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Abstract
Solar cells represent one of the most important sources of clean energy in modern societies. Solar cell manufacturing is a 
delicate process that often introduces defects that reduce cell efficiency or compromise durability. Current inspection systems 
detect and discard faulty cells, wasting a significant percentage of resources. We introduce Cell Doctor, a new inspection 
system that uses state of the art techniques to locate and classify defects in solar cells and performs a diagnostic and treatment 
process to isolate or eliminate the defects. Cell Doctor uses a fully automatic process that can be included in a manufacturing 
line. Incoming solar cells are first moved with a robotic arm to an Electroluminescence diagnostic station, where they are 
imaged and analysed with a set of Gabor filters, a Principal Component Analysis technique, a Random Forest classifier and 
different image processing techniques to detect possible defects in the surface of the cell. After the diagnosis, a laser station 
performs an isolation or cutting process depending on the detected defects. In a final stage, the solar cells are characterised 
in terms of their I–V Curve and I–V Parameters, in a Solar Simulator station. We validated and tested Cell Doctor with a 
labelled dataset of images of monocrystalline silicon cells, obtaining an accuracy and recall above 90% for Cracks, Area 
Defects and Finger interruptions; and precision values of 77% for Finger Interruptions and above 90% for Cracks and Area 
Defects. Which allows Cell Doctor to diagnose and repair solar cells in an industrial environment in a fully automatic way.

Keywords  Photovoltaics · Solar cell manufacturing · Automatic inspection · Defect classification · Electroluminescence 
imaging · Random forest · PCA · Gabor filters

Introduction

Solar power is the fastest-growing source of new energy 
according to the International Energy Agency. Today, Pho-
tovoltaics (PV) is the third renewable energy source in 
terms of global capacity (Masson and Brunisholz 2016). PV 
employs solar panels composed of solar cells made of semi-
conducting materials to convert light into electricity. The 
main component of conventional solar cells is crystalline 

silicon (c-Si), appearing with a monocrystalline or polycrys-
talline structure.

Monocrystalline silicon (mono-Si) cells present an octag-
onal shape cut from cylindrical ingots and an uniform look 
that indicates high-purity. Mono-Si cells are expensive and 
efficient. On the other hand, polycrystalline or multicrystal-
line silicon (multi-Si) cells have a square shape and present a 
“frost” texture caused by different crystals molten and solidi-
fied together. Making polycrystalline silicon is simpler and 
costs less, but multi-Si cells are less efficient than mono-Si 
cells. Figure 1 shows the typical structure of Mono-Si and 
multi-Si solar cells, appearing as a grid with strips made 
of copper plated with silver, called busbars. Busbars act as 
conductors for the current produced from the incoming pho-
tons that are connected by perpendicular thinner strips called 
fingers that collect the current and deliver it to the busbars.

PV manufacturing often produces defects that appear 
in the cells surface due to manipulation errors, excessive 
mechanical pressure, defects on the material…, etc. (Qian 
et al. 2017). PV defect taxonomy is a topic of discussion. 
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Researchers usually don’t agree on the categories they use, 
or they employ the same term with different meanings. 
The term Shunt is one of the most used and most ambigu-
ous (Breitenstein et al. 2004). A Shunt is defined as a local 
increase in the dark forward current of a cell, that affects 
its efficiency by reducing the Fill Factor (FF) and the Open 
Circuit Voltage (VoC). Shunts can be caused by material 
defects or they can be process induced (Correia et al. 2006). 
Up to nine different types of Shunts are described in lit-
erature, caused by cracks, holes, scratches, aluminum parti-
cles, Schottky-type contacts, faulty edge insulations, defects 
on the material and others (Breitenstein et al. 2004). Most 

studies avoid the taxonomy problem by focusing on spe-
cific defects such as Finger Interruptions (Tseng et al. 2015) 
or Cracks (Anwar and Abdullah 2014). We consider three 
types of defects using their visual appearance in Electrolu-
minescence (EL) images as criterion: Area Defects, Finger 
Interruptions and Cracks, Fig. 2 shows examples of defined 
categories.

