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A B S T R A C T   

Reinforcement learning (RL) - a branch of machine learning - refers to the process of an agent learning to achieve 
a certain goal by interaction with its environment. The process of conventional tunneling shows many similar
ities, where a geotechnician (agent) tries to achieve a breakthrough (goal) by excavating the rockmass (envi
ronment) in an optimum way. 

In this paper we present a novel RL based framework for strategy development for conventional tunneling. We 
developed a virtual environment with the goal of a tunnel breakthrough and with a deep Q-network as the 
agent’s architecture. It can choose from different excavation sequences to reach that goal and learns to do so in 
an economical and safe way by getting feedback from a specially designed reward system. Result analyses show 
that the optimal policies have great similarities to current practices of sequential tunneling and the framework 
has the potential to discover new tunneling strategies.   

1. Introduction 

Digitalization in tunneling is an ongoing process including topics like 
Artificial Intelligence (AI) technology [1], Building Information 
Modelling [2] or embedded strain measurements in shotcrete lining [3]. 
Machine Learning (ML) applications in particular have so far mostly 
focused on classification tasks based on supervised ML: e.g. [4–6] apply 
artificial neural networks (ANN) for rockmass behavior classification of 
tunnel boring machine (TBM) data; [7] use supervised learning methods 
for automatic work progress identification in NATM (New Austrian 
Tunneling Method) tunneling; see [8–11] for state-of-the-art reviews on 
this topic. Applications of unsupervised ML are fewer in number and 
often related to the search for less dependency on labelled datasets or 
more objectiveness (e.g. [12,13]). 

By the time of this writing reinforcement learning (RL) is mostly a 
matter of research, but already shows mature problem-solvers for game 
like scenarios [14,15]. Currently, there is a transition from academia to 
real-world prototypes, with RL-examples like the optimization of a 
manufacturing process [16], for real-time steering of hydrocarbon 
drilling [17,18], in optimization of power grids [19] and control systems 
in general, for AUVs [20], and in robotics and other autonomous vehi
cles. To our knowledge, however, there is no published application of RL 

to geotechnics in general or tunneling in particular. 
Today’s conventional tunneling – sometimes referred to as “drill and 

blast tunneling” or “sequential excavation method” – is the classical way 
of tunnel construction and is the product of more than a century of 
engineering experience [21]. Great flexibility to adapt to changing 
ground conditions is one of the main benefits of this type of tunneling, 
but technical and economic success of the excavation is dependent on 
the experience of the involved engineers and workers. Albeit experience 
is undoubtedly valuable, depending on it sometimes goes along with 
simple repetition of “proven ways” or even negligence of innovation. 
Furthermore, developments in conventional tunneling often have a 
strong connection to their nation of origin (e.g. Austria: New Austrian 
Tunnelling Method [22], Norway: Norwegian Tunneling Method [23], 
Italy: New Italian Tunneling Method [24,25], etc.) which raises concerns 
about biased researchers and engineers. The goal of this study is to take a 
first step in the direction of a conceptual RL-model for optimum decision 
making in conventional tunneling that is as free as possible of conser
vatism and national biases. Furthermore, as shown in the development 
of the RL-agent AlphaGO [15], RL systems have the potential to find new 
solutions to old problems and thus discover unimagined strategies. 

In this paper we present a novel RL based framework for construction 
process optimization and strategy development for conventional 
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tunneling. Such models can act as decision support for the geotechnical 
engineer, engineering geologist, geotechnician etc. (hereafter “geo
technician” is used) (design choices, progress-planning) and in the long 
run such models work towards full automation in underground con
struction. Hence, the model is a first attempt to automate decisions made 
by the geotechnician on face in underground construction. 

In the next section (2) we frame the process of conventional 
tunneling as a RL problem and provide details on how these two disci
plines can connect. Section 3 is the main methodological section that 
presents the geotechnical scenario at the background of this RL simu
lation as well as the agent and the environment. In Section 4 we describe 
the training process and in Section 5 we show experiences gathered 
during the training and testing of agents. A conclusion and implications 
for the vision of “digital tunneling” is given in Section 6 and we present 
an outlook in the last Section 7. A reference to the Python based code for 
this paper, is given in the appendix. 

