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VNIR–NIR hyperspectral imaging 
fusion targeting intraoperative 
brain cancer detection
Raquel Leon1,5*, Himar Fabelo1,5*, Samuel Ortega1,2,5, Juan F. Piñeiro3, Adam Szolna3, 
Maria Hernandez3, Carlos Espino3, Aruma J. O’Shanahan3, David Carrera3, Sara Bisshopp3, 
Coralia Sosa3, Mariano Marquez3, Jesus Morera3, Bernardino Clavo4 & Gustavo M. Callico1*

Currently, intraoperative guidance tools used for brain tumor resection assistance during surgery have 
several limitations. Hyperspectral (HS) imaging is arising as a novel imaging technique that could 
offer new capabilities to delineate brain tumor tissue in surgical-time. However, the HS acquisition 
systems have some limitations regarding spatial and spectral resolution depending on the spectral 
range to be captured. Image fusion techniques combine information from different sensors to obtain 
an HS cube with improved spatial and spectral resolution. This paper describes the contributions to 
HS image fusion using two push-broom HS cameras, covering the visual and near-infrared (VNIR) 
[400–1000 nm] and near-infrared (NIR) [900–1700 nm] spectral ranges, which are integrated into an 
intraoperative HS acquisition system developed to delineate brain tumor tissue during neurosurgical 
procedures. Both HS images were registered using intensity-based and feature-based techniques 
with different geometric transformations to perform the HS image fusion, obtaining an HS cube with 
wide spectral range [435–1638 nm]. Four HS datasets were captured to verify the image registration 
and the fusion process. Moreover, segmentation and classification methods were evaluated to 
compare the performance results between the use of the VNIR and NIR data, independently, with 
respect to the fused data. The results reveal that the proposed methodology for fusing VNIR–NIR data 
improves the classification results up to 21% of accuracy with respect to the use of each data modality 
independently, depending on the targeted classification problem.

Brain cancer is the most common central nervous system cancer (> 90%) and it represents an highly relevant 
source of mortality and morbidity, especially in children1,2. It can be divided into primary, if cancer arises in 
the brain, and secondary or metastasis, if cancer starts elsewhere in the body and has spread to the brain3. In 
the United States, there are 10,000 new cases of primary brain tumors each year, being the peak age of onset 
between 65 and 69 years old3. Primary brain tumors are divided into low-grade and high-grade depending on 
their malignity. Glioblastoma (grade IV) is the most lethal and most common primary brain tumor (50%) with 
a 5-year survival rate of 5.5%4. In low-grade gliomas (grade II) the early and total resection of the tumor increase 
the overall survival to a 5-year survival rate of 81% and 50 for oligodendroglioma and diffuse astrocytoma, 
respectively4. In case of non-malignant primary tumors, meningiomas are the most common and their resec-
tion can prevent further disease progression. A successful resection of the tumor is associated with prolonged 
survival. Nonetheless, due to the nature and location of the tumor, the complete resection is not always possible 
or can produce neurological damages to the patient. Hence, surgeons have to find a balance between tumor 
removal and neurologic compromise5.

The accurate identification of the boundaries between tumor and normal tissue during surgery improves the 
resection. Currently, neurosurgeons use several intraoperative guidance tools for tumor resection assistance, 
such as intraoperative Image Guided Stereotactic (IGS) neuronavigation, intraoperative Magnetic Resonance 
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Imaging (iMRI), or fluorescent tumor markers like 5-aminolevulinic acid (5-ALA)6. However, these tools pre-
sent several limitations, for example, iMRI is an expensive procedure due to require specific operation rooms 
with no ferromagnetic elements, increasing the surgical time7. The changes in tumor volume that occurs during 
craniotomy and the brain shift are not covered in IGS navigation8. 5-ALA is only able to identify high-grade 
gliomas administering orally a contrast agent to the patient, being an invasive methodology that can cause side 
effects in the patient9,10. Therefore, there is a current need to explore new imaging modalities that could overcome 
such limitations.

Hyperspectral imaging (HSI) is an emerging, non-contact, non-ionizing, label-free, and minimally invasive 
sensing technology widely employed in many applications, such as remote sensing11, food quality assessment12, 
defense and security13, among others14. Particularly, the use of HSI has been investigated in several medical 
applications15, such as oncology16, dermatology17, ophthalmology18, endoscopy19, wound care20, cervical cancer21, 
digital and computational pathology22, biomarkers discovery and validation23, tissue perfusion measurement24, 
gastroenterology22, etc. Hyperspectral (HS) images are composed by hundreds of spectral channels, conforming 
a continuous spectrum in each pixel which allows the differentiation of the materials which are present in the 
scene based in their chemical composition25. HS cameras generally use Charge-Coupled Device (CCD) or Com-
plementary Metal-Oxide Semiconductor (CMOS) sensors to cover the spectral range between 400 and 1000 nm 
(visual and near infrared–VNIR), while Indium Gallium Arsenide (InGaAS) and Mercury Cadmium Telluride 
(MCT) sensors are used to cover the range from 900 to 1700 nm (near infrared–NIR) and 900 to 2500 nm (near 
short-wave infrared–SWIR), respectively25. Thus, to obtain a broadband spectral range image, more than one 
HS camera is required, involving image registration and fusion algorithms to generate a combined HS image.