Cell defects are usually invisible in ordinary visual 
inspections, and nowadays researchers use techniques based 
on Infrared (IR) and Electroluminescence (EL) imaging. IR 
imaging assumes that in damaged regions, solar energy is 
not properly converted into electricity, heating the solar cell 
up as a result so defects can be detected with an IR camera. 
However, IR cameras are expensive and have relatively low 
resolution, making small defects difficult to detect (Deitsch 
et al. 2018). In EL imaging, current is applied to the cell, 
inducing EL emission in the MIR spectrum (1150 nm). The 
light emitted by the connected cell can be captured by a 
cooled CCD camera. In EL images, defects appear as dark 
areas in the image. The EL technique can be used at high 
resolutions and EL imaging does not suffer from blurring 
due to lateral heat propagation. However, the analysis of EL 
images is typically a manual process that is expensive, time-
consuming, and requires expert knowledge (Deitsch et al. 
2018). Automatic image analysis in industrial environments 
with is a rapidly evolving field (Gonzalez-Val et al. 2019). 
And several researchers are focusing on developing auto-
matic techniques to detect defects in EL images. Though 
as far as we know, there are no published results regarding 
location of defects on a pixel level, many contributions are 
worth mentioning:

Fig. 1   A conventional crystalline silicon solar cell. Electrical contacts 
made from busbars (the larger silver-colored strips) and fingers (the 
smaller ones) are printed on the wafer. (Source: Ersol Solar Energy 
AG, Germany, under GNU Free Documentation License)

Fig. 2   Categories of defects. Area Defects (a, d), Finger Interruptions (b, e) and Cracks (c, f)
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Chiou et al. (2011) used a near infrared (NIR) imaging 
system to detect Cracks in multi-crystalline silicon cells. 
Claiming an accuracy of 0.99 in detected defects.

Li and Tsai (2012) used wavelet coefficients to distinguish 
local defects in multicrystalline solar wafers, obtaining an 
accuracy of 0.98 in a set of 46 defective samples and 50 
defect free samples.

Tsai et al. (2012) used Fourier image reconstruction to 
detect small Cracks, breaks, and Finger Interruptions in 
polycrystalline cells from EL images. They detected the 
defects by comparing the differences between the original 
image and an its spectral representation. This work was 
criticised for not being able to detect defects with complex 
shapes (Deitsch et al. 2018). We also find that the small sam-
ple used, 15 defective samples and 308 defect-free samples, 
is not enough to support the claimed 1.00 identification rate.

Tsai et al. (2013) introduced a supervised learning method 
for identification of defects using Independent Component 
Analysis (ICA) in EL images. They used a training stage 
with 300 solar cell and an inspection stage, where each solar 
cell subimage is reconstructed as a linear combination of the 
learned basis images. They achieved a mean recognition rate 
of 0.93 for a set of 80 test samples.

Anwar and Abdullah (2014) developed an algorithm for 
the detection of Cracks in EL images of polycrystalline 
solar cells. They used anisotropic diffusion filtering fol-
lowed by shape analysis. The authors used 600 randomly 
selected solar cells: 240 for training and 360 for testing. 
They reported a sensitivity of 0.97, a specificity 0.80 and 
an accuracy of 0.88 with a Support Vector Machine (SVM). 
This technique is limited to Cracks detection.

Rodriguez and Garcia (2014) proposed a SVM to detect 
defects in a dataset of 47 EL images of cells with Shunts and 
Cracks. They obtained a precision of 0.91 and 0.86 respec-
tively. The authors counted classified defects. Additionally, 
this technique relies on the capacity of the SVM to separate 
connected busbars and other features from the useful areas 
of the cell. In our experiments, we found this approach only 
usable in very specific types of designs.

Tseng et al. (2015) proposed a method to detect Finger 
Interruptions in multicrystalline solar cells using EL imag-
ing. They applied a binary clustering technique to features 
from candidate regions, achieving and accuracy of 0.99 
in 60 multicrystalline solar cells. The main disadvantage 
of this technique is that it can only be applied to Finger 
Interruptions.

Xiaoliang et al. (2017) used an EL segmentation tech-
nique combined with a morphological post-processing. The 
original research is not available in English, but an analysis 
by Qian et al. (2017) reports a precision of 0.87, a recall of 
0.70; and an f-measure of 0.78 using an unspecified region 
unit. A separate experiment reports 1 misclassification in 60 
defect-free images and 40 defective images.

