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This paper proposes a model to include investments in demand flexibility into traditional transmission expansion
problems under uncertainty. To do so, a dynamic power flow model is proposed. The model is solved via ap-
plying a value function approximation in form of a neural network on the operational problem, allowing to yield
a result for the non-convex investment problem. Additionally, robust sets are applied and linearized to deal with
uncertainty and decrease computational complexity. In similar manner, Karush Kuhn Tucker conditions are used
to transform a tri-level into a bi-level problem. Case studies for systems of varying complexity show the con-

vergence of the algorithm as well as that flexible resources can be used as a cost-effective substitute for trans-

mission lines in grid expansion.

1. Introduction

In its essence, transmission expansion planning problems provide an
overlap between long-term investment problems and short-term op-
erational problems. This is a result of that such decisions have to ac-
commodate not only for long-term financial impact and potential future
system changes, but also have to consider short-term goals such as n-1
criteria and current day network topologies. Transmission expansion in
electrical power systems has been established as a distinct family of
problems approaching this balance [1]. To ensure operational stability
whilst considering potential detrimental developments in the systems,
focus on methods to prepare for the worst possible scenarios has led to
robust optimization techniques providing the state-of-the-art [2].

Advances in real-time operation and renewable forms of generation
impose additional challenge on current day transmission expansion.
Those challenges include consideration of increases in wind power
penetration [3], implementation of intelligent transmission systems by
modeling line switching [4] and balancing of short-term uncertainty
such as renewable generation with long-term uncertainty such as future
demand peaks [5].

Further, approaches to accommodate for electrical power markets
[6] and electricity storage [7] can be found in literature.

Traditionally, transmission expansion problems deal with an upper-
level problem consisting of binary investment decisions and the lower-
level problem of operational feasibility of each investment. Such
Expansion models and the resulting real world implementation projects
often favor line investments to non-transmission alternatives [8,9]. As a
result of this, modern electrical power markets show a similar bias to-
wards grid capacity enhancements [10].
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Nonetheless, elastic demand has been considered in computation-
ally demanding transmission expansion problems such as AC power
flow problems [11] or problems under renewable generation and sto-
rage [12].

Demand flexibility is defined as shifting eligible loads across the
hours of a day to off-peak periods, reshaping the daily load curve in
order to reduce generation cost [13]. In other words, demand flexibility
is an effect similar to price elasticity, that is connected dynamically, i.e.
over subsequent time periods [14].

As such, demand flexibility can be considered a form of demand
response referred to as ’deferrable demand response’ [15]. The differ-
ence to traditional formulation of demand response which can often be
seen as increased elasticity of the demand curves is that flexible de-
mand is consumed instead of shed, but can be postponed to a later time
period. This dynamic, flexible operation is often provided by household
and end consumer devices such as water boilers, heating and lighting.
On a small scale, such effects of dynamically postponing such con-
sumption through flexible devices or loads through storage has proven
itself a valid tool to approach traditional grid problems [16]. Even
under competition, installation of such devices has shown beneficial
financial effects on both consumers and retailers in the grid [17].

Furthermore, entire national systems have been analyzed for the
potential prospects of a system-wide introduction of ’smart’ appliances
allowing for such demand flexibility. For example analyzed Ref. [18]
future projections of device installation in Great Britain, showing a
significant potential impact of these devices on the national grid. The
paper concludes in that regulation, market design and the need of ad-
ditional control schemes present the largest hurdles in future utilization
of such flexibility resources.
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Nomenclature

Index

Z transmission line indicator
Y demand flexibility indicator
S load shedding indicator

g generation unit

n, ny system nodes

ref reference node

th, b time period

k cut

Variables

Z transmission investment decision [binary]
x generated quantity [MWh]

x5 shed load [MWh]

voltage angle [°]

demand flexibility investment decision [binary]
demand shift into a subsequent period [MWh]
operational problem lower bound [€]

S v O

Dual Values

yb, ¥7, y8, vy equality constraint

)% inequality constraint lower bound

ac, pd, g¢, @t inequality constraint upper bound
Parameters

£ uncertainty

dé) nodal demand [MWh]

B transmission line susceptance [siemens]

F line flow capacity [MW]

x (&), x (&) generation capacities [MW]

f demand flexibility period capacity [h]

5(6) demand flexibility quantity capacity [MWh]
r uncertainty budget [%]

6 approximation parameters (neural network weights) R
Functions

c! investment cost function [€]

co operations cost function [€]

c generation cost function [€]

ps price of unfulfilled demand [€/MWh]

1) value function approximation [€]
Sets/Vectors

N? transmission line starting nodes

Nf transmission line ending nodes

NY demand flexible nodes

N%I € N?, N#! € N transmission line investment nodes
NYT C NY, NJ'T ¢ NY demand flexibility investment nodes
N = N?UN" system nodes

G system generation units
T considered time periods
Nzone nodes gathered in a zone
K cuts

Robust Set

d, x, X, § replacement variables for uncertain parameters [MWh],
[MW]

dref, xref, xref gref reference points [MWh],[MW]

d?, x®, x4, 54 fluctuation ranges [MWh],[MW]

As shown, most of the studies focus on a holistic perspective, mainly
based on market structure and the technical pitfalls of large scale im-
plementation, whilst leaving small scale operational effects out of the
analysis [19]. An example is given in the analysis provided by the two-
part paper shown in Refs. [20,21], where the first part formulates a
market clearing approach for the non-convex problem of adequately
remunerating flexible demand and the second part demonstrates how to
apply such on electric vehicles. Even though the papers present a well-
performing market model in itself, the issue is not only the legal hurdles
that individual countries would provide in practical implementation of
such concepts but also the lack of grid-specific implications. Another
example is provided by Ref. [14] which formulates a dynamic demand
elasticity model to test various market models, focusing on the pricing
scheme aspect.

The market-centric view itself is inherited from the implementation
hurdles related to classical demand response systems which mostly
analyze the control-problem of large scale control of the individual end
consumer devices [22] and is similarly applied on studies related to
demand flexibility such as optimal charging of electric vehicles [23].

Expansion planning of demand response in order to capture un-
certainty from wind power generation has been analyzed in Ref. [24].
The paper utilizes a linearized AC power flow approach to model the
grid. A similar focus on modeling uncertainty under renewable gen-
eration is provided by Ref. [25] which presents a multi-objective,
probabilistic transmission expansion planning problem.