On one hand, image fusion techniques are used in many applications to merge information from different 
sensors with the goal of improving the classification or segmentation results26. Usually this image fusion proce-
dure is performed using multispectral images, which have low-spatial and high-spectral resolution, combined 
with panchromatic images, which have high-spatial but low-spectral resolution, to obtain a new fused image 
with high-spatial and high-spectral resolution27. Spectral fusion is applied to combine the spectral information 
from different sensors aiming to obtain an HS image with a broadband spectral range. This approach has been 
employed to identify geographical origins of herbal medicines28 or to identify metallic alloys from the recycling 
industry29.

On the other hand, image registration techniques have the goal to match two or more images of the same 
scene obtained by using different sensors or devices. The image registration is a necessary step to correctly 
perform the image fusion. Image registration methods can be classified into two groups: intensity-based and 
features-based techniques30. The former uses the intensity values of the image to find similarities between the 
images in the scene to perform the registration. This technique is widely used to register Computerized Tomog-
raphy (CT), Magnetic Resonance (MR) images with Positron Emission Tomography (PET) images, among other 
imaging modalities for computer-aided diagnosis, e.g. in brain tumor detection31,32. The later uses morphologi-
cal structures presented in the image to extract points, lines, curves, etc., in order to find similar features in 
the images and perform the image registration. There are different feature detectors and extractors, including 
Scale Invariant Feature Transform (SIFT), Features from Accelerated Segment Test (FAST) or Harris detector. 
All these methods have been widely used in the literature due to they are robust and automatic algorithms to 
extract features33. Features-based technique have been used in fusion information from different sensors or 
image mosaic technology34,35.

Previous works from this research team have involved the use of HSI in the VNIR spectral range for the 
intraoperative detection of brain tumors in real-time36–38. In this work, a new approach is proposed for perform-
ing the spectral fusion of two HS cubes obtained with two different HS cameras covering the VNIR and NIR 
spectral range with the goal of obtaining an HS cube with a broadband spectral range. This fusion procedure is 
investigated targeting an improvement of the previous results in the processing of the intraoperative HS brain 
tumors including NIR information.

Results
VNIR–NIR spatial registration using the HSI registration dataset.  The HSI registration dataset (see 
Fig. S1a in the Supplementary Material) were registered using different registration techniques and geometric 
transformations with the purpose of selecting the image registration technique (see “Methods” section) which 
provides the best result. The VNIR–NIR spatial registration was evaluated computing the structural Similarity 
Index Measure (SSIM), the Mutual Information (MI), and the Pearson’s Correlation Coefficient (PCC) metrics. 
In preliminary analysis, a gray-scale image was generated from a pseudo-RGB image of both HS cubes for 
performing the registration. Figure S2 in the Supplementary Material shows the average SSIM, MI and PCC 
results obtained after performing the different geometric transformation over the HSI registration dataset. In the 
case of intensity-based technique, translation, similarity, and affine transformations were applied. In the case of 
feature-based technique using Maximally Stable Extremal Regions (MSER) and Speeded Up Robust Features 
(SURF) detectors, the transformations employed were affine, similarity and projective. Due to the randomized 
nature of the M-estimator Sample Consensus (MSAC) algorithm, in the feature-based technique, one thousand 
consecutive executions were performed to estimate the geometric transformation. The feature-based technique 
using SURF detector offered the best registration (Fig. S2c in the Supplementary Material). The results obtained 
using affine and projective transformations were similar. This is produced due to the projective transformation 
performs the same geometric transform (scaling, shear, rotation, and translation) than the affine transformation, 
in addition to apply tilt to the transformation. These results outperform the feature-based technique using MSER 
and also the intensity-based technique. Figure  1a shows two example results of the HSI registration dataset, 
R2C2 and R4C1. The first column shows the registration result without applying any geometric transforma-
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tion, while the remaining columns show the best results obtained with each registration technique and the best 
geometric transformation. These images represent an overlay of the VNIR and NIR pseudo-RGB images using 
green-magenta false-color images. Magenta and green pixels indicate misregistration between the VNIR and 
NIR images, respectively. The areas with gray-scale pixels indicate areas where the two registered images have 
similar intensity values. Using the translation transformation in the intensity-based registration, R2C2 is incor-
rectly registered, while R4C1 improves the registration respect to the result without applying any transforma-
tion. These incorrect registrations can be produced due to the random noise that can be found in some spectral 
bands, affecting to the maximum intensity. The feature-based MSER technique using similarity transformation 
improves the intensity-based technique but some misregistered pixels can be observed in both images. Finally, 
the feature-based SURF technique with projective transformation offered the best results. For this reason, this 
method was selected to be applied in the subsequent experiments. Figure S3 in Supplementary Material shows 
the remaining registrations of the HSI registration dataset.

