solutions 
x is a CPU-centric task. However, as the framework allows for training 
on a number observations in parallel via batch gradient descent, these N 
solutions of step (c) can be computed in parallel, allowing the proposed 
framework to profit from multiprocessing/multithreading as well. This 
is highlighted by the sampling and training process as shown in Fig. 2. 
This also shows that the limit of the performance of this algorithm is 
provided by the CPU and GPU memory capacities and not the tact speed 
of the processing units as it is the case in traditional Monte Carlo 
methods. In summary, Algorithm 1 thus utilizes the potential of modern 
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neural network principles such as batch gradient descent to allow 
making use of multi processor architecture and transforming the itera
tive distribution fitting process into a parallelized version. This is sup
ported by using an optimizer that is specifically designed for batch 
gradient descent (such as Adam [36], the optimizer used in the case 
study below) over traditional methods such as stochastic gradient 
descent in order to derive the parameters of the neural network. 

Verbally, the training process can be summarized in short as ’sample 
stochastic parameters and noises’ → ’solve AC OPF for the given sam
ples’ → ’update weights of the approximator using the ELBO function 
and a gradient descent method’. 

After yielding the weights, the decoder network can be utilized to 
generate samples for x. This is done by only using the right side of the 
VAE as shown in Fig. 1. Algorithm 2 demonstrates how to draw n 
samples from the resulting generator model. 

It has to be remarked that the two distribution noises ϵ1 and ϵ2 relate 
to the specific distributions for the encoding and the output. These two 
distributions might be different. In the here presented case studies the 
distributions were chosen to be normal for the encoding and truncated 
normal for the generated output. 

4. Case studies 

The case studies utilize stochastic power flow problems based on the 
IEEE test cases and additional assumptions such as line failure rates in 
systems with high shares of renewables [37]. The case configuration, i. 
e. the adjustments on the original IEEE test cases, was the following:  

1. variable fuel prices - all cost factors for the first two thirds of the 
generation units was subject to a uniform distribution between 95% 
and 105% of its original values.  

2. renewable generation - the maximum generation capacities of the 
last third of the generation units was normally distributed with a 
mean of 125% and a variance of 7.5% of its original values. In case a 
sampled value would dip below the minimum generation would 
result in this plant being shut down (in this specific sample). All cost 
factors for these plants were set to 0.  

3. line outages - each line was assigned an outage probability of 0.1% 
(the line was removed for this case).  

4. generation unit outage - in similar manner, each generation unit 
was assigned an outage probability of 0.1%.  

5. demand fluctuations - both active and reactive loads were assumed 
to fluctuate according to a normal distribution with a mean of 100% 
and a variance of 10% of its original values. 

Other than these adjustments introducing a large uncertainty space, 
the other parameters of the respective IEEE test systems were kept 
similar to the respective original, with no additions such as ramping 
included. In regards to the model, drawing a single sample from these 
uncertainties would give an instance of ξ, drawing several would result 
in a batch of samples. 

In order to deal with infeasible solutions caused by a specific instance 
of ξ (as could be the case caused by e.g. too many line or generator 
failures), infeasible solutions for specific parameters have to be filtered 
out. This is because for an infeasible state, there is no information on the 
optimal results of the variables. The Gaussian distributions yielded by 
the model thus only represents the distribution over the feasible space. 
Future research might build on this understanding and utilize a classi
fication model to define which inputs lead to infeasible outputs and thus 
nest the proposed model within this classification model. Similar could 
be achieved with a Bernoulli distribution in parallel to the proposed 
Gaussian. 

The hyperparameters used were dependent on the neural networks 
used. These decoder and encoder networks were both traditional feed- 
forward neural networks with a layer size of 700 and six layers (with 
sigmoidal function units as activation functions). The encoding distri
butions p(z) was assumed to be Gaussian and the distribution of the 
generated samples pφ(xn|zn) a truncated Gaussian with the limits of the 
observation minimums and maximums. Both neural networks thus also 
each required two separate linear output layers as their seventh layers, 
dedicated respectively to the location and scale. As described above, the 
chosen optimizer for step (h) of Algorithm 1 was Adam [36], a second 
order batch gradient descent algorithm. In addition to that, a so-called 
scheduler was applied in order to apply a learning rate decay of 33% 
after each 33th episode. 

In traditional neural network models, inputs are normalized to a 
mean of zero and a variance of one. In the given example, however, such 
a normalization is not possible as the total potential range of the vari
ables is uncertain. To circumvent this, the inputs were scaled by a fixed 
scaler. This scaler was calculated by drawing an initial sample and 
calculating the means of the variables. This is displayed in the flowchart 
of the training process presented in Fig. 3. 