Comparison studies of demand flexibility and transmission line

investments have been conducted and showed indication that invest-
ments in flexible demand could support dealing with congestion issues.
For examples uses Ref. [26] a deterministic investment model in its
evaluation, concluding that flexible in the power system might support
resolving congestion issues. In addition, demand flexibility as a tool to
reduce transmission via capacity market participation has been in-
troduced in Ref. [27].

Investments in flexible demand as an alternative for transmission
investments has been analyzed in Ref. [28]. The paper analyzes the long
term effects of shiftable loads. However, only long-term effects of in-
stalling such shiftable loads are included in the model. However, similar
to other literature the paper does not display the operational/short-
term effects of the dynamic nature of shiftable loads (i.e. optimally
utilizing shifts between smaller periods such as hours). Analysis of such
decisions is in real-world examples implemented via combining several
model types [29], which weakens the direct comparison of such solu-
tions as short-term effects are a core factor in profitability of flexible
demand [30,31].

The reason for approximating these short-term operations in order
to make long-term investment decisions can be found in the computa-
tional complexity of short-term dynamic models. Ref. [32] approaches
this investment in flexible demand from a profit-making generators
perspective. Nonetheless, operational decisions as part of the invest-
ment analysis of a grid-expanding agent is not included in the proposed
model.

This is the issue that the here presented work attempts to solve.
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2. Contributions of this paper

The concept proposed in this paper extends the traditional robust
optimization problem as presented in e.g. Refs. [2,28] to multiple,
dynamic periods. The novelty of the proposed model lies in that the
value of investment is considered from a purely operational perspective
instead of utilizing market-based concepts such as e.g. flexibility con-
tracts [33]. Focusing purely on operations allows for a leaner problem
formulation that reduces modeling complexity compared to market-
based alternatives presented in literature [14,34,21,35]. In turn, this
allows considering transmission grid-topology and dynamic power
flows, allowing to compare long-term grid investments directly to the
dynamic short-term operation of flexibility investments, a first in lit-
erature.

However, the resulting dynamic operations and transmission ex-
pansion problem creates computational hurdles [36]. To deal with in-
creasing search spaces, heuristics based on non-linear function ap-
proximations was proposed [37] and successfully applied in literature
[38].

Recent advances in computational resources and associated effi-
ciencies has led to an increase of application of such tools in fields such
as image and speech recognition [39]. In similar manner, this paper
proposes an algorithm that utilizes neural networks in order to detect
the 'most beneficial investments’ in order to allow heuristics as an al-
ternative for application in dynamic problems that exceed the limits of
computational resources under traditional robust optimization techni-
ques [40]. Thus, the contributions can be summarized as:

e establish a dynamic power flow model for flexible resources that
combines short-term dynamic operational decisions with long-term
investments. This is a first in literature, allowing to trace the long-
term effects of investing in flexible demand and storage directly
with transmission line investments under uncertainty.

® propose a value function approximation of the operations problem
in order to efficiently solve the investment problem. This allows for
efficiency gains over traditional solution methods for robust opti-
mization problems such as the later discussed ’Column-and-
Constraint-Generation’.

e demonstrate the importance of such a model framework by utilizing
dynamic extensions of well-established case-studies to show that
investments in flexible demand can be a cost-effective alternative to
grid investments. This demonstrates the capabilities of the proposed
solution method in such and similar dynamic current day problems
(e.g. problems under storage).

The proposed concept of the value function approximation builds on
a suggestion raised by Ref. [40]: enhancing solution capabilities in
robust problems via detecting ’significant contributors’ (i.e. investments
contributing most to cost reduction). In comparison to previous ’dy-
namic transmission expansion problems’ such as Ref. [36], the here
presented focus of the dynamic problem is in the operations level, i.e.
the inner problem. This allows for inclusion of demand flexibility in
form of load-shifts but also other temporal factors such as storage, that
previous literature did not allow for.

3. Transmission expansion under uncertainty

Assumed be a number of transmission lines connecting the busses/
nodes in vector N? with the busses/nodes in vector Nf. A number of
those transmission lines between N4/ C NZ and N/"' C N# can only be
utilized after a one-time investment with cost cZ.

The optimal (i.e. minimal) cost of such an expansion investment
problem is thus as a solution to a Mixed Integer Problem (MIP) in the
form of:
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Solving this upper-level problem requires a solution to the lower-level
problem defining the optimal operational cost C° considering un-
certainty.

It has to be noted that this uncertainty still implicates the optimal
investment decision and dealing with such will be attempted in a later
section of this paper. Until then, it will be assumed that uncertainty &
comes in form of a single known scenario.

The lower-level problem is the DC optimal power flow representa-
tion of Ref. [2]:
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geG neN (2a)
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Objective function (2a) is the minimization of the cost of fulfilling the
demand. It contains the generation cost functions of all generation units
in the system and the price of not meeting the demand and thus
shedding the load. Decisions are generation, shed load and the voltage
angles. Shed load is included to ensure full recourse for the upper-level
problem. In order to have generation preferred over load shedding,
constant pS should have a high value assigned.

Equality Constraint (2b) is the implementation of Kirchhoff’s law,
that requires the power balance (i.e. generation - demand + nodal
balance) to be equal to O at every bus/node. The constraint is a DC-
approximation of the physical (AC-) reality as it only considers the line
susceptance whilst ignoring line resistances. Formulating this opera-
tions problem as such an approximation is not unique to the work
presented here. Instead, it presents the norm in traditional transmission
expansion problems [41,42]. The reason is that the demanding non-
convex investment problem requires a simplification in the operations
problem, as the nonlinearities of the AC power flow would otherwise
not allow for the optimal search in the space of (i.e. the comparison of)
potential investments [43].

In addition, demand is assumed to be subject to uncertainty.

Capacity constraint (2c) defines that the range of the maximum load
shed has to be within the range of the demand.

Capacity constraint (2d) requires the flows on the transmission lines
to stay within the given limits. It has to be noted that the set N considers
both candidate lines as well as already existing transmission lines.