A coarse-to-fine search was performed using gray-scale images from a single spectral band extracted from 
both cameras to identify the VNIR and NIR bands, which offer the best registration performance. To reduce the 
high computational time, the coarse search was performed using steps of seven and three bands in the VNIR 
and NIR images, respectively, to diminish the number of combinations. Figure 1b shows the R2C2 and R4C1 
heatmaps resulting from the coarse search using SSIM, MI and PCC metrics (the remaining heatmaps are shown 
in Fig. S4 in the Supplementary Material). It can be observed that in all metrics the lower and higher bands for 
each camera do not offer a correct registration mainly due to the low performance of the sensor in such bands. 
The MI and PCC metrics indicate all band combinations in the central region offer similar results. In opposite, 
SSIM metric indicates that regions 500–700 nm and 950–1500 nm in the VNIR and NIR ranges, respectively, 
achieve the highest results. This is caused because the SSIM metric takes into account the image structure while 
the other metrics only consider the image intensity. For this reason, to select the optimal spectral bands in the 
coarse-to-fine search only the SSIM metric was employed. The fine search was performed within the previously 
selected regions using steps of one band for both cameras. Figure S5 in the Supplementary Material shows 
the SSIM results using the optimal band combination and summarizes the bands/wavelengths employed. One 
thousand consecutive executions were performed using the best band combination of each VNIR–NIR HS 
image pair to obtain the transformation with the highest SSIM value. Finally, the best transformation model 
was selected after applying each projective transformation to all the images from the HSI registration dataset. 
Figure S6 in the Supplementary Material shows the SSIM boxplot results for each transformation model, where 
an average SSIM value of ~ 0.78 was obtained for all models. The R2C1 model was selected as it presented the 
lowest IQR (Interquartile Range). No statistically significant differences were found across the mean SSIM values 
between R2C1 and R2C2 (which has the higher mean value), using a paired, two-tailed Student’s t test at the 
5% significance level.

VNIR–NIR spectral fusion using the HSI spectral reference dataset.  Considering the low perfor-
mance of the push-broom HS sensors in the lower and higher spectral bands, a spectral analysis of the data was 
performed using a HSI spectral reference dataset (see Fig. S1b in the Supplementary Material) to evaluate which 
bands should be removed before performing the spectral fusion. Both HS cameras have a common spectral 
range between 900 and 1000 nm (Fig. 2a). However, performing a spectral fusion based on the use of this com-
mon spectral region is not suitable in this case due to the low performance of the VNIR sensor in those bands. 
As shown in Fig. 2b, this method causes the NIR region of the fused spectral signature to have a higher standard 

Figure 1.   VNIR–NIR Spatial Registration using the HSI registration dataset. (a) Two registration result 
examples applying different registration techniques. Both images are overlapped using green-magenta false-
color, VNIR (green) and NIR (magenta). First column shows the default registration without applying any type 
of transformation to the data. Second, third and fourth columns show the results of the intensity-based, feature-
based with MSER, and feature-based with SURF techniques, respectively, using the best transformation method. 
(b) Coarse search results of the Structural Similarity Index Measure (SSIM), the Mutual Information (MI), and 
the Pearson’s Correlation Coefficient (PCC) for identifying the suitable spectral bands for the registration using 
the feature-based SURF technique with projective transformation.
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deviation than the VNIR region when capturing a calibration polymer (see “Methods” section). Hence, a spec-
tral analysis was performed computing the absolute relative difference percentage ( RD ) metric [see Eq. (S13) in 
the “Methods” section in the Supplementary Material] using the image pairs of each image in the HSI spectral 
reference dataset for both VNIR and NIR cameras. Figure 2c, d shows the RDmean values for each wavelength in 
the VNIR and NIR spectral signatures of a white reference (SR1), respectively. The RDmean represents the average 
RD value of all pixels in the image at a certain wavelength. In the case of the VNIR data (Fig. 2c), the RDmean is 
higher than the average from 400 to 435 nm and from 800 to 1000 nm. In the case of the NIR data (Fig. 2d), the 
RDmean values obtained in the ranges 900–960 nm and 1619–1700 nm are higher than the average. These ranges 
are represented in the figures using the vertical red dashed lines. The AverageRDmean value was used to establish 
the initial and final cutoff point for the selection of the operating bandwidth in each image of the HSI spectral 
reference dataset.

Table S1 and Fig. S7 in the Supplementary Material show the cut off points for each image of the HSI spectral 
reference dataset. It can be observed that the initial cutoff points in the NIR data are the same in the three cases 
( � = 956.6± 0 nm ), while in the VNIR data there are quite similar values around � = 435.2± 0.4 nm . Consid-
ering the final cutoff point, the NIR data values are close to � = 1632.0± 11.0 nm , while the VNIR data values 
are close to � = 849.6± 3.3 nm . In the VNIR case, the final cut off point involves the removal of ~ 200 spectral 
bands. With the purpose of reducing the number of bands to be removed, an additional analysis was performed 
using three image pairs from the HSI plastic dataset (see Fig. S1c in the Supplementary Material). In this case, 
the initial cutoff point does not coincide in two of three VNIR image pairs respect to the HSI spectral reference 
dataset, providing an average point of � = 496.5± 70.1nm . This is produced mainly due to the spectral contribu-
tions of the plastic color (red and magenta). Considering the final cutoff point in the VNIR data, the average value 
is higher with respect to the HSI spectral reference dataset ( � = 896.0± 14.7 nm ). In the case of the NIR data, 
the initial and final cutoff points are similar to the previous ones, � = 959.8± 2.8 nm and � = 1638.4± 9.5 nm , 
respectively. At this point, a qualitative assessment of the VNIR cutoff points was performed by plotting the mean 
and standard deviation (std) of the spectral signatures of the Zenith Polymer reflectance standard. Figure 2e 
shows that the std values between 849 and 900 nm (green) are quite similar to the previous spectral bands (red). 
For this reason, the selected cutoff points for the VNIR data were 435 and 901 nm, having 641 spectral bands, 
while the NIR data covered a spectral range between 956 and 1638 nm formed by 144 spectral bands. Finally, the 
VNIR–NIR spectral fusion was performed applying a reflectance offset to the NIR spectrum in order to adjust 
the reflectance values of both spectral signatures. The fused spectral signature has a gap between 901 and 956 nm 
(Fig. 2f), in order to preserve the original standard deviation of the NIR spectrum.

