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Optimisation of cutting parameters for improving energy efficiency in 

machining process

Abstract: Reducing the machining energy consumption (MEC) of machine tools for 

turning operations is significant to promote sustainable manufacturing. It has been 

approved that selection of optimal cutting (turning) parameters is an effective approach 

to reduce the cutting energy consumption (CEC) within the MEC. However, the 

potentiality for this approach to reduce the non-cutting energy consumption (NCEC) has 

not received sufficient attentions. Especially, the energy consumed for spindle rotation 

change (SRCE) was neglected. Thus, this article aims at developing an integrated MEC 

model with NCEC and SRCE considered. Then, Simulated Annealing (SA) is employed 

to find the optimal spindle rotation speed (SRS) and feed rate which result in the 

minimum MEC. A case study is conducted, where five parts with different cutting 

lengths are processed on a lathe. The experiment results show that SA can obtain the 

global optimum in a short computation time when the step sizes for SRS and feed rate are 

0.1 and 0.001, respectively. The optimal solution achieves a 19.28% MEC reduction. 

Finally, the relation between the part length and the optimal SRS is analysed, and the 

consequence of MEC minimisation on machining time is discussed.

Keywords: Cutting parameters selection; Turning operations; Non-cutting energy 

consumpton; Spindle rotation change; Machining energy optimisation; Simulated 

annealing.



3

1. Introduction

With the production and productivity increasing in modern society, the manufacturing energy 

consumption is increased with intensifying the energy crisis and global warming [1]. According to 

International Energy Agency [2], manufacturing is responsible for nearly 1/3 of the global energy 

consumption and 36% of carbon dioxide emissions [3]. Increasing energy price and requirements to 

improve energy efficiency are the severe challenges faced by modern manufacturing enterprises [4]. 

The statistics from the U.S. energy information administration [5] showed that machining energy 

consumption (MEC) of machine tools occupied more than 20% of total manufacturing energy 

consumption [6]. Turning, which is a conventional machining method for material removal, is widely 

used in manufacturing industries to produce rotational parts [7], with consuming a considerable 

proportion of MEC [8]. Thus, reducing MEC for turning operations is significant to promote the 

machining energy efficiency and alleviate the associated environmental issues [9].

The MEC can be comprised of different energy consumption and divided to two types: the cutting 

and non-cutting energy consumption (CEC and NCEC) [10]. The NCEC is the energy consumed for 

the non-cutting operations including tool path, tool change, and change of spindle rotation speed [11]. 

For the single-pass turning, the tool change is not required. The energy consumed when a part is 

actually cut by a machine tool is defined as the CEC [12]. It has been proved that changing cutting 

(turning) parameters (cutting speed, feed rate, and cutting depth) can lead to a large difference in 

CEC [13]. The investigation suggested that 6%-40% of the energy consumption can be changed 

through adjusting the cutting parameters (CPs) [14]. Thus, selecting the optimal CPs which results in 

the minimum CEC is considered as an effective energy saving approaches. However, the potentiality 

for the CPs optimisation approach to reduce the NCEC has not received attentions. Generally, the 

NCEC accounts for more than 30% of the total MEC [15]. The CPs can also affect the value of the 

NCEC, because the non-cutting parameters that affect the energy consumed for tool path (TPE) and 

spindle rotation change (SRCE) vary with the CPs. The SRCE can be subdivided into energy 

consumed for the spindle acceleration (SAE) and deceleration (SDE).

The TPE is defined as the energy consumed by the machine tool for moving the cutter to the right 

position to begin the actual cutting [16]. The SRCE is defined as the energy consumed by the 

machine tool when the spindle rotates from a low (high) speed to a high (low) speed [11]. The SRCE 

accounts for nearly 14% of the total NCEC and has energy-saving potentials [15]. For the NCEC, 

models of TPE and SRCE have been developed by Hu et al. [11] for solving the energy-related 

operation sequencing (OSeq) problem. In CPs selection, the optimisation of NCEC can lead to the 
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increase of CEC [17], thereby weakening the reduction of MEC. Thus, it is required to achieve the 

optimal trade-off between NCEC and CEC to minimise the total MEC.

According to the above analysis, our study aims at analysing the conflict between the NCEC and the 

CEC in single-pass turning, and at developing the integrated MEC model for the CPs optimisation 

problem. In this model, the objective functions describe the mathematic relation between the turning 

parameters and the MEC value, and the constraint equations restrict the values of turning parameters 

to guarantee the machining quality and the machine tool capability. Especially, the design parameters 

such as the length and diameter of the part have been included in the model. For single-pass turning, 

the cutting depth is considered as a constant because the initial and finished diameters of the part 

have been determined at its design phase. In terms of single objective optimisation, the aim is to 

determine the optimal turning parameters including spindle rotation speed (SRS) and feed rate which 

result in the minimum MEC under the machining constraints. A meta-heuristic, Simulated Annealing 

(SA), is modified and used as the optimisation approach, and is compared with Enumeration Method 

(EM) to validate its performance in solution quality and computation speed. Based on case studies, 

the proposed approach is demonstrated, compared, and discussed.

In the remainder of this paper, the literature review is presented in the next section. The description 

of the research problem and the MEC model are given in Section 3. In Section 4, the working 

procedures of SA for solving the optimisation problem are described. A case study is conducted to 

demonstrate the model and optimisation approach in Section 5. In Section 6, the optimisation results 

are compared, analysed, and discussed, followed by a brief summary and future work in Section 7.

2. Literature review

In recent ten years, an increasing amount of research has been conducted to reduce the MEC of 

machine tools through process planning, including CPs optimisation and OSeq. In the field of 

energy-related OSeq, Hu et al. [16] sequenced the machining operations for a part to minimise the 

NCEC considering the TPE. For the part with features interacting, the CEC models for milling and 

drilling were developed and integrated with the NCEC model to optimise the total MEC [10]. To 

improve the modelling efficiency, the MEC for the machining activities which are not affected by the 

operation sequence was identified and excluded [18]. The aforementioned approach cannot be 

directly applied to our CPs optimisation problem, because the OSeq problem is discrete and the 

sequence is the decision variable. Our problem is continuous and a combination of CPs is the 
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decision variable. Besides, the CEC model for turning has not been developed in the existing OSeq 

research.

Based on the experiments, Newman et al. [13] analysed the energy-related CPs optimisation problem 

for the computer numerical control (CNC) machining, and tested the effect of feed rate and cutting 

depth on the MEC in the case of cutting aluminium. However, the mathematic relation between the 

MEC and the CPs has not been provided. Box et al. proposed the response surface methodology 

(RSM) for determining the relation between the various process parameters and the dependent 

variables [19]. The regression model was obtained to calculate the energy consumed for cutting the 

7075 aluminium alloy by a specific CNC turning machine [20]. Furthermore, Lv et al. improved the 

accuracy of the MEC model for turning by considering the standby, coolant spray, spindle rotation 

and feeding operations of machine tools, and the accuracy achieved to above 93% [21]. Zhong et al. 

[22] compared the MEC model of Lv et al. [21] with other models and validated its superiority in 

applicability, accuracy, and data collection. Thus, the model in Ref. [21] will be employed and 

modified to be suitable for the CPs optimisation problem. Based on the MEC model, the Taguchi 

technique was introduced to identify that feed rate and cutting depth are the most significant factors 

for influencing the MEC [17]. For single-pass turning, the cutting depth was given [23], and only the 

cutting speed and feed rate can be changed to reduce the MEC.