Capacity constraints (2e) define the generation limits within which
the units operate. These limits are considered dependent on uncertainty
in order to accommodate for renewable generation capacities.

Equality constraint (2f) defines the reference bus of the system
(which could e.g. be the node with the largest generator).
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4. Flexibility expansion under uncertainty

The investment problem for demand flexibility expansion is for-
mulated similar to transmission flexibility problem (1). In this problem,
a number of busses/nodes N¥-/ C NY offer potential to expand their
existing capacities for flexible demand:

nenNY.I

cl()= minco[g, y)+ D e )
y

vV ne NV
V ne N\NYI 3)

s. t. ¥, €10, 1]
K=1

It can be observed that the investment problem for transmission ex-
pansion and expansion in flexible demand show near similarity, with
the exception of transmission lines being established between two
busses/nodes n and n, and demand flexibility connecting a single such
node n with itself inter-temporal. The investment cost in flexible de-
mand ¢ is in general of smaller magnitude than the investment in
transmission lines ¢Z [13]. This is also represented in the case study
presented below. Due to this, it can be reasonably assumed, that the
number of potential investments will thus also be higher than in tra-
ditional transmission expansion models. Such lower cost and more
potential locations (i.e. buses with connected consumers such as
households) will thus increase the complexity for the investment pro-
blem, requiring efficient solution methods (such as proposed below) in
order for the investment problem on this ’deferrable demand response’.

This mechanism is displayed in Fig. 1, which compares the two
expansion problems. The connection over time periods that shifting
flexible demands represents leads to different operational problems as
well. This is due to the possibility of decreasing generation (cost) in one
period by increasing the generation (cost) in an other period:
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As annotated, objective function (4a) under demand flexibility has to
consider the cost minimization of several consecutive periods.

Implementing demand shift from a period to the next is included in
power balance equality constraint (4b). In this formulation, the power
balance can be breached in a single period t. The shift of flexible de-
mand is decomposed into its’ origin periods # and its’ target periods &,
similar to electricity storage as introduced in Ref. [44]. As such, the
demand shift decision s;, 1, » denotes the quantity moved from a period
to a period t, within a node n.

Such a shift of demand can only happen if there is demand
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period ¢ period ¢ + 1
~Y ~Y
bus 1 l: bus 2 bus 1 I: bus 2
bus 3 ; bus 4 bus 3 1 bus 4
| |
N R
(a) Transmission Line Expansion
period ¢ period ¢t + 1
E..."."""""""""."...""""""".""""""""""""V
~J ~J
bus 1 l bus 2 bus 1 I bus 2
bus 3 bus 4 bus 3 1= bus 4
| |
~Y ~Y

(b) Flexible Demand Expansion

Fig. 1. Comparison of proposed Expansion Models.

available. This is implemented by the changes in constraint (4c).

Transmission capacity constraint (4d), generation capacity con-
straints (4e) and reference bus balance (4f) are implemented similar to
the previous case. Only the additional dimension of time is considered
and the transmission line investment decision z was removed in this
case.

The remaining constraints (4g)—(4i) are the results of the decom-
position into ’from’ and ’to’ periods:

Inter-temporality constraint (4g) ensures that flexible demand can
only be shifted into future periods.

Period capacity constraint (4h) ensures that demand can only be
shifted within a limited number of time periods instead of the entire
model duration t € T.

Quantity capacity constraint (4i) ensures that the total demand shift
from a single period stays within a given capacity limit.

Assumed Quantity and time limits of demand shifts such as post-
poning running appliances or charging electric vehicles are considered
subject to uncertainty. The reason is that those demand shifts are a
result of uncertain consumer behavior.

5. Transmission and flexibility expansion model under
uncertainty

Considering the two introduced models and their comparison in
Fig. 1 allows to establish a trade-off model between both potential types
of investment decision.

The formulation of the upper- and lower-level problems of this
combined transmission and flexibility expansion model is a fusion of
the previously established models and can be found in A.

On initial inspection, this model might resemble a transmission
expansion problem under storage as solved in e.g. Ref. [7]. However,
there exist fundamental differences in the utilization of flexible demand
compared to storage units.

In addition to flexible demand not having to implement (often non-
linear) charging efficiency curves and the order of load consumption/
load provision being reversed', Fig. 2 highlights an additional differ-
ence in the dynamic decision making of flexible demand. This differ-
ence is that the periods where decisions on using the utility providing
the flexible demand can be made are not continuous over an infinite
time frame.

! with demand flexibility, the load is provided and later consumed, in sto-
rage, the load is consumed and provided later.
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period: t t+1 t+2 t+3 t+4 t+5
charge/ charge/ charge/ charge/ charge/ charge/
Storage Unit wait/ wait / wait/ wait/ wait/ wait/
discharge discharge discharge discharge discharge discharge
. use/ use/ not use/ use/ in
Flexible Demand B . . K !
wait wait available wait wait use

Fig. 2. Comparison: Energy Storage and Flexible Demand.

The reason is that storage units are considered constantly available
in the system (except for maintenance) and accessible for receiving
scheduling decisions. In contrast, flexible demand such as household
appliances and electric vehicles cannot be considered consistently
available, as there are mandatory down-times (e.g. a consumer not
wanting to run their washing machine during nights) or times with
mandatory usage (e.g. a consumer unplugging and using their electric
vehicle).

In traditional systems under storage scheduling this, potentially
infinite, connection in time leads to planning horizons of up to several
years, where accurate modeling of the uncertainties become a crucial
focus of the scheduling models [45].

In the here considered problem setup, though, the potential time
frame is limited to the consumers willingness to shift demand to other
time periods, which restricts demand flexibility models to time frames
of a limited number of time frames such as several hours, with special
focus on the transition between peak- and base-load periods [14].

6. Handling uncertainty

As hinted above and as described in Appendix A, accurate as well as
compact representation of the uncertainty is crucial for solving the
lower-level operational problem and thus the upper-level investment
problem it is nested in.

Appendix A describes how separation into an upper- and lower-level
problem allows to transform the decision problem such that the lower-
level operational problem disregarding uncertainty comes in form of a
convex problem.

In addition to this, the split in a two-level problem also enables
another favorable trait of the expansion problem. The combined in-
vestment problem (A.1) shows how uncertainty only affects the lower-
level problem.