Two different cases were analyzed, based on the IEEE 9 bus and 118 
bus test system with the previously mentioned modifications. The 
convergence curves are shown in Figs. 4 and 5 for the respective cases 
and a batch size of three. The comparison baseline chosen was a tradi
tional Monte Carlo (MC) approach which used the same sample batches 
to fit truncated Gaussians. Comparing to traditional stochastic power 
flow techniques, this baseline can be considered an adaption of the 

Fig. 2. Generative Model Training Step.  
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Monte Carlo approach introduced in Ref. [27] but using parameters of 
non-linear distributions instead of uncertainty margins. Yielding a single 
sample from the AC OPF problem required approximately 2 seconds on 
an Intel i7-8850H CPU@ 2.60 GHz and training the neural networks 
around 1 second per episode on a Nvidia Quadro P2000. Using a VAE 
over the traditional model had no measurable impact on the model 
training times. s the model allows to be updated with batches of samples 
at the same time, it can be stated that the bottleneck in training can be 
attributed to the speed of obtaining a single AC OPF solution. In fact, this 
is a characteristic that the proposed model has in common with similar 
techniques. However, compared to traditional stochastic optimization 
techniques, this model can be trained in batches, allowing for solving 
multiple instances of the AC OPF problem in parallel for multiple sam
ples, as shown previously in Fig. 2. Thus it not only allows for more 
complex models than the traditional linear models used in analytical 
models, it also allows for parallelization of the optimization steps 
compared to traditional iterative methods. 

The training history of this loss function, i.e. the ELBO, demonstrates 
that the example is able to create a nearly perfect fit of qφ(z|x) ≈ pφ(z|x), 
suggesting that the model is able to learn the distribution of the noise 
and adequately fit the output to the given approximation - the latent 
distribution. 

Numerical results of the VAE model are given for the 9 bus test 
system in Fig. 6 and for the 118 bus test system in Fig. 7. 

In both cases, introducing uncertainty has the highest impact on the 
voltage angles which deviate significantly from the previous determin
istic results. For several variables and busses, either the mean of or the 
entire batch of generated samples was equivalent to the deterministic 
example. This shows the impact of adding the given uncertainty to the 
deterministic system, which does not impact the entire system evenly. 
For most of the cases there was a significant deviation from the deter
ministic results. This suggests a significant impact of adding uncertainty 
to the problem over the given deterministic formulation. 

The results also underline the importance of a deep-learning 
approach. Table 1 illustrates that there are correlations within the 
different variables. These correlation coefficients are higher for the 
smaller system, meaning that uncertainty on one end of the system has a 
higher impact on the rest of the system if the system is smaller. This 
result is intuitive, as a fluctuation in a generator is less significant for the 
results of the system if the generator is small compared to the total 
system capacity. Appropriately modeling these effects of the systems is 
taken care of by deep-learning models, as they generate the samples in 
connection to the other samples, meaning that statistical dependence is 
considered. In a more traditional model, these effects would potentially 
be neglected. 

Further, even though the results of the test cases is provided in form 
of samples, the formulation of the case study shows an additional benefit 
of the algorithm. As explained in the appendix, as SVI updates its pa
rameters based on the reparameterization trick by sampling, no infor
mation on the distributions of the uncertain parameters is needed. 
Instead, it would be entirely possible to utilize only samples or scenarios 
instead of distributions. It is further possible to use a mixture of these 
uncertainty representations as inputs. In practical situations there might 
be information on the distribution for some parameters and only sce
narios/samples for others. Thus, instead of supplying distributions, the 
model learns the probabilistic output of the optimal power flow problem 
by learning the latent distribution from the given samples. 

Nonetheless, irrespective of the inputs being distributions or sam
ples, the result of applying the proposed method is a distribution that 
allows single samples to be taken from. A practical application of such is 
provided by the line flows for the respective cases given in Figs. 8 and 9. 
Similar to traditional stochastic powerflows via chance constraints, 
quantiles can be defined by drawing samples and calculating these 
quantiles. Further, the percentiles can be dynamically defined. Whereas 
in chance constrained stochastic power flows these have to be defined 
prior to solving the problem, in the here presented model they can be 
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applied after solving the problem (by calculating the given percentile on 
the samples taken). 

Similar can be done for other aspects of the solution. For example, 
distributions of the nodal balances in specific busses or a distribution of 
the total system cost (or subsets of it, i.e. a distribution of the cost of 
generators in a specific section of the system) can be obtained in similar 
manner. 

5. Conclusion 

This paper demonstrates how to apply Stochastic Variational 

Inference to train a probabilistic deep learning approximator for a sto
chastic power flow problem. The method allows automatic training of 
such non-linear approximators that allow Gaussian approximations of 
AC optimal power flows under high uncertainty spaces. 

To do so, a loss function (or a bound, misused as a loss function) based 
on the Kullback-Leibler divergence is utilized, named the Evidence 
Lower BOund. By utilizing the so-called reparameterization trick, the 
resulting probabilistic model can be trained via sampling, similar to 
possibilistic models. This training can be achieved via traditional 
backpropagation, or in other words, application of methods from the 
family of gradient descent algorithms (also referred to as optimizers). The 
result is a model that is able to automatically update distributions based 
on samples of decision variables received by iteratively solving batches 

Fig. 3. Model Flowchart.  