In above MEC models, only the CEC has been modelled while the NCEC was ignored. Consequently, 

the follow-up optimisation of CEC can lead to the increase of NCEC, thereby weakening the 

reduction of MEC. For example, it has been approved that the CEC can be minimised by selecting 

the maximum CPs such as the SRS [17]. However, the maximum SRS can lead to very large SRCE 

in NCEC, which probably results in the increase of the total MEC [24]. To bridge this knowledge 

gap, Li et al. [25] supplemented the NCEC model and obtained an integrated MEC model for the CPs 

optimisation problem. In the research on the MEC with the NCEC included, there are three 

limitations. (i) The NCEC for the activities which are not affected by the CPs has not been identified 

and excluded. It harms the modelling efficiency. (ii) The SRCE, which accounts for 14% of the total 

NCEC, has been neglected. Consequently, the CPs resulting in the high SRCE tend to be selected as 

the optimum. (iii) The design parameters can affect the selection of CPs for minimising the MEC, 

but they have not been included in the MEC model [26].

After developing the model, the algorithms can be employed to search for the optimal CPs that result 

in the minimum MEC. Hu et al. [10] have proved the effectiveness of Genetic Algorithm (GA) to 

solve the discrete energy-related OSeq problem. For the continuous CPs optimisation problem, the 



6

performance of GA was not guaranteed. The specific algorithms to minimise the MEC in turning 

have received little attention. For solving the time-related or quality-oriented CPs optimisation 

problems, many algorithms including deterministic algorithms and meta-heuristics have been 

successful employed. These works can be used as references to select and use the algorithms. 

Traditionally, the deterministic algorithms such as integer programming [27] were used to find the 

optimal CPs which result in the minimum machining time and surface roughness [28]. Normally, 

these algorithms are only suitable for solving the small-to-medium sized problems, because the 

computation time is intolerant when the number of CPs schemes is huge. Meta-heuristics have 

become popular because they consume a short computation time for large problems. Their 

probabilities for finding the global optima are different for different problems. Hence, it is required 

to select a suitable meta-heuristic for a given problem. Yusup et al. [29] reviewed several meta-

heuristics for solving the time-related CPs optimisation problem from 2007 to 2011, and it verified 

that SA can effectively solve this continuous problem and perform better than GA in terms of the 

solution quality [30]. Therefore, SA is chosen as an optimisation approach for minimising the MEC 

and is compared with the EM to validate its performance.

According to the literatures reviewed, the following research gaps have motivated our research. (i) 

The TPE and SRCE models in Ref. [11] and Ref. [16] cannot be directly employed, because the 

OSeq problem is discrete whereas our CPs optimisation problem is continuous. (ii) The NCEC for 

the activities which are not affected by the CPs has not been identified and excluded [18]. (iii) In CPs 

selection, the optimisation of NCEC can lead to the increase of CEC [17], thereby weakening the 

reduction of total MEC. Thus, it is required to achieve the optimal trade-off between NCEC and CEC 

to minimise the total MEC [10]. (iv) The effects of design parameters such as the part length on the 

selection of CPs for minimising the MEC have not been considered. Our article aims to bridge these 

research gaps. It is novel to minimise the MEC with NCEC, SRCE, and design parameters 

considered through the CPs optimisation, and the proposed model and optimisation approach are the 

main contributions. The integrated MEC model including objective functions and constraints and the 

optimisation approach based on SA are presented in following sections.

3. Problem description and modelling

The effect of CPs in turning operations on the MEC is investigated. In Fig. 1, a rotational part A 

machined by a lathe is used as an example to explain the CEC, the NCEC, and the possible conflict 

between them when the CPs are changed.
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Fig. 1. Single-pass turning operations for a part.

Two schemes of CPs including SRS and feed rate for processing part A can be adopted: (a) 720rpm 

and 0.25mm/r; (b) 1080rpm and 0.25mm/r. In single-pass turning, the tool path is labelled by red 

arrowed lines, and the spindle acceleration and deceleration are marked as “ ” and “ ”, as shown in 

Fig. 1(b). The power profiles of the machine tool based on the aforementioned two schemes of CPs 

are shown in Fig. 2. The power profiles are developed based on the measured data and the prediction 

method by Jia [15] and Dahmus et al. [31].
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Fig. 2. Power profiles of two schemes of CPs: (a) 720rpm and 0.25mm/r; (b) 1080rpm and 0.25mm/r.

The first step is to identify and exclude the machining activities that are not affected by the CPs. In 

single-pass turning, there are four non-cutting feeding activities ( , , , and ), as shown in Fig. 𝐴1 𝐴2 𝐴3 𝐴4

1(b). The feeding approaches for the -st and -th activities are rapid, and the spindle rotation speeds 1 4

for them are set as 0 rpm to save MEC. Thus, the CPs cannot affect the energy consumed for these 

two activities [18]. In other words, their energy consumption cannot be reduced by changing the CPs. 
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The MEC for the -st and -th activities is excluded, and is filled with blank in Fig. 2. The areas 1 4

filled with forward slashes and back slashes represent SAE and SDE, respectively, and the blue grids 

areas represent TPE, and the red nets areas represent CEC. By comparing the sizes of filled areas in 

Fig. 2(a) and (b), it shows that different schemes of CPs can result in different values of CEC and 

NCEC.

The possible conflict between NCEC and CEC in single-pass turning is analysed. Because the SRS 

of the -st scheme (720rpm) is lower than that of the -nd one (1080rpm), the CEC for the -st 1 2 1

scheme is larger than that for the -nd scheme due to its longer cutting time [17], as shown in Fig. 2. 2

When only the CEC was considered in previous research, the -nd scheme whose SRS is higher was 2

regarded as the more energy-efficient option. However, the NCEC for the -st scheme is smaller than 1

that for the -nd scheme because low SRS consumes less SRCE, as shown in Fig. 2. If the increment 2

of NCEC exceeds the decrement of CEC for the -nd scheme due to the high SRS, the -st scheme 2 1

should be the better option. This example demonstrates the requirement to develop an integrated 

MEC model with NCEC and CEC included and select the suitable SRS to achieve the minimisation 

of total MEC. The -nd scheme can contribute to reducing more cutting time if the part length is 2

increased. The cutting time is associated with the CEC. Thus, the design parameters such as the part 

length should be included in the MEC model.

3.1. Objective functions of the model

Following the example, the integrated MEC model for single-pass turning based on the CPs is 

developed. The objective function of the model can be expressed as:

                                                      (1)𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑐𝑢𝑡 + 𝐸𝑛𝑜𝑛

where  is the total MEC of a machine tool for single-pass turning.  and  are the CEC 𝐸𝑡𝑜𝑡𝑎𝑙 𝐸𝑐𝑢𝑡 𝐸𝑛𝑜𝑛

and the NCEC, respectively, which are modelled in Sections 3.1.1 and 3.1.2.

3.1.1. Cutting energy consumption ( )𝐸𝑐𝑢𝑡

For single-pass turning, the cutting power is a constant in the cutting process, as shown in Fig. 2. 