Evaluation of image segmentation and classification using the HSI plastic dataset.  Different 
unsupervised segmentation and supervised classification techniques were employed to evaluate the performance 
of the three data types (VNIR, NIR and Fused) in three different segmentation/classification problems: color, 
material, and material-color identification.

K-means, K-medoids, and hierarchical K-means algorithms were applied to the test set of HSI plastic dataset 
(see Fig. S1c in the Supplementary Material). Figure 3a–c shows, as examples, the segmentation maps obtained 
with K-means algorithm from three of the thirteen test HS images, as well as the average Jaccard results obtained 
with the entire dataset for the three segmentation algorithms. The Jaccard metric was computed using the 

Figure 2.   (a) Manufactured certified spectral signature of the Zenith Polymer and spectral signatures captured 
by the VNIR and NIR cameras. (b) Fused spectral signature using a common spectral band in the overlapped 
spectral region between VNIR and NIR data. (c, d) Average absolute relative difference percentage (RD) results 
of SR1 using VNIR and NIR data. Red dashed lines represent the initial and final cutoff points for voiding the 
low performance of the HS sensors. (e) Comparison between the mean and std of the Zenith Polymer VNIR 
spectral signature with 641 spectral bands (green) and 575 spectral bands (red). (f) Fused spectral signature of 
the Zenith Polymer after applying the proposed VNIR–NIR spectral fusion method.
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ground-truth image and the segmentation map of each HS image. As expected, the VNIR data achieved the 
highest results in the color segmentation using K-means algorithm, followed by the Fused data using K-medoids 
and hierarchical K-means (Fig. 3a), while the material identification was superior using the NIR data in all three 
algorithms (Fig. 3b). However, the material-color segmentation of the NIR data using hierarchical K-means 
improved the segmentation results followed by the Fused data using K-means (Fig. 3c). Statistical analysis was 
performed to the segmentation results using a paired, one-tailed Student’s t-test at 5% significance level. No 
statistically differences were found between the results of the material-color segmentation problem. Tables S2, 
S3, and S4 in Supplementary Material details the Jaccard results applying K-means, K-medoids, and hierarchical 
K-means algorithms, respectively, for each test HS image and the average and standard deviation values.

Support Vector Machines (SVMs), Random Forest (RF), and K-Nearest Neighbors (KNN) algorithms were 
employed for the supervised classification. A coarse-to-fine search (in the case of SVM) and a coarse search (in 

Figure 3.   Segmentation and classification maps of three examples of the test set from the HSI plastic dataset 
and average Jaccard and accuracy results obtained from the thirteen images. Color, material, and material-color 
segmentation (a–c) and classification (d–f) problems, respectively, using VNIR, NIR, and fused data. Each 
column (from left to right) represents the RGB images obtained with a digital camera, the ground-truth maps, 
the VNIR, NIR, and fused segmentation results, respectively, and the average Jaccard and accuracy results 
obtained with the entire test set for the three different segmentation and classification algorithms. Results 
were statistically analyzed using a paired, one-tailed Student’s t test at the 5% significance level. (*) Statistically 
significant difference ( p < 0.05 ). (**) Highly statistically significant difference ( p < 0.001) . ABS: Acrylonitrile 
Butadiene Styrene; PLA: Polylactic Acid; PETG: Polyethylene Terephthalate Glycol. HKM: Hierarchical 
K-means; SVM: Support Vector Machines; RF: Random Forest; KNN: K-Nearest Neighbors.
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the case of RF and KNN) were performed to optimize the hyperparameters of each classifier. This procedure was 
accomplished using the training and validation sets for each data type and classification problem independently. 
Table S5 and Figs. S8, S9, and S10 in the Supplementary Material shows the optimal hyperparameter values 
found for each classifier, data type and classification problem, as well as the overall accuracy results obtained in 
the validation set.

Once SVM, KNN, and RF models were trained and optimized for each case, the classifiers were evaluated 
using the test set to assess the results obtained in the validation set. Figure 3d–f shows as examples, the classifica-
tion maps obtained with the SVM classifier from three of the thirteen test HS images, as well as the average overall 
accuracy results obtained with the entire dataset for the three supervised algorithms. The accuracy was computed 
using the ground-truth image and the classification map of each HS image. In the color classification, VNIR and 
Fused data, using SVM and RF classifiers, obtained quite similar performance, while NIR data decreases the 
accuracy in the three classifiers (Fig. 3d). As it can be observed in the SVM example, NIR data misclassifies the 
three plastic samples, while the VNIR and Fused data identify correctly two out of three samples, misclassify-
ing the white color, which is identified as transparent (orange color in Fig. 3d). On the contrary, in the material 
classification, the NIR data achieved the highest accuracy in all three classifiers, followed by the Fused data using 
SVM classifier (Fig. 3e). In the material example applying SVM classifier, VNIR data only classified two out of 
three samples correctly, while NIR and Fused data were able to successfully identify the three samples. Finally, in 
the material-color classification the Fused data outperformed the other two data types (Fig. 3f). Statistical analysis 
was performed to the classification results using a paired, one-tailed Student’s t test at 5% significance level. In 
the material-color classification problem, statistically significant differences were found between the VNIR and 
Fused data results. Tables S6, S7, and S8 in the Supplementary Material details the accuracy results obtained with 
SVM, RF, and KNN classifiers for each test HS image and their average and standard deviation values.