Fig. 4. Evidence LOwer Bound for IEEE 9 bus problem.  

Fig. 5. Evidence LOwer Bound for IEEE 118 bus problem.  
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Fig. 6. Results for the 9 bus case.  
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Fig. 7. Results for the 118 bus case.  
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of deterministic power flows with sampled parameters. This is demon
strated in the paper by giving examples of the IEEE 9 and 118 bus sys
tems extended by uncertainties in cost, capacity, line availability, 
generator availability and demand. Compared to traditional Monte 
Carlo methods, this batch-wise training process allows for paralleliza
tion in solving the AC OPF with uncertainty samples as well as training 
the neural network used to approximate the distributions. 

In addition to this, the paper suggests several avenues for further 
academic use. The main avenue is provided by other models from the 
family of generative machine learning models that could similarly be 
applied on the problem and tested for their potential. Another option is 
to alter the proposed deep learning model itself. This could be done via 
e.g. changing the type of distributions used in the latent approximation 
or changing the utilized networks itself (as e.g. application of multi- 
period power flows might consider recurrence in the utilized neural 
networks). The case study itself focuses on large uncertainty spaces 

where the model proves to be capable of approximating the non-linear 
relations within the AC OPF and provide a distribution of the probabi
listic solution to the given system that allows individual samples to be 
taken from. In summary, the proposed framework provides a technique 
to efficiently train non-linear function approximations that allow 
deriving Gaussian distributions of the results of non-linear stochastic 
optimal power flows. Based on the insights from this paper, the proposed 
starting points for future research can be formulated as:  

• extend the problem to multi-period power flows  
• consider non-linear scheduling and associated ramping constraints 
• develop a tailored deep learning formulation (e.g. evaluate the ca

pabilities of Generative Adversarial Networks against the proposed 
model)  

• reformulate the given model to a model-based formulation (and 
potentially combine this with other approximation techniques for the 
non-linear AC power flow equations)  

• expand the proposed model to the infeasible space of the uncertainty 
set 
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Table 1 
Average Correlation Coefficients of generated Samples.   

θ − U  θ − P  θ − Q  U − P  U − Q  P − Q  

9 bus 0.6 − 0.5  − 0.42  − 0.45  − 0.41  0.84 
118 bus − 0.1  − 0.23  − 0.05  − 0.2  − 0.06  0.06  

Fig. 8. Line flows [MW] for the 9 bus case.  

Fig. 9. Line flows [MW] for the 118 bus case.  
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Appendix A. The reparameterization trick 

The so-called reparameterization trick as introduced in Ref [31] provides a core concept of the proposed framework that bridges the possibilistic 
result in Eq. (4) with the probabilistic result in Eq. (5). The concept will therefore be explained here based on an illustrative example of a simple linear 
regression problem using the mean squared error as a loss function. The example can be trained via any gradient descent method. Further, and despite 
the examples’ simplicity, the concept can be expanded in similar manner to the VAE model presented in this paper that instead uses a Bayesian neural 
network model, the ELBO as a loss function and a second order stochastic gradient descent algorithm. 

Assumed be the problem of fitting latent variable z to a linear function of variable x, whereas both allow for sampling denoted as zn and xn 
respectively. In addition, the linear approximation considers no deterministic constant and a standard-normally distributed noise ϵ as a stochastic 
constant: 

zn ≈ φxn + ϵ ∀n (A.1) 

The problem is that of finding the most fitting model parameter φ that gives the best approximation for this linear regression. This can be done by 
defining a loss function, which for this example will be the Mean Squared Error (MSE): 

MSEφ(z, x) =
∑

n
(zn − φxn − ϵn)

2 (A.2) 

In traditional linear regression, finding this optimal fit argmin
φ

MSEφ(z, x) could thus be achieved via gradient steps in the form of: 

∂MSEφ(z, x)
∂φ

=

−
∑

n
2xn( − ϵ − φxn + zn)

n
(A.3) 

In the given problem, however, this gradient is not deterministic but instead shows a normally distributed noise. However, sampling the noise (in 
the given example by ϵ ∼ N (0,1)) and considering the resulting noise as a constant leads to a deterministic result for the loss function MSE and thus 
gives a deterministic gradient ∂MSEφ(z,x)

∂φ . For a large enough minibatch size of n and drawing as many samples ϵn, this gradient can thus be approximated 
as the following: 

∂MSEφ(z, x)
∂φ

≈

−
∑

n
2xn( − ϵn − φxn + zn)

n
(A.4) 

In its essence this is nothing else than approximating the stochastic gradient by its expected value. In the provided example, this then means that 
the weight φ of the linear approximation can then be updated by deterministic gradient descent, for example with a learning rate of 0.3: 

φ := φ + 0.3
∂MSEφ(z, x)

∂φ
(A.5)  
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