Thus,  is modelled as:𝐸𝑐𝑢𝑡

                                                             (2)𝐸𝑐𝑢𝑡 = 𝑃𝑐𝑢𝑡 × 𝑇𝑐𝑢𝑡
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where  is the cutting power of the machine tool in turning [W], and  is the cutting time [s]. 𝑃𝑐𝑢𝑡 𝑇𝑐𝑢𝑡

 can be divided to five portions: material removal power, Z-axial feeding power, spindle rotation 𝑃𝑐𝑢𝑡

power, coolant spray power, and standby power [22]. Standby power and coolant spray power are 

constant and remain the same while selecting different CPs. Material removal power, Z-axial feeding 

power, and spindle rotation power are variable. Thus,  is expressed as:𝑃𝑐𝑢𝑡

                                               (3)𝑃𝑐𝑢𝑡 = 𝑃𝑀𝐶 + 𝑃𝑍𝐹 + 𝑃𝑆𝑅 + 𝑃𝐶𝑆 + 𝑃0

where , , and  are material removal power, Z-axial feeding power, and spindle rotation 𝑃𝑀𝐶 𝑃𝑍𝐹 𝑃𝑆𝑅

power, respectively.  and  are coolant spray power and standby power of the machine tool, as 𝑃𝐶𝑆 𝑃0

shown in Fig. 2, which are obtained by actual measurement.

In Expression (3),  is developed according to a turning power model in Ref. [32], which 𝑃𝑀𝐶

considers the additional load losses and has high reliability, as below:

                                                       (4)𝑃𝑀𝐶 = 𝐶𝑀 ∙ 𝑣𝑤𝑀 ∙ 𝑓𝑦𝑀 ∙ 𝑑𝑥𝑀

where  is the coefficient in the material removal power model; , , and  are cutting speed 𝐶𝑀 𝑣 𝑓  𝑑

[m/min], feed rate [mm/r], and cutting depth [mm], respectively, in turning operations; ,  and 𝑤𝑀 𝑦𝑀

 are the exponents of cutting speed, feed rate, and cutting depth, respectively. The coefficient and 𝑥𝑀

exponents are obtained by statistical analysis based on experiment data. In Equation (4),  is 𝑣

calculated by:

                                                                     (5)𝑣 =
𝜋 × (𝐷 ‒ 𝑑) × 𝑛

1000

where  is the SRS in the cutting process [rpm], and  is the initial diameter of the workpiece [mm].𝑛  𝐷

By comparing several models for the Z-axial feeding power [22], a quadratic model in Ref. [15], 

which has the highest accuracy, is employed as:

                                                  (6)𝑃𝑍𝐹 = 𝐴𝑍𝐹 × (𝑣𝐹)2 + 𝐵𝑍𝐹 × 𝑣𝐹 + 𝐶𝑍𝐹

where , , and  are the quadratic coefficient, monomial coefficient, and constant in the 𝐴𝑍𝐹 𝐵𝑍𝐹 𝐶𝑍𝐹

model, which can be obtained by quadratic regression based on experiment data.  is the feeding 𝑣𝐹

speed [mm/min], which is calculated as:
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                                                                    (7)𝑣𝐹 = 𝑛 × 𝑓

In Expression (3), an accurate linear equation in Ref. [33] is employed to model the , as follows:𝑃𝑆𝑅

                                                              (8)𝑃𝑆𝑅 = 𝐵𝑆𝑅 × 𝑛 + 𝐶𝑆𝑅

where  and  are the monomial coefficient and constant in the spindle rotation power model, 𝐵𝑆𝑅 𝐶𝑆𝑅

which are obtained by linear regression based on the experiment data.

In Expression (2),  is calculated as:𝑇𝑐𝑢𝑡

                                                                    (9)𝑇𝑐𝑢𝑡 =
60 × 𝐿

𝑣𝐹

where  is the cutting length of the workpiece [mm].𝐿

3.1.2. Non-cutting energy consumption ( )𝐸𝑛𝑜𝑛

For single-pass turning, the non-cutting process consists of tool path and change of SRS, as shown in 

Fig. 1. Thus,  is modelled as:𝐸𝑛𝑜𝑛

                                                           (10)𝐸𝑛𝑜𝑛 = 𝐸𝑇𝑃 + 𝐸𝑆𝑅𝐶

where  and  are TPE and SRCE, respectively, in single-pass turning. There are four feeding 𝐸𝑇𝑃 𝐸𝑆𝑅𝐶

activities in a turning pass, as shown in Fig. 1(b). The modelling for the -st and -th feeding 1 4

activities are not required, thus  can be expressed as:𝐸𝑇𝑃

                                                           (11)𝐸𝑇𝑃 = 𝐸 2
𝑇𝑃 + 𝐸 3

𝑇𝑃

where  and  are TPE for the -nd and -rd feeding activities. The feeding approach for the -𝐸 2
𝑇𝑃 𝐸 3

𝑇𝑃 2 3 2

nd feeding activity is normal with the SRS of  rpm, and the feeding direction is Z-axial. According 𝑛

to the model in Ref. [16],  is expressed as:𝐸 2
𝑇𝑃

                                       (12)𝐸 2
𝑇𝑃 = 𝑃 2

𝑇𝑃 × 𝑡2 = (𝑃0 + 𝑃𝑆𝑅 + 𝑃𝑍𝐹) ×
60 × ∆𝑑𝑧

𝑣𝐹

where  and  are the power and time of the machine tool for the -nd feeding activity, 𝑃 2
𝑇𝑃 𝑡2 2

respectively;  is the air-cutting distance before actually cutting the material [mm].∆𝑑𝑧
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The feeding approach for the -rd feeding activity is rapid, and the feeding direction is X-axial. Thus, 3

 is expressed as:𝐸 3
𝑇𝑃

                                        (13)𝐸 3
𝑇𝑃 = 𝑃 3

𝑇𝑃 × 𝑡3 = (𝑃0 + 𝑃𝑆𝑅 + 𝑃𝑋𝑅) ×
60 × ∆𝑑𝑥

1000 × 𝑣𝑋𝑅

where  and  are the power and time of the machine tool for the -rd feeding activity, 𝑃 3
𝑇𝑃 𝑡3 3

respectively;  represents the rapid feeding power of X-axis [W];  is the rapid feeding speed of 𝑃𝑋𝑅 𝑣𝑋𝑅

X-axis [m/min];  is the retracting distance of the tool in X-axis [mm].∆𝑑𝑥

In single-pass turning, the SRS accelerates from 0 rpm to  rpm and finally decelerates from  rpm 𝑛 𝑛

to 0 rpm. Thus,  is expressed as:𝐸𝑆𝑅𝐶

                                                           (14)𝐸𝑆𝑅𝐶 = 𝐸𝑠𝑟𝑎 + 𝐸𝑠𝑟𝑑

where  and  represent the energy consumption of the machine tool for the spindle rotation 𝐸𝑠𝑟𝑎 𝐸𝑠𝑟𝑑

acceleration from 0 rpm to  rpm and for the spindle rotation deceleration from  rpm to 0 rpm, 𝑛 𝑛

respectively. According to the model in Ref. [11],  is expressed as:𝐸𝑠𝑟𝑎

                                                      (15)𝐸𝑠𝑟𝑎 = ∫𝑡𝑠𝑟𝑎
0 (𝑃0 + 𝑃𝑠𝑟𝑎)𝑑𝑡

where  is the power of the spindle system in the spindle acceleration from 0 rpm to  rpm [W]; 𝑃𝑠𝑟𝑎 𝑛

 is the time for the spindle acceleration [s]. The model in Ref. [24] is employed to model the  𝑡𝑠𝑟𝑎 𝑃𝑠𝑟𝑎

as:

                                        (16)𝑃𝑠𝑟𝑎 = 𝐵𝑆𝑅 × (30𝛼𝐴𝑡
𝜋 ) + 𝐶𝑆𝑅 + 𝑇𝑠 × (𝛼𝐴𝑡)

where  and  are the angular acceleration [rad/s2] and acceleration torque [N·m] of a spindle, 𝛼𝐴 𝑇𝑠

respectively, which are obtained by experiment measurements.