Qualitative evaluation of image segmentation using the HSI brain dataset.  The proposed 
VNIR–NIR spectral fusion method was applied to the HS images from the HSI brain dataset (Fig. S1d in Sup-
plementary Material). The main goal of this experiment was to evaluate, as a proof-of-concept, if the proposed 
data fusion method could improve the morphological edge detection of different tissue structures (particularly 
normal tissue and blood vessels) that can be found in the exposed brain surface during surgery. Image segmen-
tation based on the K-means algorithm was performed in each HS image independently for a qualitative evalu-
ation of the results obtained using the three data types. Quantitative evaluation was not performed due to the 
low number of pixels labeled in each image, which produced extremely low Jaccard values. The methodology 
followed to generate this segmentation maps is detailed in the “Methods” sections.

Figure 4 shows the pseudo-RGB images (generated from the VNIR data, where the approximate tumor area 
has been delineated with a yellow line by visual inspection of the operating surgeon according to the patient’s 
MRI), the ground-truth maps (green and blue pixels represent normal and blood vessel classes, respectively, 
and white pixels are non-labelled pixels), and the segmentation maps for the VNIR, NIR, and Fused data over-
lapped with the pseudo-RGB images. Blue and green colors were selected to be consistent with previous works36. 
Figure S11 in the Supplementary Material shows the average and standard deviation of the spectral signatures 
of the labeled HSI brain dataset in the different images of the VNIR and NIR data. After a visual evaluation 
of the segmentation maps by the operating surgeons, it can be observed that in B1, the VNIR map presents 
normal pixels in the tumor area and normal and blood vessel pixels out of the parenchymal area. In contrast, 
NIR and fused maps reduce the misclassifications in the tumor area. Moreover, the anatomical structures of the 
parenchymal area are better defined in the fusion map than in the VNIR and NIR maps, although some pixels 
are identified as normal within the tumor area. In B2, the VNIR map defines well the anatomical structures of 
the vessels and normal tissues, while the NIR map avoids misclassifications within the tumor area, delimiting 
well the parenchyma. The fused map offers a tradeoff between the information shown in the VNIR and NIR 
maps, but some false negatives are presented in the tumor area. In B3, the tumor area was correctly defined in 
the VNIR map without false negatives, but the anatomical structures of vessels are not accurately identified. In 
opposite, the NIR map improve de delineation of blood vessels, but the anatomical structure of normal tissue is 
poorly defined, including also false negatives in the tumor area. Finally, the fused map offers the best anatomical 
structures and delineation of tumor area. These results were assessed by the operating surgeons analyzing the 
MRI of the patient and the pathological diagnosis of the tissue.

Discussion
Current guidance tools employed to assist brain tumor resection during surgery have several limitations7–10. The 
IGS neuronavigation provide an accurate identification of tumor boundaries in low-grade gliomas, but not in 
high-grade ones, being affected also by the brain shift phenomenon. To accurately identify high-grade gliomas, 
it is necessary the use of contrast agents with complex and expensive systems, such as 5-ALA, or employing iMRI 
devices that requires especial operating rooms and extends the duration of the surgery. Moreover, the choice of 
the guidance tool to be used in the surgery is determined by the intraoperative pathological result, which may 
take up to 45 min. Reducing the surgery time implies decreasing the risk of complications during the operation, 
such as infection, ischemia, respiratory problems, etc., thus improving cost-efficiency. Furthermore, an accurate 
delimitation between tumor and normal tissue improves the average survival of the patient5. For these reasons, 
it is desirable to develop minimally invasive, label-free and flexible guidance tools that allow identifying brain 
tumor boundaries in real-time during surgery. The use of HSI in medical applications has been proved to be a 
valuable resource to identify tumor tissue16. Previous works of this research group employed an HS acquisition 
system composed by VNIR and NIR cameras to capture HS images of in-vivo human brain tissue during surgical 
procedures with the goal of identifying tumor boundaries in real-time36–38. However, in these works only VNIR 
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information was processed due to the impossibility of performing a reliable labeling in the NIR HS images. In this 
research, this acquisition system has been modified to combine both sources of information (VNIR and NIR) and 
propose a VNIR–NIR imaging fusion approach to determine, as a proof-of-concept, if the fused data can improve 
the delimitation of different brain tissue structures with respect to the use of both sources of data independently. 
In the previous configuration, the VNIR and NIR image registration was not possible to be performed due to 
the camera non-perpendicularity with respect to the scene, especially in non-flat surface situations (e.g., after 
tumor resection beginning). Hence, the VNIR labeling could not be used for the NIR images. Additionally, the 
labeling could not be directly performed over the NIR images due to their low spatial resolution and the false 
color representation of the pseudo-RGB. The proposed acquisition system configuration allows performing the 
VNIR–NIR spatial registration, being possible to extrapolate the VNIR labeling to the NIR images and perform 
a spectral fusion of both sources of data. Additionally, a speedup factor of 2× was achieved in the acquisition 
time since the capturing is performed in a single scanning.