Here be assumed that there exists a representative approximation of
the operational problem:

#°1.2) = C°E, y,2) (5)

How to yield this approximation will be explored in the subsequent
section. For now it shall be assumed that such a value function ap-
proximation ¢© exists, making investment problem (A.1) an MIP. As
discussed in Appendix A, such a problem scales moderately well re-
garding to system size as it does not consider the length of the con-
sidered time frame.

The remaining uncertainties can thus be found in the lower-level
operational problem. To transform this problem into a robust for-
mulation, uncertain parameters are transformed into decision variables
of the lower-level problem:

d=d x@=x.xO=x50=s ©

In this formulation, the uncertain parameters are not considered to be
disconnected to uncertainty. This approach aims to maximize regrets
(i.e. the operational cost) by choosing an equivalent, robust solution
[46]. To provide an example, the objective function minc (&, x) would
be transformed into maxgmin,c(x). This is the reason for that such ro-
bust optimization problems are also referred to as ‘'maximin’ or ‘'max
regret’-formulations.

The uncertainty set is described as proposed in Ref. [47]. In this

formulation, a single uncertain variable (e.g. demand d (£)) is described
by a reference point (e.g. d"*f) and a maximum range of deviation from
this reference point (e.g. + /—d%). Instead of considering a distribution
of the potential outcomes of the uncertain parameters the values of the
parameters are selected to specifically maximize the regret, i.e. the
operational cost C°.

Extending the time-independent description provided in Ref. [47],
in a single time period t a ’stack’ of all variable representations of the
uncertain parameters in the respective time period is considered in the
uncertainty set representation.

The formulation of such a linear uncertainty set based on Ref. [2,48]
is provided in Appendix C. Ref. [49] provides an adaptive reformulation
of such uncertainty sets that increase performance through reduction of
uncertainty space. Nonetheless, the here presented work will be focused
on the traditional formulation, with this newer formulation offering a
starting point for future research.

It allows to transfer uncertainty budget to different system nodes
within a zone N%°"¢ in order to create bottlenecks in critical parts of the
zone. This allows to establish the worst case situation in parts of the
system if there is considerable impact on the total cost of the system.

Having introduced the constraints of the problem allows to for-
mulate the robust equivalent of the lower-level operations problem:
0. 2) ~ nax et EgEG g (%tg) + Dier Dpen P Cin)

s. t. Robust Set Definition (6)
Robust Set Limits (C. 1)
Stationary Conditions (B. 1)
Primal Feasibility Conditions (A. 2b) — (A. 2h)
Dual Feasibility Conditions (B. 2)
Complementary Slackness Conditions (B. 3) 7

As discussed above, applying the approximation of the robust opera-
tional cost (5) similarly on the upper-level expansion planning problem
(A.1) allows to solve this problem as a MIP with a limited number of
decisions considerably less than the range of potential solutions to the
lower-level problem. Nonetheless, even for a limited range of invest-
ment decisions, problems in scalability might arise, that do not allow to
solve for all possible permutations of the binary decisions. These
complications are the reason for the value function ¢° being an ap-
proximation, i.e. the usage of the symbol ~ instead of = in Eq. (7).
However, in case study #1 the technique shows its capabilities to
converge towards the global solution (which would in turn mean =
instead of ~ in Eq. (7)). As the goal of conducting this approximation,
though, is to not cover the uncertainty space entirely however and the
upper-level problem being non-convex, it cannot be entirely dis-
regarded that the solution does not provide the global optimum.
Nonetheless, the approximation will converge towards this solution, as
Appendix D discusses in detail.

7. Handling the ’Curse of Dimensionality’

As presented above and compared to the storage problem, the here
described flexible demand problem does not cover a potentially infinite
time frame. Nonetheless, the here presented model still deals with a
problem typically associated with the Bellman equation: the ’curse of
dimensionality’ introduced by the intertemporality of decisions.
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In addition to this obstacle and as analyzed in Appendix B, the
number of binary decisions increases beyond the size of a typical
transmission expansion problem. This is amplified by the investment
decisions in flexible demand being cheaper compared to transmission
expansion, making the potential target nodes in the system more nu-
merous and thus drastically increasing the problem size of the upper-
level problem.

As a result, the current problem, even though showing no poten-
tially infinite size as the case with typical Bellman equations, shows a
larger number of binary permutations of the upper-level investment
problem where each lower-level operations problem associated with a
single permutation has a larger size itself.

In literature addressing robust optimization, and specifically in
power system applications, a decomposition approach titled ’Column-
and-Constraint-Generation’ (CnCG) [40] provides a popular algorithm
to yield upper-level solutions. A comparison to the proposed technique
is provided in Appendix E. In addition, several other decomposition
methods have been proposed [1].

Similar to other models from literature [2], the here proposed de-
mand flexibility model relaxes the incompleteness of recourse by giving
the possibility to alleviate high demands by allowing for load shedding
in form of variable x5. Disregarding the possibility of too high minimum
generation limits allowing for incomplete recourse, the presented pro-
blem without feasibility cuts would still face a problem due to optim-
ality cuts.

As described in Ref. [40], this problem is that of the CnCG algorithm
increasing the problem dimension. As discussed, the problem size en-
countered with the here presented problem might already outweigh
traditional examples. Thus, instead of using traditional decomposition
algorithms, this paper proposes an alternative in form of a search
heuristic. This heuristic is based on two assumptions, whereas as-
sumption 1 has been discussed above:

1. The size of the problem does not allow for efficient decomposition
alternatives.

2. There is an, albeit potentially non-linear or non-existent, influence
of the individual expansion decisions on the operational cost.

Assumption 2 expresses that certain investment decisions might be
on a spectrum between favorable or indifferent for the operational
problem. In other words, adding additional transmission line or flexible
demand capacities whose investment cost are not considered in the
operational problem, will, for at least some of the investments, lead to a
more or less beneficial outcome as without those capacities. This
means, that a continuous function accordingly approximating ¢° could
be utilized to determine the most beneficial investment decisions and
thus transform the discontinuous upper-level investment problem into a
continuous problem.