In Expression (15),  is calculated by:𝑡𝑠𝑟𝑎

.                                                                 (17)𝑡𝑠𝑟𝑎 =
2𝜋𝑛

60𝛼𝐴

For a spindle deceleration, no power is consumed by the spindle system normally, and only standby 

power is consumed [11]. Thus,  is expressed as:𝐸𝑠𝑟𝑑
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                                                              (18)𝐸𝑠𝑟𝑑 = 𝑃0 × 𝑡𝑠𝑟𝑑

where  is the time for the spindle deceleration from  rpm to 0 rpm [s], which is calculated by:𝑡𝑠𝑟𝑑 𝑛

                                                                  (19)𝑡𝑠𝑟𝑑 =
‒ 2𝜋𝑛
60𝛼𝐷

where  is the angular deceleration [rad/s2].𝛼𝐷

3.2. Constraint equations of the model

In actual CPs selection, the feed rate and SRS selected must satisfy all constraint equations of the 

model. According to Ref. [34], the constraint equations are developed considering (1) CPs limits as 

well as the maximum allowable (2) SRS, (3) cutting force, (4) cutting power, and (5) surface 

roughness. They are described as follows.

(1) CPs constraints

The CPs constraints are expressed in terms of lower and upper bounds. The feed rate constraint is 

expressed as:

                                                                  (20)𝑓𝐿 ≤ 𝑓 ≤ 𝑓𝑈

where  and  are lower and upper bounds of feed rates, respectively, in turning [mm/r].𝑓𝐿 𝑓𝑈

The SRS constraint converts from the cutting speed constraint, as below:

                                      (21){   𝑣𝐿 ≤ 𝑣 ≤ 𝑣𝑈

𝑣 =
𝜋 × (𝐷 ‒ 𝑑) × 𝑛

1000

Conversion
⇒

1000𝑣𝐿

𝜋 × (𝐷 ‒ 𝑑) ≤ 𝑛 ≤
1000𝑣𝑈

𝜋 × (𝐷 ‒ 𝑑)

where  and  are lower and upper bounds of cutting speeds, respectively, in turning [m/min]. The 𝑣𝐿 𝑣𝑈

bounds on feed rate and cutting speed are related to the material of workpiece and the type of cutting 

tool [35].

(2) Maximum allowable SRS constraint

The SRS selected should not exceed the maximum SRS value allowed by the machine tool. This 

constraint is expressed as:

                                                                   (22)𝑛 ≤ 𝑛𝑚𝑎𝑥
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where  is the maximum allowable SRS of a machine tool [rpm], which is obtained from the 𝑛𝑚𝑎𝑥

machine specification.

(3) Cutting force constraint

When selecting large CPs, the cutting force can increase [36]. To limit the machining deflection of 

the workpiece and cutting tool [36], the cutting force  should be restricted to a certain maximum 𝐹𝑐𝑢𝑡

value . Based on the cutting force model in Ref. [37], the cutting force constraint is:𝐹𝑈

                                               (23)𝐹𝑐𝑢𝑡 = 𝐶𝑄 ∙ 𝑣𝑤𝑄 ∙ 𝑓𝑦𝑄 ∙ 𝑑𝑥𝑄 ≤ 𝐹𝑈

where  is the maximum allowable cutting force [N], which is determined by the stability and 𝐹𝑈

strength of the machine and the cutting tool [37];  is the coefficient in the cutting force model; , 𝐶𝑄 𝑤𝑄

 and  are exponents of cutting speed, feed rate, and cutting depth, respectively, in the cutting 𝑦𝑄 𝑥𝑄

force model [14]. The coefficient and exponents are obtained by statistical analysis based on 

experiment data [37].

(4) Cutting power constraint

During the cutting process, the cutting power  should not exceed the maximum available power 𝑃𝑐𝑢𝑡

of the machine [38]. Based on the cutting power model in Expression (3), the cutting power 

constraint is:

                                                                   (24)𝑃𝑐𝑢𝑡 ≤ 𝑃𝑈

where  is the maximum available power of the machine [W], which is obtained from the machine 𝑃𝑈

specification [28].

(5) Surface roughness constraint

The surface roughness is an important index to reflect the surface quality of the machined part [39], 

and should not exceed the maximum allowable value [35]. The surface roughness is generally 

influenced by various parameters such as CPs, tool geometry, tool material, and tool wear [35]. 

Narang et al. proved that feed rate and nose radius have the most dominant effects on surface 

roughness [40]. Following Lin et al. [41], the surface roughness constraint is expressed as:

                                                                    (25)
𝑓2

8𝑅𝑁
≤ 𝑅𝑈
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where  is the maximum allowable surface roughness [μm], which is given by the technical criteria 𝑅𝑈

[37], and  is the nose radius of the cutting tool [mm].𝑅𝑁

4. Single objective optimisation

After developing the integrated model, SA is selected as the optimisation approach to search for the 

optimal SRS and feed rate, by using the minimisation of MEC as the objective. SA can avoid being 

trapped in local optima and is able to explore globally for more possible solutions. Thus, the global 

optimum is more likely to be obtained by SA. However, as a probabilistic optimisation technique, it 

is not guaranteed that SA always gets the global optimum due to the nature of meta-heuristics [42]. 

Hence, the EM, which is a deterministic approach for the MEC minimisation, is used as the 

benchmark for the verification of the performance of SA in Section 5. EM is a procedure to list all 

feasible combinations of the variables of SRS and feed rate under the Constraints (20)-(25), and then 

to calculate the corresponding objective values of MEC according to Expressions (1)-(19) one by one 

[43]. By comparison, the combination of the two variables that results in the minimum MEC is 

selected as the optimum.

SA is a meta-heuristic that simulates the process of annealing in metallurgy to bring the system, from 

an arbitrary initial state, to a ground state with the minimum internal energy [42]. It was invented by 

Kirkpatrick et al. [44] in 1983. The simulation of annealing can be used to find an approximation of a 

global minimum for a function with a number of variables [44]. The candidate solution is generated 

by performing the random perturbations on the old solution and is checked to be accepted or not 

according to the energy (objective value) difference in each iteration at each temperature. A 

stochastic criterion regarding the acceptance of worse solutions is incorporated to prevent the 

algorithm from being prematurely trapped in local optima [45]. After cooling to the end temperature, 

the global optimal or near-optimal solutions to the optimisation problem are generated.