To achieve an accurate VNIR–NIR spatial registration, several techniques and geometric transformations 
were analyzed and tested using different HS images. Additionally, a coarse-to-fine search was performed using 
all the combinations of gray-scale images (extracted from each spectral band) from both HS cameras to identify 
the most suitable bands for performing the spatial registration. The feature-based technique using SURF detector 
and projective transformation was selected for the VNIR–NIR spatial registration. Next, a detailed analysis of the 
VNIR and NIR spectral signatures was performed to determine the optimal operating bandwidth captured by 
each camera, being combined in the subsequent spectral fusion process. The resulting HS cube was formed by 
641 spectral bands in the VNIR range (435–901 nm) and 144 spectral bands in the NIR range (956–1638 nm).

To determine the discrimination capability of the fused data compared with the use of the VNIR and NIR 
data independently, three segmentation and classification problems were proposed using a controlled HSI dataset 
based on plastic samples of different materials and colors. The results show that VNIR data identified better the 
color of the samples than the NIR and fused data, while the material is more accurately identified using the NIR 
data. However, when the goal is to identify the material and color of the sample, the fused data offered better 
results than the VNIR and NIR data. Therefore, the selection of the data type to be employed in a certain clas-
sification/segmentation problem will be determined by the nature of the materials, substances or tissue to be 
analyzed. If the optical properties are more relevant in the VNIR region than in the NIR region (or vice versa), 
then, using the fused data could provide misclassifications in the results. On the contrary, if relevant optical 
properties can be found in the two spectral ranges (as in the material-color problem), the fused data could provide 
improved discrimination performance.

Finally, a preliminary analysis of three HS images of in-vivo human brain tissue obtained during surgical 
procedures was performed to evaluate, as a proof-of-concept, the segmentation results generated after process-
ing the three data types. In this preliminary analysis, only two classes (normal and blood vessel) were labeled in 

Figure 4.   Results of the image segmentation of the HSI brain dataset. Each column (from left to right) 
represents the pseudo-RGB image generated form the VNIR data, the ground-truth map, the VNIR, NIR, 
and fused segmentation maps overlapped with the pseudo-RGB image, respectively. Green color represents 
normal tissue and blue color represents blood vessels. B1: Meningioma Grade I; B2: Glioblastoma Grade IV; B3: 
Glioblastoma Grade IV.
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the ground-truth maps and employed to reveal the two best clusters associated to such labeled pixels. Analyzing 
these segmentation results, specialists determined that the Fused maps provided a good tradeoff between the 
information presented in the VNIR and NIR maps, offering improved anatomical structures delineation. In this 
experiment, no tumor pixels were labeled or taken into account for the clustering analysis. For such reason, 
further experiments must be conducted including an increased dataset of HS images from in-vivo brain (where 
tumor pixels will be also labeled) with the goal of performing both segmentation and classification problems, 
aiming to identify tumor boundaries and compare the results obtained with the three data types. Moreover, a 
clinical study, including large number of patients, different tumor types, and performing histological verifica-
tion of several biopsies (within the tumor area and margins), should be performed to validate the classification 
results provided by the proposed method.

Additionally, an analysis of the most relevant spectral bands of the fused HS images for an accurate delineation 
of the tumor boundaries will be explored in future works with the goal of determining the minimum number of 
wavelengths required to develop customized HS cameras. This will allow a reduction of the acquisition system size 
and also a time reduction of the data acquisition and processing, targeting real-time performance during surgery. 
This identification of the most relevant spectral bands in the NIR range will also allow to increase the spatial 
resolution of this HS images, possibly avoiding the resampling process employed in this work. These advances 
could allow the development of a novel guidance tool based on HSI technology for the accurate identification 
of brain tumors, regardless of tumor grade, avoiding the use of several independent devices during surgery and, 
hence, reducing the operation time.

Methods
Processing framework overview.  The proposed method is composed by two main stages: (1) VNIR–
NIR spatial registration; (2) VNIR–NIR spectral fusion (Fig. 5). In the first stage, the VNIR and NIR raw images 
are pre-processed applying image calibration to avoid the influence of environmental illumination, noise filter-
ing and band removing to reduce the noise in the spectral signatures due to the camera sensor performance 
(especially in the extreme bands). After that, the NIR image is upsampled to reach the VNIR pixel size, allowing 
to perform the image registration using a transformation model previously generated. In this transformation the 
fixed image is the VNIR, and the moving image is the NIR. When both VNIR and NIR images are registered, 
both images are cropped to obtain the same region of interest (ROI). Finally, in the last stage, the spectra from 
both VNIR and NIR images are combined, applying a reflectance offset to the NIR spectrum, to perform the 
spectral fusion and generate a single HS image.