The proposed solution heuristic is the following:

0) Initialize ¢°(y, z), Ysved = (g5}, zsolved — (g5}
1) Calculate

o (y, z] =¢0 (y, z) + Vpentd & Op) + Dpen?d Enzesz,z ¢y @) V3. 2

2) Sample y* ¢ YSolved, 7 @ zsolved that solves min r s+ (¥, 2*)
3) Solve lower-level problem (7) for y*, z*
4) Update approximation ¢°(y, z) with the result of ¢°(y*, z*)
5) If not converged and permutations left: back to 1)
else: finished

The algorithm can be considered a variation of value space ap-
proximation with one-step lookahead [50]. A proof of convergence is
provided in Appendix D.

Compared with traditional CnCG techniques, this algorithm allows
for a parallelization in step 2) and 3), where several lower-level pro-
blems can be sampled and solved at the same time and the results used
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to train the same function approximation.

The function approximation applied in the here presented case
studies is introduced in Appendix F. Next and in order to assess the
quality of the convergence algorithm, a small scale case study will be
presented.

8. Case Study #1: 42 nodes

In order to validate the proposed search algorithm, an extended
version of the Matpower IEEE 14 bus system over 3 time periods, i.e. 42
nodes (as shown in Fig. 1), is utilized [51]. The test case is extended by
two line investment options, five demand flexibility options and con-
siders three total time periods with variations in available generation,
flexibility and demand subject to uncertainty. Thus, the total number of
permutations for the investment decisions is 22+ = 128. The lower-level
problem for a single such permutation solved on average within 80 s on
an Intel i7-8850H @2.6Ghz core” utilizing the non-commercial solver
'IPOPT’ [52], allowing to yield all potential operational solutions in
order to validate the capabilities of the search algorithm to converge
towards and find the global solution. This is done by brute-forcing, i.e.
calculating all possible iterations for z and y. The lower-level problem
being convex and every outcome of the objective of the upper-level
problem being known thus ensures that the algorithm is validated
against the global optimum in this 14-bus case.

This is shown in Fig. 3, which displays the sum of operational and
investment cost. In addition, it shows the trajectory of two example
runs of the algorithm with two different starting points, that both find
the global optimum within 6 and 11 iterations respectively. The figure
also shows how investments in flexible capacity outperform investment
in transmission lines, a topic that will be analyzed in the larger case
study presented below.

Fig. 4 shows the convergence of the upper-level investment problem
of the case study for the network shown in Appendix F. As the algorithm
continues searching for the next best solution after discovering a
minimum, it can be used to discover the second-best, third-best and
subsequent optimal investment decisions. Each of the here presented
trial runs found the globally optimal investment decision within 10% of
the potential permutations calculated, decreasing the total solution
time from 2:48 h to 0:16 h when applying the value function search
algorithm as proposed. In addition, the method converged with 2%
fewer iterations as CnCG and also required 25% less time per iteration
compared to CnCG.

The presented technique thus attempts to find and quantify the most
beneficial investments in order to solve those first. Similar data analysis
in transmission problems has been established e.g. in order to detect
transmission line outliers in big data sets [53]. Nonetheless, no tech-
niques have been proposed on using such techniques in scenario se-
lection to increase the speed of robust optimization.

In addition, it has to be noted that the here presented method can be
considered a compliment to established techniques instead of a re-
placement. For example, and as described in Ref. [40], a detection al-
gorithm as the here presented method could be utilized combined with
traditional methods in order to enhance the convergence speed of CnCG
itself, but was omitted from this paper in order to demonstrate the
capabilities of the presented algorithm on its own. Nonetheless, uti-
lizing similar value-function approximations in such methods designed
to solve robust optimization problems can be suggested as an important
starting point for future research.

Below, the method will be proven on a larger test case.

2With similar results on another househould computer with an Intel i5-
9300H @2.40 GHz core.
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Fig. 3. IEEE 14 Total Cost Curve.
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Fig. 4. IEEE 14 Bus Convergence (various test runs).

9. Case Study #2: 360 nodes

In order to test the limitations of the proposed solution approach, a
medium size problem as presented in Fig. 5 and based on the Matpower
IEEE 30 bus system is utilized [51]. As presented in Fig. 1 and described
above, the considered time periods of the problem are interconnected,
thus leading to a 30 bus system over 12 periods (i.e. 30 X 12 = 360
connected buses) showing a greater computational challenge than a
traditional medium size problem in form of the Matpower IEEE 300 bus
system solved non-dynamically (i.e. 300 X 1 = 300 connected buses)
with additional complexity in form of e.g. dual variables for state
equations. The investment cost and the supply/demand patterns with
the potential ranges of the uncertainty are shown in Fig. 6. This figure
also highlights the potential lack of generation capacity within the first
periods.

The amount of investment permutations is 2° = 512 with an average
runtime of 1 h each. As in the previous case study the algorithm showed
to find the global minimum with 7.5% of the permutations, the chosen
number of permutations were 52 (i.e. 10%). It has to be noted here, that
this in no way suggests that the yielded solution is the global optimum,
as the non-convex approximation algorithm only converges towards it.
The resulting optimal investment decisions are displayed in Table 1.
The results show that investments in flexible capacity in bus 5,7,8 and
21 are considered preferable to line investments (with the most optimal
transmission line investment still requiring a combination with invest-
ments in flexibility capacities). This reinforces the underlying assump-
tion stated in the introduction of this paper that investments in flexible
demand capacities could provide cost-effective alternatives to trans-
mission line investments. In addition it demonstrates the necessity of
models as the one introduced in this paper.
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Fig. 5. Case Study #2 Network.

In contrast to this, and as illustrated in Fig. 7, adding such a
transmission line reduces the loads on various transmission lines in the
system. The figure compares the first of Table 1, i.e investing in flex-
ibility in buses 5, 7 and 8 with the last line of Table 1, i.e. investing in a
transmission line from bus 28 to 27 and flexibility in buses 19 and 21.
Certain drastic changes in terms of average line utilization can be ob-
served, for example is the transmission line from bus 22 to 24 nearly not
utilized when choosing the transmission line investment, where in the
optimal investment case it and its neighboring lines are highly utilized.
This also shows that instead of adding another overly utilized line
(being represented as the bottom right purple square in the right figure,
with a utilization of 1 or —1 being congestion) installing flexible re-
sources allows for distributing the utilization over the network.