According to Expressions (1)-(19), the objective function merely varies with SRS and feed rate, as 

below:

                                                              (26)𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑔(𝑛, 𝑓)

Based on the flowchart of SA in Fig. 3, the working procedures for minimising the  through 𝐸𝑡𝑜𝑡𝑎𝑙

selecting the values of  and  are described as follows. The performance of SA in solution quality is 𝑛 𝑓

improved by developing the memory function that avoids losing the excellent solution.



16

Step 1: The cooling schedule is specified, including the initial temperature , the temperature 𝑇0

decrease function , the end temperature , and the length of Markov chain . An initial 𝑇𝑘 = ℎ(𝑘) 𝑇𝑒 𝐿𝑐

solution  is random generated from the feasible solution space, and the iteration number is {  𝑛 = 𝑛0
𝑓 = 𝑓0

.𝑘 = 0

Step 2: A memory matrix  and a memory function  are developed and added to the standard SA. 𝑀 𝐺

At the beginning, the solution  is recorded in the matrix , and the memory function is {  𝑛 = 𝑛0
𝑓 = 𝑓0

𝑀 𝐺 =

.𝑔(𝑛0, 𝑓0)

Start

Initialise SA parameters in the cooling schedule and 
generate the initial optimal solution

Develop a memory matrix and a memory function

A candidate solution is generated by performing 
the perturbations on the old solution

The candidate solution is checked to be accepted 
and recorded according to the energy difference

The length of Markov chain Lc is reached?

Return the latest solution

Y

Has the current temperature decreased
 to the end temperature?

Report the final optimal solution

The temperature decreases

1

N

Y

N

2

3

4

5

6

7

5

6

Fig. 3. A flowchart of Simulated Annealing (SA).
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Step 3: The random perturbations  and  about SRS and feed rate are performed on the last ∆𝑛 ∆𝑓

solution  and . A candidate solution is generated by operating  and . If the 𝑛 𝑓 𝑛 = 𝑛 + ∆𝑛 𝑓 = 𝑓 + ∆𝑓

candidate solution violates the Constraints (20)-(25),  is changed to . If still violating ∆𝑓 ∆𝑓 = ‒ ∆𝑓

the constraints,  is further changed to .∆𝑛 ∆𝑛 =‒ ∆𝑛

Step 4: If the candidate solution is better than the existing solution , it 𝑔(𝑛, 𝑓) ≥ 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓)

is directly accepted as the new optimal solution. Moreover,  is compared with the 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓)

memory function . If , the function is changed to , 𝐺 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓) < 𝐺 𝐺 = 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓)

and the solution  is recorded in the matrix .{  𝑛 = 𝑛 + ∆𝑛
𝑓 = 𝑓 + ∆𝑓 𝑀

If , the acceptance of the worse solution depends on the Metropolis 𝑔(𝑛, 𝑓) < 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓)

criterion [46]. For instance, if , then  is 𝑒𝑥𝑝(𝑔(𝑛, 𝑓) ‒ 𝑔(𝑛 + ∆𝑛, 𝑓 + ∆𝑓)
𝑇𝑘 ) > random[0,1) {  𝑛 = 𝑛 + ∆𝑛

𝑓 = 𝑓 + ∆𝑓

accepted as the new optimal solution. Otherwise, it is rejected.

Step 5: If Steps 3 and 4 have been performed  times at the temperature , SA returns the latest 𝐿𝑐 𝑇𝑘

solution and goes to Step 6. Otherwise, SA returns to Step 3.

Step 6: If the current temperature  has decreased to the end temperature  ( ), SA stops. 𝑇𝑘 𝑇𝑒 𝑇𝑘 ≤ 𝑇𝑒

Otherwise, Step 7 is performed. After SA stops, the optimal solution is compared with the solutions 

in the matrix , and the solution with the minimum MEC is selected as the final solution.𝑀

Step 7: The number of iterations is operated by , and the returned solution in Step 5 is 𝑘 = 𝑘 + 1

regarded as the last solution. The temperature decreases to , and SA returns to Step 3.𝑇𝑘 + 1

The performance of SA for optimising the MEC for the parts with different design parameters is 

tested in Section 5.

5. Case study

A part A, as shown in Fig. 1, is used in this case study. The part is made of 45#Steel. Its length  and 𝐿

diameter  are 20.5mm and 38.6mm, respectively, and the diameter  is 42.4mm. The maximum 𝐷𝑆  𝐷

allowable surface roughness is =2.7μm. A CNC lathe (CK6153i) manufactured by Jinan First 𝑅𝑈

Machine Tool Co., Ltd. of China is employed to process this part. The cutting tool for turning is 

VNMG160408, and its nose radius is =0.8mm. The experiment setup for the power data collection 𝑅𝑁
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on the CK6153i is shown in Fig. 4, and the experiment method is described in Ref. [21]. The key 

parameters of the CK6153i required for the MEC model are listed in Table 1. Dry cutting is adopted 

and the coolant spray switch is OFF, thus the corresponding power is =0W. Table 2 lists the 𝑃𝐶𝑆

coefficients and exponents in the material removal power model and cutting force model under 

specific cutting conditions. They have been obtained by experiment measurements and regression 

analyses based on the experiment data [32]. The process parameters for part A are listed in Tables 3, 

which are obtained from the process files.

CompactDAQ crateCNC lathe:CK6153i

Voltage sensors

Current sensors

PE

LabView

Data collecting 
cards NI-9215

Schematic diagram

1

2

3

5
6

Physical diagram

4

2

3

46

5

Sensor power 

1

Fig. 4. A diagram of experiment setup for the power data acquisition.

Table 1 Parameters of the CNC lathe (CK6153i) in the MEC model.

Parameter Notation [Unites] Value

Standby power  [W]𝑃0 332.1

Coolant spray power (ON, OFF)  [W]𝑃𝐶𝑆 (369.5, 0)
Monomial coefficient and constant in 
the spindle rotation power model ( , )𝐵𝑆𝑅 𝐶𝑆𝑅 (1.09, 41.12)
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Quadratic coefficient, monomial 
coefficient, and constant in the feeding 
power model of Z-axis

( , , )𝐴𝑍𝐹 𝐵𝑍𝐹 𝐶𝑍𝐹
(2.32×10-6, 
0.030, 0.49)

Angular acceleration and deceleration of 
the spindle ( , ) [rad/s2]𝛼𝐴 𝛼𝐷

(39.78, 
-38.79)

Acceleration torque of the spindle  [N·m]𝑇𝑠 28.42

Rapid feeding speed of X-axis  [m/min]𝑣𝑋𝑅 4

Rapid feeding power of X-axis  [W]𝑃𝑋𝑅 135.0

Maximum allowable SRS  [rpm]𝑛𝑚𝑎𝑥 2000
Maximum available power of the 
machine tool  [W]𝑃𝑈 7500

Table 2 Coefficients and exponents in the cutting models for part A.

Coefficient/exponent Value

Coefficient in the material removal power model 
𝐶𝑀

44.57

Exponent of cutting speed, feed rate, and cutting 
depth in the material removal power model ( , 𝑤𝑀

, )𝑦𝑀 𝑥𝑀

(0.909, 0.657, 
0.917)

Coefficient in the cutting force model 𝐶𝑄 2355

Exponent of cutting speed, feed rate, and cutting 
depth in the cutting force model ( , , )𝑤𝑄 𝑦𝑄 𝑥𝑄

(-0.0724, 
0.655, 0.902)

Table 3 Process parameters for part A.