Hyperspectral acquisition system.  An intraoperative HS demonstrator was developed with the goal of 
delineating brain tumors during surgical operations (Fig. 6a, b), aiding neurosurgeons during the brain tumor 
resection37. This demonstrator was composed by two push-broom HS cameras (Fig. 6c): the VNIR camera cov-
ered the spectral range between 400 and 1000 nm and the NIR between the 900–1700 nm. The illumination 
system was based on a Quartz Tungsten Halogen (QTH) lamp of 150 W with a broadband emission between 400 
and 2200 nm. The light source was connected to a cold light emitter through an optical fiber to avoid the high 
temperatures of the QTH lamp in the exposed brain surface. The HS cameras and the cold light emitter were 
installed in a scanning platform to provide the necessary movement for the push-broom technique to generate 
the complete HS cubes. The working distance between the lens of the cameras and the exposed brain tissue was 
40 cm. The field of view (FOV) of both cameras was oriented and aligned to the beam of the cold light emitter 
to obtain the highest reflectance value in the sensors (Fig. 6c). As a result, both cameras were tilted to capture 
the same FOV, producing that both HS cubes had different perspectives of the scene and being not possible to 
achieve an accurate registration for data fusion (Fig. 6c). In this work, different modifications of the acquisition 
system were performed to obtain the optimal cameras orientation. In the proposed configuration of the acqui-
sition system, both HS cameras are oriented perpendicular to the surface to be captured. Figure 6d shows the 

Figure 5.   Block diagram of the proposed processing framework based on VNIR–NIR spatial registration 
combined with spectral fusion. NIR: Near-Infrared; VNIR: Visual and Near-Infrared; ROI: Region of Interest; 
W: Width; H: Height; HS: Hyperspectral.
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position of the cameras in the scanning platform. In this case, it was necessary to include another illumination 
device, one for each HS camera, and both HS cameras have a similar FOV, allowing an accurate image registra-
tion. The working distance between the lens of the cameras and the area to be captured were ~ 33 and ~ 42 cm 
for the NIR and VNIR cameras, respectively. In addition, the acquisition time of the modified system to capture 
both HS cubes was reduced to ~ 60 s, performing only a scanning in a single direction. This improvement repre-
sented a time reduction of 1 min, due to the original system required ~ 80 and ~ 40 s for the VNIR and NIR HS 
cubes capturing, respectively, involving two scanning movements in both directions as shown in Fig. 6c.

Hyperspectral database.  The HS database used in this research was divided into four sets to evaluate 
the different stages of the proposed VNIR–NIR fusion method. The first one was used to evaluate the VNIR–
NIR spatial registration (HSI registration dataset, Fig. S1a in the Supplementary Material), the second one was 
employed to validate the VNIR–NIR spectral fusion (HSI spectral reference dataset, Fig. S1b in the Supplemen-
tary Material), and the last two sets were used to evaluate quantitatively and qualitatively the method perfor-
mance (HSI plastic dataset and HSI brain dataset, Fig. S1c, d in the Supplementary Material). The HSI brain 
dataset is formed by three HS images of in vivo brain tissue acquired at the University Hospital of Gran Canaria 
Doctor Negrin, Spain. Written informed consent was obtained from all the participant subjects, and the study 
protocol and consent procedures were approved by the Etica de la Investigacion/Comite de Etica de la Investiga-
cion con Medicamentos (DEI/CEIM) of the University Hospital Doctor Negrin (2019-001-1). All research was 
performed in accordance with relevant guidelines/regulations. All four HS datasets were captured using the 
proposed configuration of the HS acquisition system previously described. The HSI plastic dataset the dataset 
was organized into three groups for performing different classification and segmentation problems: color, mate-
rial, and material-color. Table S9 and Fig. S12 in the Supplementary Material show the number of pixels labeled 

Figure 6.   (a, b) HS acquisition system being used during a neurosurgical intervention at the University 
Hospital of Gran Canaria Doctor Negrin (Spain). (c) HS cameras orientation of the original demonstrator, 
examples of pseudo-RGB images of VNIR and NIR HS cubes and their corresponding registration using 
green (VNIR) and magenta (NIR) false color. (d) Proposed configuration with HS cameras placed in parallel 
and perpendicular to the sample, examples of pseudo-RGB images of VNIR and NIR HS cubes and their 
corresponding registration.
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in each class and the mean spectral signatures available in the HSI plastic dataset. While VNIR data should 
accurately identify different colors (since this spectral range includes the visible range) and NIR data should 
identify more accurately different materials39. The aim of dividing the data into these groups (color, material, 
and material-color) is to test the hypothesis that the fusion of both sources of information may offer the best 
discrimination in a classification problem where materials and colors should be differentiated simultaneously. 
All datasets are described in detail in the “Methods” section in the Supplementary Material and are available 
under reasonable request.

Data pre‑processing.  The raw HS images acquired by both cameras were pre-processed applying image 
calibration to avoid the influence of environmental illumination, the dark currents of the HS sensor, and noise 
filtering to reduce the high-frequency noise in the spectral signatures caused by the camera sensor. Additionally, 
due to both HS cameras have different spatial resolutions, it was necessary to resample one of the two HS images 
to be able to register them. Upsampling method was chosen to increase the NIR spatial dimensions to reach the 
VNIR pixel size. Then the VNIR image is employed to perform a manual labeling and such labeling map was 
transferred to the upampled NIR image. The upsampling algorithm used to increase the NIR spatial resolution 
(from 320 × 253 to 939 × 743 pixels) and to estimate the upsampled spectral signatures is based on a bilinear 
interpolation, considering the nearest 2-by-2 neighborhood of a certain pixel. Figure S13 in the Supplementary 
Material shows a graphical representation of this methodology. In the “Methods” section in the Supplementary 
Material, data pre-processing and upsampling methods are detailed and a comparison between three different 
interpolation methods is provided.