This is also supported by the results for the uncertainty sets dis-
played in Fig. 8. The figure illustrates the amplitudes as a result of the
lower-level optimization problem. This clearly shows how the robust
optimization identifies bus 5 as a weakness, with the aim of creating a
bottleneck there. As a result, the algorithm finds the optimal counter-
strategy to this bottleneck in form of installing capacity at this bus or, as
described in the second line in Table 1, in form of installing flexible
capacity in its neighboring bus 7. Utilizing these installments do not
only resolve the congestion problem but moreover also lead to a

Investments
Line 1 (6-9) 2 (12-16) 3 (28-27)
22 M€, 10 M€, 12.5 M€,
30 yrs 30 yrs 24 yrs
Flex. 1 (5) 2 (7) 3 (8)
949 k€, 163.5 k€, 255.5 k€,
10 yrs 7 yrs 7 yrs
Flex. 4 (15) 5 (19) 6 (21)
93.44 k€, 700.8 k€, 210.2 k€,
8 yrs 8 yrs 9 yrs

cheaper investment compared to reducing the strain on lines by in-
stalling the transmission line closest to bus 5.

As a result, this case study on this standard system demonstrates the
viability of investments in flexible demand as a feasible and cost-ef-
fective alternative to transmission lines.

10. Conclusion

This paper proposes a novel dynamic power flow formulation in
order to extend the traditional transmission expansion problem to
flexible demand and thus to several time periods. The resulting master/
subproblem consisting of an upper-level investment and a lower-level
operations problem introduces a general issue of dynamic optimization
to the model: the curse of dimensionality [50].

In order to approach this issue of limited scalability, uncertainty sets
are utilized to enhance solution speed. In addition, various problem
reformulations such as quadratic reformulation of complementarity
constraints and linear reformulations of absolute values are applied.
The result is a non-linear binary problem, where each of the permuta-
tions solves well on available non-commercial software. To increase
solution speed and allow for approaching larger problems, a heuristic
search based on a value-function approximation of the non-linear total

550
500
450
400
MWh

350

300

Fig. 6. Case Study #2 Data.
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Table 1
Case Study # Total Cost 12 h period.
Linel Line2 Line3 Flex1 Flex2 Flex3 Flex4 Flex5 Flex6 total cost [k€]
bus (6-9) (12-16) (28-27) 5) ) ®) (15) (19) 21
0 0 0 1 1 1 0 0 0 9763.247
0 0 0 0 1 0 0 0 0 9905.228
0 0 0 0 1 0 0 0 1 9937.228
0 0 1 0 0 0 0 1 1 10710.16
Optimal Investment Best Transmission Line Investment line utilization
- - .-
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1 [ | o - - 0.4
-
- r =l
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bus - n bus - [ -00
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~ ' ' 1 ' ' ' ' l ' 1 l l l l 1 2 i
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Fig. 7. Average Transmission Line Utilization Results.
cost curve containing operational and investment expenses is con- such dynamic models. This comes as a result of that the investments in
ducted. This method was applied on two standard test systems of small flexible demand capacities was considered financially advantageous to
and medium size and showed a significant increase in solution speed. the investment in transmission lines. This might open up new possibi-
The analyzed test cases not only highlight the efficiency gains of lities for transmission system operators that can utilize this insight to
applying the framework, they also show the importance of utilizing lower system investment and operational cost simultaneously. In
Demand Mwh Flexible Demand Capacity MWh
- - 200 -
m - m - 125
o - ———— ..
~ 160 -
> - o - 100
g, 120 o :
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Fig. 8. Uncertainty Set Results (Optimal Investment Decisions).
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traditional literature, this aspect was separated into two, potentially
opposing, objectives.

In addition to this, the paper also highlights various starting points
for future research such as extending the proposed model with different
uncertainty set formulations or combining traditional solution techni-
ques such as ’Column-and-Constraint-Generation’ with the proposed
approximation technique. Current advances in deriving such approx-
imations via neural networks suggest the potential of future techniques
to solve the here presented problem even more efficiently in the future,
highlighting the potential of future techniques to solve similar robust
optimization problems via methods built on the core structure of the
heuristic outlined in this paper.

Furthermore, the proposed model provides applications beyond
analysis of flexible demand. By reformulating the lower-level problem
as Markov decision processes and applying related techniques such as
e.g. discounting future values and adding required technical specifica-
tions such as charging efficiencies, the problem could similarly be ap-
plied on investment decisions in storage facilities. In addition, the
problem could be reformulated to cope with various remuneration

Appendix A. Combined optimization model

Electrical Power and Energy Systems 124 (2021) 106252

schemes for demand response via formulating different cost curves in
the lower-level problem. This would connect the investment problem to
tariff- and market models which provide the largest share of existing
literature on flexible demand.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgement

The author would like to thank the project consortium of the
SINTEF research project ”Modeling Flexible Resources in Smart
Distribution Grid - ModFlex” (255209/E20) and the Norwegian
Research Council for supporting this work.

The upper-level problem of the transmission and demand flexibility expansion model can be formulated as:

ClE=minCo|Eyz|+ D O+ 2 D i Gam)

neNy nen?! pmeng!
s. t. ¥, €10, 1] VY neNY!
[Znny = Znynl € [0, 1] VneN?1 n e N
y, =1 ¥ n e NY\N¥!
Znmy =1 V n € NA\N?!, n, € Nf \N{"

(A1)

Assumed the uncertainty is non-existent, i.e. the outcome of demand, capacity and available flexibility are fully known, makes this model a non-
linear MIP model. Nonetheless, moderate scalability of this formulation can be assumed, as the investment decisions are not affected by the length of
the chosen time period T. In addition, the maximum number of investment decision permutations are the case where no transmission lines or
demand flexibility are already available: in this case the number of considered decisions is 2eard(NV)+eard(WH)xcardN) | where card(-) denotes the
cardinality.