Parameter Notation 
[Unites] Value

Cutting length and depth in turning ( , ) [mm]𝐿 𝑑 (10.5, 1.9)

Retracting distance of the tool in X-axis  [mm]∆𝑑𝑥 4.0

Air-cutting distance before actually cutting  [mm]∆𝑑𝑧 5.0 

Maximum allowable surface roughness  [μm]𝑅𝑈 2.7

Lower and upper bounds of cutting speed ( , )𝑣𝐿 𝑣𝑈
[m/min] (85, 170)

Lower and upper bounds of feed rate ( , ) [mm/r]𝑓𝐿 𝑓𝑈
(0.100, 
0.350)
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Maximum allowable cutting force  [N]𝐹𝑈 1280

Based on above data and the Expressions (1)-(25), the energy consumed by the CK6153i for 

processing part A with arbitrary values of SRS and feed rate is modelled. The objective function is:

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑐𝑢𝑡 + 𝐸𝑛𝑜𝑛 = [(𝑃𝑀𝐶 + 𝑃𝑍𝐹 + 𝑃𝑆𝑅 + 0 + 332.1) ×
60 × 20.5

𝑛 × 𝑓 ] + (𝐸𝑇𝑃 + 𝐸𝑆𝑅𝐶)

where:

,𝑃𝑀𝐶 = 44.57 ∙ (
𝜋 × 40.5 × 𝑛

1000 )
0.909

∙ 𝑓0.657 ∙ 1.90.917

,𝑃𝑍𝐹 = 2.32 × 10
- 6 × (𝑛 × 𝑓)2 + 0.030 × 𝑛 × 𝑓 + 0.49

,𝑃𝑆𝑅 = 1.09 × 𝑛 + 41.12

,𝐸𝑇𝑃 = (332.1 + 𝑃𝑆𝑅 + 𝑃𝑍𝐹) ×
60 × 5.0

𝑛 × 𝑓 + (332.1 + 𝑃𝑆𝑅 + 135.0) ×
60 × 4.0

1000 × 4

𝐸𝑆𝑅𝐶 = ∫
2𝜋𝑛

60 × 39.78
0 [332.1 + 1.09 × (30 × 39.78 × 𝑡

𝜋 ) + 41.12 + 28.42 × 39.78 × 𝑡]𝑑𝑡 + 332.1 ×

.
‒ 2𝜋𝑛

60 × ( - 38.79)

The constraint equations are:

,0.100 ≤ 𝑓 ≤ 0.350

,
1000 × 85
𝜋 × 40.5 ≤ 𝑛 ≤

1000 × 170

𝜋 × 40.5

,𝑛 ≤ 2000

,2355 ∙ (𝜋 × 40.5 × 𝑛
1000 ) - 0.0724

∙ 𝑓0.655 ∙ 1.90.902 ≤ 1280

,𝑃𝑀𝐶 + 𝑃𝑍𝐹 + 𝑃𝑆𝑅 + 0 + 332.1 ≤ 7500

.
𝑓2

8 × 0.8
≤ 2.7
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Two algorithms, including EM and SA, are employed as optimisation approaches. They are 

developed on Dev C++ 5.11.0 software with the programming language C++. The computing 

platform is: Intel (R) Core (TM) i7-2630 QM CPU with 2.00 GHz frequency, 4.00 GB RAM, and 

Windows 7 (64bit) operating system. According to the machining accuracy of CK6153i, the step 

sizes for  and  in the algorithms are set to 0.1 and 0.001, respectively. The EM returns the global 𝑛 𝑓

minimum MEC for part A, which is 26460.6J. A computation time of EM is 0.751 seconds, and the 

optimal values of SRS and feed rate are:  and .𝑛 = 668.1rpm  𝑓 = 0.266mm/r

The parameter values used for SA are obtained by tuning, and their values are as follows: the initial 

temperature , the temperature decrease function , the end temperature 𝑇0 = 200 𝑇𝑘 = 𝑇0 × 0.98𝑘 𝑇𝑒

, and the length of Markov chain . By running SA for 50 times, it achieves the = 0.001 𝐿𝑐 = 100

global minimum MEC of 26460.6J in all trials for part A, which is excellent. An average 

computation time of SA is 0.130 seconds, and the corresponding CPs are the same as that produced 

by EM. A searching process of SA for the global optimum is shown in Fig. 5. For this specific 

problem, SA usually converges within 300 iterations, and there is no premature convergence 

happening. The comparisons of EM and SA for part A in the 50 trials are summarised in Table 4.

Fig. 5. A searching process of SA for the optimal solution of part A.
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The developed approaches are further tested and validated on four parts B, C, D, and E with the 

length  of 20.6mm, 105.8mm, 191.0mm, and 191.1mm, respectively. Their diameters  and  are 𝐿 𝐷𝑆 𝐷

38.6mm and 42.4mm. The results from using EM and SA for optimising the CPs of these parts are 

compared and summarised in Table 4. According to Table 4, the minimum MEC, the optimal SRS, 

and the optimal feed rate are changed with the part length. The optimisation results obtained by SA 

and EM are exactly same for every part, and it suggests that SA still has a 100% probability of 

finding the global optima. Hence, SA performs as well as EM in solution quality for all cases. In 

terms of computation time, SA outperforms EM. Specifically, the computation time of SA is 

approximately 82.69% [(0.751-0.130)/0.751] shorter than that of EM for part A. In sum, SA is 

recommended for our problem because it can effectively return the global optima in a short 

computation time.

Table 4 The comparisons of EM and SA for five parts.

Part names Part A Part B Part C Part D Part E
Length of the part 20.5 20.6 105.8 191.0 191.1

Minimum MEC achieved [J] 26460.6 26562.2 106264.2 181241.1 181328.8
Optimal SRS [rpm] 668.1 687.3 1240.2 1335.8 1336.1
Optimal feed rate [mm/r] 0.266 0.267 0.285 0.287 0.287

EM

Computation time [s] 0.751 0.750 0.751 0.750 0.749
Minimum MEC achieved [J] 26460.6 26562.2 106264.2 181241.1 181328.8
Optimal SRS [rpm] 668.1 687.3 1240.2 1335.8 1336.1
Optimal feed rate [mm/r] 0.266 0.267 0.285 0.287 0.287
Percent of getting minimum 100% 100% 100% 100% 100%
Median MEC of 50 trials [J] 26460.6 26562.2 106264.2 181241.1 181328.8

A
lg

or
ith

m
s

SA

Computation time [s] 0.130 0.129 0.133 0.138 0.140

6. Discussion

In the case study, the proposed CPs optimisation approach for minimising MEC has been 

demonstrated, and the optima have been efficiently obtained by SA. In this section, the optimisation 

results are compared, analysed, and discussed.