VNIR–NIR spatial registration.  In this study, intensity-based, using translation, similarity, and affine 
transformation, and feature-based techniques, using SURF40 and MSER41 detectors and similarity, affine and 
projective transformation, were employed for registering the VNIR and NIR images. This process allows over-
lapping two or more images of the same scene captured by different cameras and different angles using a refer-
ence image. In this work, the misaligned image (also called moving image) was the NIR image, and the reference 
image (also called fixed image) corresponded to the VNIR image. Finally, after applying the transformation to 
the NIR image, both VNIR and NIR images were cropped to obtain the same region of interest. In the “Methods” 
section in the Supplementary Material, the techniques and transformation used are explained.

VNIR–NIR spectral fusion.  The final step of the proposed framework aims to combine the spectra from 
the registered NIR and VNIR HS images into a single HS image. First, a spectral analysis of the data generated 
in both HS images was performed to evaluate the optimal spectral cutoff points where the HS sensors present 
low performance, i.e., low signal-to-noise ratios. The lower and higher spectral bands were removed before the 
data fusion. The spectral range of 400–435 nm and 901–1000 nm of the VNIR and the range of 900–956 nm 
and 1638–1700 nm of the NIR were not included in the fused data as explained in the “Results” section. Then, a 
reflectance offset was applied to NIR spectrum with the goal of adjusting the reflectance values of both spectral 
signatures with respect to a reference. The reflectance offset is detailed in the “Methods” section in the Supple-
mentary Material.

Thus, the fused HS image was formed by the spectral ranges of 435–901 nm (641 spectral bands) and 
956–1638 nm (144 spectral bands) as shown in Fig. 5, where the spectral signature of Zenith Polymer Reflectance 
Standard provided by the manufacturer is used to represent the spectral range after the fusion process. Figure 2f 
shows the VNIR–NIR spectral fusion result using such polymer acquired with the HS acquisition system. Finally, 
the spectral signatures are normalized between zero and one to homogenize reflectance levels in each pixel of 
the HS image for the subsequent segmentation and classification analyses. Figure S12 in Supplementary Material 
shows the average spectral signatures of the HSI plastic dataset after performing the VNIR–NIR spectral fusion.

Additionally, the fusion performance was evaluated using segmentation and classification algorithms, com-
paring the results before and after the proposed fusion procedure using the HSI plastic dataset. The obtained 
results are detailed in the VNIR–NIR Spectral Fusion Methods Evaluation section in “Results” section of the 
Supplementary Material.

Segmentation and classification methods.  The VNIR–NIR imaging fusion performance was evalu-
ated in unsupervised segmentation and supervised classification problems. The goal was to quantitatively and 
qualitatively determine if the proposed fusion approach allows to improve the segmentation and classification of 
different classes with respect to the exclusive use of either VNIR or NIR data.

The segmentation method employed the K-means, K-medoids, and hierarchical K-means algorithms36 to 
segment the HS images into K different clusters. The number of clusters (K) was previously selected and, in the 
case of HSI plastic dataset, the selected K value corresponds to the number of classes present in the ground-truth 
of each HS image to be processed. In the case of HSI brain dataset, the number of clusters used was twenty-four. 
This number was selected based on the results of a previous work36. Finally, to obtain the segmentation maps, the 
clusters more similar to the ground-truth were selected using Jaccard metric. In these experiments, the clusters 
initialization was performed using the same seed. K-means and hierarchical K-means algorithms have been used 
for HS data segmentation to identify brain cancer36,42. MATLAB Statistics and Machine Learning Toolbox (The 
MathWorks Inc., Natick, MA, USA) was employed to implement the K-means algorithms.

The pixel-wise supervised classification was based on the SVM, RF, KNN classifiers. In the classification prob-
lem, the HSI plastic dataset was partitioned into training, validation, and test sets. The training and validation sets 
were used to optimize, evaluate, and generate the classification model. After the hyperparameter optimization, 
the performance of the model was evaluated using the test set. These algorithm has been widely used to identify 
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glioblastoma tumor in pathological slide and in-vivo tissue using HS data43,44. The LIBSVM library was used as 
SVM implementation45 while the MATLAB Statistics and Machine Learning ToolBox was employed for the RF 
and KNN implementations. More details can be found in the “Methods” section in the Supplementary Material.

Performance metrics.  The spatial registration was evaluated using image-based similarity, while the seg-
mentation problem performance was evaluated using overlap-based metrics. Finally, the classification problem 
was evaluated using the accuracy metric Additionally, segmentation and classification results were statistically 
analyzed using a paired, one-tailed Student’s t test at the 5% significance level. Each evaluation metrics used in 
this research is detailed in the “Methods” section in the Supplementary Material.

Data availability statement
The datasets generated during the current study are available from the corresponding author, under reasonable 
request, through https://​hsibr​ainda​tabase.​iuma.​ulpgc.​es/.
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