Deitsch et al. (2018) used a SVM and an end-to-end deep 
Convolutional Neural Network (CNN) to achieve an aver-
age accuracy of 0.82 and 0.88 respectively when detecting 
cells with defects in EL images. With this technique, they 
predicted a defect likelihood that may lead to efficiency loss 
in a cell. The authors did not provide quantitative metrics 
of the results.

Chen et al. (2018) used a Convolutional Neural Network 
(CNN), to analyse multispectral EL images and detect visual 
defects in polycrystalline solar cells. They obtained an aver-
age precision of 0.88 for 6 types of defects defined in visual 
categories such as thick lines, color differences or dirty cells.

In summary, previous works showcase how useful com-
puter vision techniques can be to detect defects in solar cells, 
achieving high accuracy and precision. However, an analysis 
of these researches also exposes problems. Most of these 
works employ few samples, are limited to classification of 
solar cells into defective or non-defective or are specific for 
one type of defect. More importantly, they did not report 
result metrics in pixels, so it is unclear how reliable com-
puter vison techniques are when detecting the position of a 
defect. This is a relevant problem cause most faults due to 
Shunts and Cracks may be repaired by cutting or isolating 
a piece of the cell using laser technology (Schmauder et al. 
2012), and knowing the type and location of each defect is 
crucial for repairing.

Recently, some authors (Rodriguez-Araujo and Garcia-
Diaz 2014; Schmauder et  al. 2012) theorised about the 
feasibility of cell repair automation based on EL imaging. 
However, the ability of a Computer Vision system to clas-
sify multiple defects and find their accurate location and 
extension remains unknown and such system was never con-
structed or tested. We prove that state of the art computer 
vision techniques can detect the type and location of com-
mon defects in EL monocrystalline cell images. We also 
show the design and results obtained with Cell Doctor, to 
our knowledge, the first built system used to diagnose and 
repair solar cells in manufacturing conditions.

Materials and methods

Cell Doctor is a fully automatic system that can be inte-
grated in a manufacturing line. It detects manufacturing 
problems and repairs them with no human intervention. 
Figure 3 shows Cell Doctor in operation.

The main components of Cell Doctor are: an EL Sta-
tion, a Laser Station and a I–V Station. In these stations, 
stages of analysis and treatment take place. An industrial 
OMRON adept Viper 650 robot equipped with a vacuum 
gripper moves the solar cell from stage to stage and the 
whole process is controlled by a Programmable Logic Con-
troller (PLC) and an industrial PC computer that exchange 
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information with each other and with the other elements 
of the system. Figure 4 shows the design of Cell Doctor. It 
works as follows:

1.	 Conveyor Belt The conveyor belt brings packs of solar 
cells, candidates for inspection, into Cell Doctor. This 
component is the input of the system.

2.	 Vacuum Gripper Belt The vacuum gripper belt takes 
solar cells from the conveyor belt and moves them to the 
centering support, one at a time, to be processed.

3.	 Centering Support The function of the centering sup-
port is to mechanically align the incoming cells into a 
predefined position so the robot can operate with them 
with sub-millimetre accuracy.

4.	 EL station This is an Electroluminescence inspection 
chamber. The robot places the solar cell in a precise 
position into the station and the door closes. Isolating 
the chamber from the outside. Then, a pin connector 
is placed automatically on the busbars. The PLC trig-
gers all these operations and communicates the resulting 
status to the PC. Then, the PC triggers simultaneously 
the power source of the Electroluminescence process 
and a Cooled Deep Depletion CCD camera. The cam-
era is placed in a zenithal position inside the chamber 
and cooled to –10 °C. The camera shutter is open for 
8s while the cell is connected to 7.2 A. In the last step, 
the PC analyses the obtained image and performs the 
adequate diagnosis, planning the repair decisions to be 
made.