Co[g) ¥, Z] = xgggs Z Z cg(x1g) + Z Z ps(xtén)

” teT geG teT neN (A.2a)
Z xt,g - dt,n (5) - Z [Zn,nan,nz(ét,n - 6t,nz)]_
€Gy eN{ VteT,
s.t.f e s nenN )
Z Siytn + Z Stipn + X =0
HnerT teT (A2b)
an + z Stpn < dn§)VEeT, ne N(ﬂ:y,)

HeT (A.20)
Zn,nan,nz(ét,n - 5t,n2) < F;l,nz V te T; ne NZ, ny € NZZ (ﬂ;:ln’nz) (Azd)
l‘t,g(g) < x[,g < xt,g(g) V te T; g € G(Eteg, ﬂ:g) (A 2 )

’ .Z€
Sime =0V LE T()) (A.2)
Son =0V a2 040 €T, nENFSE, ) (A.2g)
Spn =0V (b —18) >ish, beT, n € N(Vl};,lz,n) (A.2h)
D Snon <HSa@ VaeT,neN@E )
el (A.21)
X5 S 20V, bET, nEN (A.2))

Even though Constraints (A.2b) and (A.2d) show investment decisions z being multiplied with the voltage angles J, the separation of investment and
operations problem makes this lower-level operations problem a convex problem.

10
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Despite the computational simplicity, the scalability of this problem might be more limited due to the potential size of the problem. For an
example, the susceptance matrix B, even though sparsly populated, has a size of card(N?) x card(N¥) and is applied in every period t. Depending on
the size of the considered system, a longer considered time frame might thus scale the size of this problem dramatically and affect scalability
severely.

Appendix B. Karush Kuhn Tucker Conditions

Assuming convex cost functions means that Slater’s constraint qualifications and thus strong duality holds for the lower-level problem (A.2) [54].
This makes the Karush Kuhn Tucker conditions necessary and sufficient.

Given the dual values assigned above, the stationary conditions of the lower-level problem can therefore be formulated the following:

/ dcg (x,
K=M+ b yfg+;zfg=0VteT,geGn,neN

tn M

0x; g Oy g (B.1a)
3.7 _ S
4 :LS‘*")+yt"n+;zfn=0\1teT,neN
0X;y 0x;y ' ' (B.1b)
A
3Bin = - Z [zn,nan,nzyfn] + Z [an,anz,n}’f,,Z]+
! nzeNZZ\n anNZ\n
Z [Zn,nan,nzﬂ[dnn ] - Z [an,anz,nﬂ[dn n]+
nzeNZZ\n e nzeNZ\n = vite T’ nenN
{y[f if n = Nt =0
0 else (B.1¢)
72 8 ift >t
oL _ b _ b —c Yipn Thzh
e Yo = Yo T Fyn + {01 2 else +
N ) B Vo, L eT,neN
{nm,n Fo-0>h, g
0 else (B.1d)

Primal feasibility is given by the constraints of the lower-level problem provided by Egs. (A.2b)—(A.2j). Dual feasibility is given by the bounds of the
dual variables:

AR, ERYVEET, nEN
/“_‘rl,in,nz ERWteT,neEN,neEN,
Blp Py ERIYVIET, g€GC
7,ERVIET, nEN
¥ ERVieT
Veow N on ERY G, bET, NEN .

In addition, the complementary slackness of the inequality conditions has to be considered:

0<as, Lxf+ Y spn—din(§) <OVIET, REN

LET (B.3a)
0 < a8 L Znny BunyBin = 8in) = Funy SOV EE T, n € N4 my € NS (B.3b)
Oggt‘fgi;c,,g(g)—x[,g <0VteT,gedi (B.30)
0< ;lfg Lxg—%,6)<0VteT,gesG (B.3d)

0<A, L D) Suon—3Sun@ <OVHET, nEN
neT (B.3e)

The approach here chosen to deal with the complementarity constraint denoted by L is that of a quadratic transformation [55]. Assumed be a
complementarity constraint in the following form:

Ospulgl)<o (B.4)
The transformation is a reformulation of this constraint that adds a variable u:

gu <0

Hgx) <0
u, u € R+ (B.5)

In literature such as Ref. [40], typically the ’Fortuny-Amat notation’ [56] also referred to as the 'Big M notation’ is chosen. However, in the here
provided example, a large constant might be used in the price of unfullfilled generation p®. This ensures total recourse whilst making not fulfilling
demand the least attractive option. This in turn would however interfere with the large constant required by the ’Fortuny-Amat notation’.

11
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Appendix C. Uncertainty Set Limits

In the here presented model, the approach chosen to represent uncertainty is that of a ’cardinality constrained robust set’ [57]. The limits of such
a set are defined the following:

dff —dp <dy <A +df, VieT,neN
x,g—x,Agsgc[,gsxfzf+x[theT,geG
X R <Xy <X +x,VIET, g€G
S - sA<s <SS+ VEEeT, neN (C.1a)
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neN?Ne ¢eGy, Xf 4
< 100card(Nwﬂe) Vite T, Now C N

Z [ [Xt,g — X[ g )
<
nENZON®  ¢eGy

_ gref
Z l:‘.\rn Ab[n \:I < mocard(Nzone) Vte T, N°e C N
St,n
neNZOﬂe

ﬁc.ard(NZt’"E) V€T, N©e CN

VA

(C.1b)

Constraints (C.1a) define the maximum and minimum ranges of deviation from the given reference points.

Constraints (C.1b) define the uncertainty budget that every uncertain parameter is assigned. This budget is dependent on the period to in-
corporate the increase of uncertainty over extended periods.

Ref. [58] proposes a unidirectional reformulation of those constraints and proves its validity. Ref. [54] also utilizes this reformulation. In the here
presented example, such a formulation would mean approximating the bounds in Constraints (C.1a) the following:
dfef —df, =~ d™, x[rgf - x4 i xfgf, ngf + x5 i x,rgf and 57 + 55, ~ 5. This would allow removing the absolute operator in Constraints (C.1b), i.e.
|-| = -. This reformulation increases solution speed due to reducing the variable space for each of the robust variable by 50% and thus decreasing the
potential search space of the applied solver.