6.1. Energy savings benefit from the proposed approach

To demonstrate the effectiveness of the proposed approach in reducing the MEC, the following 

comparison is conducted. High SRS with medium feed rate (or HSMF for short) technique serves as 

the benchmark to represent the traditional approach to arranging the CPs [47]. In HSMF, the high 
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SRS can reduce the cutting time while the medium feed rate can guarantee the surface quality. For 

example, the values of SRS and feed rate for parts A and C, generated by the HSMF, are 𝑛 = 1300

 and . The corresponding MEC is 32779.9J and 113979.4J, respectively. Although rpm 𝑓 = 0.25mm/r

the HSMF can improve the material removal rate and surface quality, our approach can reduce 19.28% 

[(32779.9-26460.6)/32779.9] and 6.77% [(113979.4-106264.2)/113979.4] of MEC for parts A and C, 

respectively. A higher percent of MEC for part A is saved than that of part C, because the optimal 

SRS of part C (1240.2rpm) is much closer to the benchmark (1300rpm) than that of part A (668.1rpm) 

and the energy-saving potential of part C is restricted.

6.2. Relation between the part length and the optimal SRS

In traditional CPs optimisation for minimising the MEC, only the cutting process is concerned while 

the spindle rotation change is neglected. In actual machining, the spindle rotation change is 

inevitable with consuming considerable energy. After considering it, the optimisation results indicate 

a positive correlation between the part length and the optimal SRS, as shown in Fig. 6. According to 

Fig. 6, the optimal SRS increases from the lower bound 668.1rpm to the upper bound 1336.1rpm, 

with the part length increased from 20.5mm to 191.1mm. From 105.8mm to 191.1mm, the optimal 

SRS slowly increases. Specifically, the increase rate of the optimal SRS from 191.0mm to 191.1mm 

[(1336.1-1335.8)/(191.1-191.0)=3] is much smaller than that from 20.5mm to 20.6mm [(687.3-

668.1)/(20.6-20.5)=192]. This suggests that the relation is not linear. Based on more experiments and 

tests, as shown in Fig. 6, the optimal SRS for any part shorter than 20.5mm is 668.1rpm, and the 

optimal SRS for any part longer than 191.1mm is 1336.1rpm. For the short part, although the high 

SRS can help reduce the CEC, more NCEC will be sacrificed for the spindle rotation acceleration 

and deceleration. In sum, the shorter the part is, the lower the SRS should be selected for balancing 

NCEC and CEC to realise the minimisation of total MEC.
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Fig. 6. The relation between the part length and the optimal SRS.

6.3. Consequence of MEC minimisation on machining time

In a real manufacturing scenario, it is not reasonable to optimise the MEC with largely sacrificing the 

machining time, thereby causing a machine tardiness problem. The consequence of MEC 

minimisation on machining time is analysed and discussed. According to Expressions (9), (12), (13), 

(17), and (19), the machining time for single-pass turning ( ) is calculated as:𝑇𝑡𝑜𝑡𝑎𝑙

.𝑇𝑡𝑜𝑡𝑎𝑙 =
60 × 𝐿
𝑛 × 𝑓 +

60 × ∆𝑑𝑧

𝑛 × 𝑓 +
60 × ∆𝑑𝑥

1000 × 𝑣𝑋𝑅
+

2𝜋𝑛
60𝛼𝐴

+
‒ 2𝜋𝑛
60𝛼𝐷

For example, the machining time based on the optima of parts A (  and 𝑛 = 668.1rpm  𝑓 = 0.266

) and C (  and ) is 12.23 seconds and 25.48 seconds, respectively. mm/r 𝑛 = 1240.2rpm  𝑓 = 0.285mm/r

By comparison, the CPs of parts A and C without the MEC consideration are generated by the 

aforementioned HSMF technique, and the machining time based on these CPs (  and 𝑛 = 1300rpm

) is 11.70 seconds and 27.45 seconds for parts A and C, respectively. For part C, 7.18% 𝑓 = 0.25mm/r

[(27.45-25.48)/27.45] of the machining time reductions benefit from the MEC minimisation. 

However, 4.53% [(12.23-11.70)/11.70] of the machining time increases suffer from the MEC 

minimisation for part A, and this verifies the conflict between the machining time and energy 

consumption. Thus, when optimising the CPs for a specific part, it is required to make a trade-off 
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between the reductions of machining time and energy consumption. For part A, the optimal 

parameters (  and ) can be adopted if 4.53% of the machining time 𝑛 = 668.1rpm  𝑓 = 0.266mm/r

increases are acceptable.

6.4. Effect of step sizes of CPs on the MEC optimisation

If step sizes for  and  are allowed to be set to the smaller values than 0.1 and 0.001, more MEC 𝑛 𝑓

can be reduced. For example, when step sizes for  and  are decreased to 0.01 and 0.0001, the 𝑛 𝑓

minimum MEC from using EM for part B is decreased from 26562.2J to 26553.7J. The optimal SRS 

considerably decreases from  to , and the optimal feed rate slightly decreases 687.3rpm 668.87rpm

from  to . The computation time of EM sharply increases from 0.750 seconds 0.267mm/r 0.2662mm/r

to 74.282 seconds. By comparison, the computation time of SA is only 0.132 seconds. With the step 

sizes decreased, the probability of SA to find the global optimum (26553.7J) decreases to 12%, and 

SA frequently returns a near-optimum due to the nature of meta-heuristics. The median MEC that 

was obtained by SA for part B is 26553.9J, and the solution quality of SA is only 0.000753% 

[(26553.9-26553.7)/26553.7] inferior to that of EM. However, the computation time of SA is 99.82% 

[(74.282-0.132)/74.282] less than that of EM. When the step sizes are further decreased, the 

superiority of SA in terms of the computation time will become more prominent. In sum, SA is still 

recommended when the step sizes are small, because it requires much less computation time with 

little sacrifice in solution quality.

7. Conclusions and future work

Reducing the MEC for turning operations can play a significant role in promoting manufacturing 

energy efficiency and alleviating the associated environmental issues. It has been confirmed that the 

CEC within the MEC can be effectively reduce by selecting the optimal turning parameters at the 

process planning stage. However, the NCEC portion has not been well explored in previous research. 

Especially, the effect of CPs on the SRCE was neglected, and the SRCE normally accounts for 14% 

of the total NCEC. In this article, the conflict between NCEC and CEC in single-pass turning has 

been verified, and the integrated MEC model with NCEC and SRCE included has been developed. In 

this model, the unrelated machining activities have been excluded to improve the modelling 

efficiency, and the design parameters of the part have been considered. The single objective 

optimisation problem that minimises the total MEC is introduced, and SA is modified as the 

optimisation approach to search for the optimal SRS and feed rate. SA is compared with EM to 

validate its solution quality and computation time. In summary, it is novel to minimise the MEC with 
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the NCEC, the SRCE, and the design parameters considered through CPs optimisation, and the 

proposed model and optimisation approach are the main contributions.

In the case study, five rotational parts with different cutting lengths are processed by a CNC lathe 

(CK6153i). According to the optimisation results, SA has 100% probability of finding the global 

optima when the step sizes for SRS and feed rate are 0.1 and 0.001. The computation time of SA is 

82.69% shorter than that of EM for a case. Thus, SA is effective for solving our specific problem. By 

using the approach, 19.28% and 6.77% MEC can be reduced for parts A and C, respectively. The 

relation between the part length and the optimal SRS is analysed, and it suggests that the lower SRS 

should be selected for the shorter part to save more MEC. Moreover, the consequence of MEC 

minimisation on machining time is discussed, and it shows that the MEC minimisation may lead to 

the machining time increase. Thus, a trade-off between the reductions of machining time and energy 

consumption should be made. Finally, it verifies that more MEC can be saved when the step sizes for 

SRS and feed rate are set to the smaller values than 0.1 and 0.001.