5.	 Laser Station This is where solar cell treatment hap-
pens. The process initiates when the PC calculates the 
treatment plan and sends the corresponding instructions 
and parameters to the laser station and the PLC. Then, 
triggered by the PLC, the robot places the cell in a pre-
defined position of the chamber and the door closes. The 
chamber is equipped with a Q-switched Nd:YAG laser 
with a fundamental wavelength of 1064 nm, nanosec-
ond pulses and an average power of 100 W. Finally, the 
laser performs the isolation or cutting process using a 
galvanometer scanner to direct the laser radiation over 
the cells.

6.	 I–V Station After the laser process (isolation/cutting), 
solar cells are placed in the last station. This is a testing 
station, where a Solar Simulator provides the I–V curve 
of the solar cells and the main I–V parameters; such as 
fill factor or percent efficiency. This stage allows us to 
determine the cell’s output performance and solar effi-
ciency.

7.	 Output Tray The output tray is the output of the Cell 
Doctor.

Treatment plan

Cell Doctor examines the EL images to locate the position of 
Area Defects, Finger Interruptions and Cracks (see Fig. 2). 
These defects affect the cell efficiency and durability in dif-
ferent ways and we used the criterion of experts to define 
a set of treatment rules, that Cell Doctor uses to create a 
treatment plan for each specific case.

a.	 The laser engraves an isolation ellipse around any Area 
Defect not located in the vicinity of a busbar.

b.	 The laser cuts the cell in half, to discard a part contain-
ing Area Defects close to a busbar (~ 2 mm).

c.	 When the cell has a Crack, we cut and discard the half 
of the cell containing the crack if possible.

d.	 Cells that contain defects described in b. or c. affecting 
both halves of the cell, are discarded.

e.	 We do not treat Finger Interruptions.

Pose estimation and calibration

The first step in cell analysis process is to calibrate the 
camera system estimating the transformation from image 
coordinates to space coordinates understood by the laser 
station (laser coordinates). Calibration is a key factor in the 
repair process, since treatment depends not only on the spa-
tial position of the defect but also on its relative position in 
the cell (i.e. we need to consider the proximity of cracks to 

Fig. 3   Cell Doctor in operation
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busbars since when a Crack affects a busbar, experts con-
sider the cell unrecoverable).

Mechanical components such as the robot arm and the 
Centering Support (Fig. 4.3) introduce a source of error, 
adding variability to the positioning of the cell that cannot 
be eliminated since there is no camera to reacquire the posi-
tion in the Laser Station (Fig. 4.5). We control this error 
with a careful configuration of each component, achieving 
a variability in position < 0.1 mm and a variability in rota-
tion < 0.1°. This magnitude is negligible and we assume that 
the robot will always place the cell in the same position.

The system detects the position of each cell in the EL 
image and then finds the homography that projects its posi-
tion into the laser coordinates (Rodríguez 2014). Knowing 
the orientation (pose) of the cell in the EL Station, allows the 
detection of undesired features in the image. For example, 
solar cells have different shapes or marks depending on the 
manufacturer; and the EL station can use busbars connectors 

of different types that interfere in the results. This technique 
also makes the process robust to the position and orientation 
of the camera.

We detect the position and pose of the cell in the images 
using the following steps. Figure 4 details this algorithm:

1.	 A threshold transformation separates in the image the 
area occupied with the cell from the background.

2.	 The Douglas-Peucker algorithm (Prasad et al. 2012) 
finds the polygon that describes best the resulting area.

3.	 The orientation from the polygon is the initial estimation 
of the cell position.

4.	 Canny edge detector and a Hough transform techniques 
detect with accuracy the edges of the cell in the image.

5.	 Edge information refines the initial pose estimation. We 
use a least-squares scheme to match resulting refined 
corners with reference laser coordinates with an hom-
ography transformation.

Fig. 4   Architecture of Cell 
Doctor 



1168	 Journal of Intelligent Manufacturing (2021) 32:1163–1172

1 3

Feature detection

An important step in our process is to detect the connected 
busbars and possible branding marks before analysing the 
effective cell surface. This procedure solves the problem 
in Rodriguez-Araujo and Garcia-Diaz (2014) where these 
features can be usually diagnosed as defects when tested 
with some experimental designs (Fig. 5).

Figure 6 details the busbar detection algorithm. The algo-
rithm works as follows:

1.	 Using the cell pose, we align the image so that the con-
nected busbars appear horizontally.

2.	 A median filter normalizes and smooths the images. This 
standardizes the intensity range and removes most of the 
texture detail from the image.