In addition and similar to recent publications on the topic [7], zonal uncertainty sets are utilized, that allow shifting the ranges of the uncertain

variables in a predefined zone in favor of the worst-case solution of such a zone.
Appendix D. Proof of convergence

Convergence of the approximation algorithm in Section 7 follows the principles of traditional value function approximation as described in e.g.
Ref. [62] with the difference of an observed state being supplied by the solution to the convex lower-level problem.
Assumed be that lower-level problem ¢°* is a perfect approximation, i.e.:

#%°|y. 2| = max DD IRACAEI DI Ale%M)

teT geG teT neN
s. t. constraintsofEq. (7) (D.1)

As a result, the approximation of the upper-level problem becomes perfect as well:

Py z[=¢%y. 2|+ D Yo+ D Z ¢y @) V1, 2

neNY! neNsI nzGN2 (D.2)

This means that finding the optimal, global result of the entire problem becomes solving min « »¢'*(y*, z*) which is computationally tractable via

brute-forcing every iteration (due to solving the lower-level problem now only requires a function-call to the perfect approximator $°*). This means

that finding the global optimum to the investment problem requires finding the best fit for the lower-level problem approximation ¢°.
Formulating this as in the value function formulation of Ref. [62] leads to the following approximation problem:

$°, 2) = E[¢°*(, 2y, 2] (D.3)

In other words, the approximation is the expectation of the perfect fit to the lower-level problem considering any given investment decisions.
Traditionally, such value function approximation problems show noise. However, by instead selecting the robust solution instead of sampling a
random solution from the uncertainty set, no noise is encountered here. This means the expectation is an expectation on missing but deterministic
data (i.e. the lower-level problems not solved for yet) instead of an expectation of a stochastic outcome. These, albeit computationally demanding,
results $°*(y, z) can be calculated for specific values of y, z. This in turn, allows to compare the fit of the calculated outcome to the approximation of
the expectation. Utilizing an error function such as the Mean Squared Error (MSE) this can be formulated the following:

MSE = (¢%*(y, z) — E[¢°*(, 2)Iy, z])°
=(¢°* (1, 2) — $°(n, 2))° (D.4)

The goal is reaching the minimum of MSE = 0 in order to yield the perfect fit of (D.1) and therefore (D.2). Denoting the parameters of the
approximator as 6 (in the here presented study this would correspond to the weights and biases of the neural network) leads to a parameterized form
of the approximator denoted as ¢°(y, z|6). The update rule for an update A°(y, z) based on the calculated solution is therefore the following:

12
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GRaaRS

This requires the approximator to be able to be updated via either gradient or quasi-gradient methods, a condition the here applied neural networks
fulfill. Thus, training this approximator via those updating steps will result in a convergence towards the global optimum of the problem.

86 (D.5)

6)) 5¢° (v, zI6)

Appendix E. Comparison to State-of-the-Art

Due to its importance in the field of robust optimization, the technique proposed in this paper was compared to ’Column-and-Constraint-
Generation’ (CnCG) as described in Ref. [40].

For the lower-level problem, this technique solves similar as the method proposed in this paper. The difference can be found in the upper-level
problem, which is in turn formulated the following:

¢ly.z|= min n+ D oGO+ D, D, Gl G@am)

$,2,%,x5,6,5

neNY-! nen?l pmeng! (E.1a)
123 D G+ Y, O PP VkEK
teT geG teT neN (E.1b)
Z xk,t,g - dt,n(gk) - Z [Bn,nz (5k,t,n - 5k,t,n2)]_v teT
g€Gp neN$ ’
s. t. s neN
Z Sk,tp,tn T Z Skttn + Xiogn =0 kekK
neT 1eT (E.lc)
VteT,neN
ka,t,n + Z Sttpn < drn(§) keK
ner € (E.1d)
B 5 5 <F VteT,ne N?,
n,na | Ok,t,n Kty | X fiyny n, € sz) keK (E.1e)
Xig(6) S Xpg < Xg(§)VteT, ge G kek (E.10)
Okt =0VEET, kEK (E.1g)
Skin =0V h 2, b €T, n €N, ke K (E.1h)
Skion =0V (b —t) >, b €T, nEN, kEK (E.1i)

> Seinian <HSuaE)VaET,nEN, kEK
©eT (E.l_])

XE s Stinin 20V, bET,nEN, k€K

The difference is that instead of an approximation for the operations problem, CnCG uses a lower bound 7 on this lower-level problem. The bound is
updated with iteratively added cuts k. The heuristic to find the optimal investment is thus the following:

0) Initialize K = {7}
1) Solve upper-level problem (E.1) to receive y*, z*
2) Solve lower-level problem (7) to receive robust scenario &«

3) Add cut k* to set of cuts K
4) If not converged and permutations left: back to 1)

This illustrates a crucial factor in applying such a robust solution, the increasing upper-level problem size due to an increasing cardinality of K.
This is already an issue in traditional transmission expansion problems [2], but amplifies in the application presented here. There are two reasons for
this. First, the problem extends this traditional expansion problem by additional binary variables representing investments in flexible demands and
loads. This means a higher number of potential investment iterations and thus a larger search space for the upper-level problem. Second, in CnCG the
dynamic operations of shifting demand and storage have to be considered in the upper-level as well. This means that the increase in complexity
caused by connecting the time periods as discussed in Ref. [50] or displayed in Fig. 1 affects the problem size twice in CnCG and only once in the
method proposed in this paper. Latter issue is also discussed as a downside in Ref. [40], an issue that is eliminated by using the proposed ap-
proximation technique instead of the bounding technique that is CnCG.

Appendix F. Value function approximation

The chosen function approximation of the case studies presented in this paper is that of a traditional feed-forward neural network [39] which has
been used to train similar value function approximations [59,50]. Fig. 9 shows the topology of the network. It consists of two parts: hidden layers
that contain linear and non-linear (rectified linear unit) layers which are normalized after before each linear layer and a dense linear layer that sums
the network outputs to a single continuous output representing ¢°(y, z). The applied optimizer to tune the weights of the network was 'Rprop’ [60]
and the chosen error function traditional ‘Mean Squared Error’.
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Fig. 9. Function Approximation Network.

In addition, rescaling of outputs (by dividing the cost by a certain factor to have the operational cost approximate lower digit numbers) and

’Simulated Annealing’ [61] performed on the learning rate were applied to support convergence and ensure a better fit of the function approx-
imation.

In the given application, this network will often not be supplied large data sets (as finding a result for a single permutation can be time-

consuming) and could thus encounter issues training large networks. As a result, it might be advisable to keep the number of hidden layers in the
network low. The number used in the given case studies was two sets of linear/non-linear hidden layers with a layer size of 50 nodes each.
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