In this presented article, the model is merely suitable for single-pass turning. When the cutting depth 

is large, multi-pass turning is required. The model should be improved for the multi-pass turning, 

through developing the sub-model for the subdivision of cutting depth. Furthermore, the model can 

be improved by considering more constraints, including tool-life, spindle torque, stable cutting 

region, and chip-tool interface temperature. One limitation of the research is that other machining 

operations, such as milling and drilling, have not been considered. These operations are widely used 

in manufacturing and have energy-saving potential. For the next step, the energy consumed for these 

operations will be modelled and optimised. More cases with different combinations of machining 

conditions, such as machine tools and materials, will be studied to prove the generality of our 

research work. The single objective is another limitation. In actual manufacturing, it is unreasonable 

to only reduce the MEC without controlling the machining time, quality, and cost. For the next step, 

multi-objective optimisation approach will be employed to obtain the optimal CPs that result in the 

optimal trade-off among the aforementioned objectives. In the future, the proposed CPs optimisation 

approach will be combined with the existing OSeq optimisation to promote the energy-efficient 

integrated process planning. Finally, the approach will be developed on product design software such 

as SolidWorks, Pro/E, UG, and CATIA to assist in industrial applications.
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Appendix A. Abbreviations and notations

The abbreviations and notations used in the problem statement, the algorithm description and 

throughout the paper are as follows:

Abbreviations
CEC cutting energy consumption [J]
CNC computer numerical control
CPs cutting parameters
EM enumeration method
GA genetic algorithm

HSMF high SRS with medium feed rate
MEC machining energy consumption [J]
NCEC non-cutting energy consumption [J]
OSeq operation sequencing
rpm revolutions per minute
SA simulated annealing

SAE energy consumed for spindle acceleration [J]
SDE energy consumed for spindle deceleration [J]

SRCE energy consumed for spindle rotation change [J]
SRS spindle rotation speed [rpm]
TPE energy consumed for tool path [J]

Nomenclature
𝛼𝐴 angular acceleration of a spindle [rad/s2]
𝛼𝐷 angular deceleration of a spindle [rad/s2]
, , 𝐴𝑍𝐹 𝐵𝑍𝐹

𝐶𝑍𝐹

quadratic coefficient, monomial coefficient, and constant in the Z-
axial feeding power model

, 𝐵𝑆𝑅 𝐶𝑆𝑅 monomial coefficient and constant in the spindle rotation power 
model

𝐶𝑀 coefficient in the material removal power model
𝐶𝑄 coefficient in the cutting force model
𝑑 cutting depth in turning operations [mm]
𝐷 initial diameter of the workpiece [mm]
𝐷𝑆 finished diameter of the workpiece [mm]

𝐸𝑐𝑢𝑡 CEC for single-pass turning operations [J]
𝐸𝑛𝑜𝑛 NCEC for single-pass turning operations [J]
𝐸𝑠𝑟𝑎 energy consumption of the machine tool for the spindle rotation 

acceleration from 0 rpm to  rpm [J]𝑛
𝐸𝑠𝑟𝑑 energy consumption of the machine tool for the spindle rotation 

deceleration from  rpm to 0 rpm [J]𝑛
𝐸𝑆𝑅𝐶 SRCE in single-pass turning operations [J]
𝐸𝑡𝑜𝑡𝑎𝑙 total MEC of a machine tool for single-pass turning operations [J]
𝐸𝑇𝑃 TPE in single-pass turning operations [J]
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, 𝐸 2
𝑇𝑃 𝐸 3

𝑇𝑃 TPE for the -nd and -rd feeding activities in single-pass turning 2 3
operations [J]

𝑓 feed rate in turning operations [mm/r]
𝑓0 feed rate when the iteration number is  [mm/r]0
𝑓𝐿 lower bound of feed rate in turning [mm/r]
𝑓𝑈 upper bound of feed rate in turning [mm/r]

𝐹𝑐𝑢𝑡 cutting force [N]
𝐹𝑈 maximum allowable cutting force [N]
𝑔 MEC function
𝐺 memory function
ℎ temperature decrease function
𝑘 index for the iteration
𝐿 cutting length of the workpiece [mm]
𝐿𝑐 length of Markov chain
𝑀 memory matrix
𝑛 SRS in the cutting process [rpm]
𝑛0 SRS when the iteration number is  [rpm]0

𝑛𝑚𝑎𝑥 maximum allowable SRS of the machine tool [rpm]
𝑃0 standby power of the machine tool [W]

𝑃𝑐𝑢𝑡 cutting power in turning operations [W]
𝑃𝐶𝑆 coolant spray power of the machine tool [W]
𝑃𝑀𝐶 material removal power [W]
𝑃𝑠𝑟𝑎 power of the spindle system in the spindle acceleration from 0 rpm to 

 rpm [W]𝑛
𝑃𝑆𝑅 spindle rotation power [W]
, 𝑃 2

𝑇𝑃 𝑃 3
𝑇𝑃 power of the machine tool for the -nd and -rd feeding activities 2 3

[W]
𝑃𝑈 maximum available power of the machine tool [W]

𝑃𝑋𝑅 rapid feeding power of X-axis [W]
𝑃𝑍𝐹 Z-axial feeding power [W]
𝑅𝑁 nose radius of the cutting tool [mm]
𝑅𝑈 maximum allowable surface roughness [μm]
, 𝑡2 𝑡3 time of the machine tool for the -nd and -rd feeding activities [s]2 3

𝑡𝑠𝑟𝑎 time for the spindle acceleration from  rpm to  rpm [s]0 𝑛
𝑡𝑠𝑟𝑑 time for the spindle deceleration from  rpm to  rpm [s]𝑛 0
𝑇0 initial temperature

𝑇𝑐𝑢𝑡 cutting time in turning operations [s]
𝑇𝑒 end temperature
𝑇𝑘 temperature in -th iteration𝑘
𝑇𝑠 acceleration torque of a spindle [N·m]

𝑇𝑡𝑜𝑡𝑎𝑙 total machining time of a machine tool for single-pass turning 
operations [s]

𝑣 cutting speed in turning [m/min]
𝑣𝐹 feeding speed in turning [mm/min]
𝑣𝐿 lower bound of cutting speed in turning [m/min]
𝑣𝑈 upper bound of cutting speed in turning [m/min]

𝑣𝑋𝑅 rapid feeding speed of X-axis [m/min]
, , 𝑤𝑀 𝑦𝑀 𝑥𝑀 exponents of cutting speed, feed rate, and cutting depth, respectively, 

in the material removal power model
, , 𝑤𝑄 𝑦𝑄 𝑥𝑄 exponents of cutting speed, feed rate, and cutting depth, respectively, 

in the cutting force model
∆𝑑𝑥 retracting distance of the tool in X-axis [mm]
∆𝑑𝑧 air-cutting distance before actually cutting the material [mm]
∆𝑛 random perturbation about SRS on the last solution  [rpm] 𝑛
∆𝑓 random perturbation about feed rate on the last solution  [mm/r] 𝑓
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