3.	 A threshold segmentation separates the dark regions 
with no EL activity that may belong to the busbars.

Fig. 5   Pose estimation algo-
rithm. Solar cell image, with 
artificially added underexposed 
and overexposed areas (0). 
Threshold mask (1). Polygon 
that describes the threshold 
mask using the Douglas-
Peucker algorithm (2). Polygon 
Orientation (3). Canny edge 
detector (4). Initial pose esti-
mation (outer rectangle) and 
refined pose (inner rectangle) 
(5)

Fig. 6   Busbar detection algorithm. Solar cell aligned so busbars 
appear horizontally (1). Normalization and median filtering (2). 
Threshold segmentation (3). Closing operation (4). Band sampling 

(5). Threshold binarization (6). Locating edge transitions (7). Linear 
regression detects busbar edges (8)
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4.	 A closing morphological operation fills the holes in the 
segmented image.

5.	 We sample the segmented image in predefined vertical 
bands and transform each band in a vector adding up 
rows horizontally. That is, a vector represents a sampled 
band in the image and each vector number represents 
the number of pixels with no EL activity in a row of the 
band.

6.	 A threshold operation binarizes the vectors, setting to 0 
the pixels with significant EL activity in the correspond-
ing band row.

7.	 We find the 0-to-1 or black-to-white (BW), and the 
1-to-0 or white-to-back (WB), transitions in each vector. 
Those transitions correspond to the edges of the busbars 
in the current band. Finally, we adjust the result by look-
ing for additional edge values, filter invalid points and 
add missing values by interpolation.

8.	 A linear regression model obtains the lines that define 
the edges of the busbars.

After detecting the busbars in the image, we use an 
algorithm to find special branding marks in the images. 
Our algorithm uses the Circle Hough Transform (Illing-
worth and Kittler 1987) to detect the branding marks in the 
solar cells, but other types of marks may require a different 
pattern matching strategy. Figure 7 shows an example of 
the branding mark detection process.

Solar cell diagnosis

To diagnose defects in a solar cell, a machine learning 
algorithm analyses the effective surface of the cell from 
EL images. After excluding the area outside the cell, the 
edge pixels, the busbars, and the branding marks from the 
analysis; Cell Doctor classifies then each pixel into a cor-
rect category and 3 different categories of defects: Area 
Defects, Finger Interruptions and Cracks (see Fig. 2). The 
classification strategy follows this pipeline:

Step 1 Images are first normalized, then downsampled 
to a size of 512 × 512 pixels and finally converted to a 
black and white colour space with 256 possible levels of 
grey.

Step 2 A set of Log-Gabor Filters (Field 1987) repre-
sents the spatial and frequency information around each 
pixel. Log-Gabor filters are a logarithmic transformation of 
the original Gabor filters that, according to some authors, 
can model the visual cortex of mammalian brains (Marĉelja 
1980). Gabor filters allows the simultaneous analysis of 
space and frequency in a EL image by capturing specific 
frequencies in specific orientations around each pixel. We 
used 20 filters with central frequencies f0 = (1/3, 1/6, 1/12, 
1/24, 1/48) and with orientations θ0 = (0°, 45°, 90°, 135°). 
Our filters have a bandwidth in frequency of B = 0.8145 and 
an angular bandwidth of Bθ = 1.2188. The output of each 
Log-Gabor filter is a complex number so, for each filter; we 
store its real and imaginary part, its magnitude and its phase. 
As a result, each pixel is described with 80 features and the 
original pixel value, adding up to a total of 81 features.

Step 3 A Principal Component Analysis (PCA) obtains 
a new set of features, called principal components, con-
structed as a linear combination of the original set of Log-
Gabor Filters. Principal components are built iteratively, 
and each new linear combination has maximum variance 
for the data, being uncorrelated with the previous linear 
combinations. We chose to preserve all the variance of the 
original set in this step, obtaining a new set of 81 linearly 
uncorrelated features.

Step 4 Our feature set is standardized by removing the 
mean and scaling the data to a variance of 1.

Step 5 A random forest model (Breiman 2001) classi-
fies each pixel into one of the 4 different categories. A ran-
dom forest is a technique that aggregates several decision 
trees to create a composite model. Our algorithm oper-
ates by repeatedly sampling with replacement the original 
training set to obtain 35 new training sets that train 35 
decision trees with a maximum depth of 15. With each tree 
split in the training stage, we randomly select a subset of 
25 features, reducing significantly the complexity of the 
final model. The result of the algorithm is the average of 
the results of the 35 individual trees.

Fig. 7   Branding mark detection. Solar cell image after pose estima-
tion (a light blue polygon marks edges), and after busbar location 
(horizontal green lines created from blue sampled points show the 
location of the busbars); the branding mark appears as a circular pat-
tern in near the corner of the cell surface (a). Detected branding mark 
(A bright blue circle marks the detected mark) (b)



1170	 Journal of Intelligent Manufacturing (2021) 32:1163–1172

1 3

Results and discussion

We trained, validated and tested our model using 67 EL 
images of solar cells with different types of defects. These 
images were labelled by a set of experts, and regions 
marked as too unclear or ambiguous were ruled out of 
the set. The resulting dataset consists in approximately 
10 million samples where each sample represents a set of 
features from a pixel.

We then divided our data into a Training/Validation set 
that contains 80% of the samples, and a Test dataset, contain-
ing 20% of the samples. To select and tune our model, we 
performed an exhaustive parameter search with a fivefold 
cross validation strategy. This strategy randomly divides the 
Training/Validation set into 5 subsets, each one with 20% of 
its samples. The training process uses 4 of the sets for train-
ing and 1 for validation. The training is repeated 5 times, 
using a different set for validation each time.

Once the final architecture was defined, we trained a 
new model with the entire Training/Validation dataset 
and used the test dataset to obtain an unbiased evalua-
tion. Table 1 summarizes the structure of the datasets and 
details the number of samples in each category. Table 2 
details the obtained results.

Results from Table 2 show an excellent performance in 
all metrics at pixel level (above 90%), with the exception 
of precision values for Finger Interruptions and Cracks 
that show values around 60%. These results show that a 
significant part of the pixels detected as Finger Interrup-
tions or Cracks, are False Positives. This is an expected 
result, due to ambiguity in defect boundaries and the arbi-
trary width of Finger Interruption and Crack labels. To 
remove the variability in the performance of the experts 
from the results, we conducted a second experiment.

In the second experiment, the images of all datasets were 
classified again, this time frame by frame. This is how Cell 
Doctor would function in real conditions and this opera-
tion mode allows us to preserve the spatial reference of each 
label. Thus, we performed a dilation morphological opera-
tion in the defect labels when computing false positives. 
With this simple operation, variability of manual labelling 
is accounted for. Table 3 shows the obtained results.

Results from Table 3 show an increase in precision from 
0.57 to 0.77 for Finger Interruptions and from 0.62 to 0.99 
for Cracks. These results prove the overall reliability of Cell 
Doctor.

Cell Doctor cannot be directly compared with recent 
works, since they not provide pixel metrics, usually reduce 
the problem to binary classification, use different types of 
solar cells and in most cases provide only partial results, 
being Accuracy and Precision the most common metrics. 
Table 4 shows a comprehensive summary of results from 
recent works.

Analysing results from Table 4, Cell Doctor obtains an 
accuracy similar to Tseng et al. (2015), a technique specific 
for Finger Interruptions; and improves significantly all other 
reported metrics.

To test Cell Doctor in real operation conditions, 
we performed a final experiment with 50 new images 

Table 1   Dataset structure Ok Area defects Finger interrup-
tions

Cracks Total

Training dataset 6,247,892 94,170 30,110 22,670 6,394,842
Validation dataset 1,561,973 23,543 7,527 5,667 1,598,710
Test dataset 1,952,466 29,428 9,410 7,084 1,998,388
Total 9,762,331 147,141 47,047 35,421 9,991,940

Table 2   Performance metrics 
for each defect in the first 
experiment at pixel level

Performance Training and validation Test

Accuracy Precision Recall Accuracy Precision Recall

Ok 0.9935 0.9998 0.9934 0.9932 0.9997 0.9933
Area defects 0.9989 0.9362 0.9897 0.9987 0.9314 0.9832
Finger interruptions 0.9965 0.5780 0.9893 0.9964 0.5690 0.9705
Cracks 0.9979 0.6298 0.9993 0.9978 0.6164 0.9855

Table 3   Performance metrics for each defect in the second experi-
ment

Accuracy Precision Recall

Ok 0.9948 0.9950 0.9998
Area defects 0.9994 0.9406 0.9871
Finger interruptions 0.9988 0.7772 0.9938
Cracks 0.9999 0.9966 0.9696
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recorded with different experimental conditions. We used 
two different busbars connectors, different camera shut-
ter speeds (ranging from 6 to 8 s) and small amperage 
changes in the EL station (± 1 A). Cell Doctor perfor-
mance in this experiment was obtained by comparing its 
results with those detected by a set of experts. Table 5 
shows the number of correctly and incorrectly identified 
defects of each type and Table 6 shows the resulting per-
formance metrics.

Results from Table 6 prove the generalization ability 
of Cell Doctor obtaining similar results to our previous 
experiments and show that our technique can be used suc-
cessfully in industrial environments with real manufactur-
ing conditions.

Conclusions

Solar cells represent nowadays one of the most important 
sources of clean energy in modern societies, and to meet 
the production requirements of the market, it is important 
to be able to detect and repair defects introduced in the 
manufacturing process.

We introduce Cell Doctor, a system based in com-
puter vision that when integrated in a manufacturing line 
can accurately detect and diagnose defects in real time 
in the manufactured cells. Cell Doctor performs then a 
treatment plan that allows to recover or discard defective 
cells, reducing wastes and improving the efficiency on the 
manufacturing process.

In this paper, we present the computer vision approach 
used for the automatic detection and diagnosis, and evalu-
ate it against a novel dataset of Electroluminescence Infra-
red imaging of PV cells.

Obtained results show a significant improvement in 
accuracy, precision and recall compared to previously 
reported results. Achieving an accuracy and recall above 
90% for Cracks, Area Defects and Finger interruptions; 
and a Precision of 77% for Finger Interruptions and above 
90% for Cracks and Area Defects.

Our experimental methodology shows for the first time 
that the position of these defects can be obtained with 
accuracy using image inspection, and the automatic diag-
nosis system presented here, was integrated in Cell Doctor 
with a treatment plan allowing for the automatic recovery 
or discardment of defective cells in industrial manufactur-
ing plants, reducing wastes and improving the efficiency 
on the manufacturing process.

Table 4   Summary of previous reported results

Technique Publication Accuracy Precision Defects Cell Type

KAZE/VGG features + SVM Deitsch et al. (2018) 0.82 – Average results with differ-
ent types of defects

Monocrystalline and mul-
ticrystalline

CNN Deitsch et al. (2018) 0.88 – Average results with differ-
ent types of defects

Monocrystalline and mul-
ticrystalline

CNN Chen et al. (2018) – 87.30 Average results with differ-
ent types of defects

Multicrystalline

Multi Spectral CNN Chen et al. (2018) – 88.41 Average results with differ-
ent types of defects

Multicrystalline

Specific Feature Extrac-
tion + Spectral Clustering

Tseng et al. (2015) 0.99 – Finger interruptions Multicrystalline

Specific Image Segmenta-
tion + SVM

Anwar and Abdullah (2014) 0.88 – Cracks Multicrystalline

Gabor features + SVM Rodriguez-Araujo and 
Garcia-Diaz (2014)

– 0.91 Area defects Monocrystalline

Gabor features + SVM Rodriguez-Araujo and 
Garcia-Diaz (2014)

– 0.86 Cracks Monocrystalline

Table 5   Classification results for the test with factory conditions

TP: True positive, FP: False positive, FN: False negative

True defects TP FP FN

Area defects 40 38 0 2
Finger Interruptions 74 73 10 1
Cracks 59 58 3 4
Total 173 169 13 7

Table 6   Performance metrics for the test with factory conditions

Precision Recall

Area defects 1.00 0.95
Finger Interruptions 0.88 0.99
Cracks 0.95 0.94
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