2. Conventional tunneling as a reinforcement learning problem 

The process of reinforcement learning (RL) is typically depicted as a 
closed loop where an agent takes different actions, to influence an 
environment which responds by sending an updated state as well as a 
reward signal to the agent (e.g. [26]). To apply RL, the learning problem 
must undergo the Markov property, i.e. we only need to know the cur
rent state of the system, to make a decision [27]. Therefore, the state 
must include information about all aspects of the past agent–environ
ment interaction that make a difference for the future. This can be said to 
be true for tunnel excavation where we only need to know the state of 
the rockmass and the excavation-process to decide on how to proceed. 

Tunnel construction follows several cyclic and sequential processes, 
some of which can be framed as loops and therefore translated to RL 
problems. The most outstanding loop in conventional tunneling is the 
excavation of an underground opening with a sequential construction 
process of: blasting, mucking and rock support installation [28] 
(“excavation loop” in Fig. 1). While the components of this excavation 

loop are themselves often sequential processes (e.g. blasting sequence, 
support installation etc.), the excavation loop specifically is based on a 
sequence of geotechnical decisions belonging to a bigger cycle which we 
refer to as the excavation sequence decision – loop. Looking at the bigger 
picture, excavation sequence decisions are one part of the whole con
struction phase of a tunnel and therefore part of the whole tunnel life 
cycle (Fig. 1). 

The focus of this study is to create a simulation of a simplified version 
of the process that governs the general excavation sequence decisions 
and frame it as a RL-loop. This process can be translated to a RL-loop/ 
Markov decision process [27] consisting of the following components:  

▪ the decision making geotechnician is the agent  
▪ processes like “top heading excavation”, “bench excavation”, 

“installation of face support” etc. are the actions 
▪ the rockmass itself and the construction site with all its pro

cesses are the environment (here described at each timestep by 
the state of the environment and the reward-system) 

▪ the sum of all delays (planned and unplanned) and complica
tions throughout the course of the excavation which result from 
the geotechnician’s actions are the reward  

▪ the current state of the excavation including information about 
the past and recent rockmass conditions as well as the already 
installed support are the state 

Fig. 2 is a graphical representation of this process which we refer to 
as “TunnRL” (Tunnel automation with Reinforcement Learning). The 
individual components of this loop in the above given list as well as in 
Fig. 1 and Fig. 2 are only for explanatory purpose and do not claim to be 
complete. We give detailed lists of the possible actions in Section 3.2.1 
and explain the exact content of the state and the rewards in the Sections 
3.3.1 and 3.3.2 respectively. 

Fig. 1. Schematic diagram of cyclical and sequential processes in conventional tunnel excavation. The size of loops represents a qualitative hierarchy with smaller 
loops being components of bigger loops. The excavation sequence decision – loop is given in bold, as this will be the main focus of this paper. 
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2.1. Simplifications 

As shown in Fig. 1, conventional tunneling is a complex process that 
consists of several subprocesses which again have subprocesses etc. 
Attempting to formulate this whole system as a RL problem with all 
involved details is out of the scope of an initial study which should serve 
as the basis for future research. Additionally, it must also be considered 
that RL is still at the very beginning of practical applications. Conse
quently, we had to take several simplifications of conventional tunneling 
to reduce the general complexity of the simulation and the size of the 
state - and action space. Still, we consider modelling the major decision- 
loop and the actions and rewards, not to be too far from a realistic tunnel 
approach, and will contribute with important insights to the use of RL in 
the optimization of the conventional tunnel cycle. 

Some important simplifications in comparison to reality were made 
in this study:  

▪ Available partial excavation methods are restricted to either 
top heading - or a combined bench and invert excavation 
(described as “bench excavation” hereafter) with a specific 
tunnel geometry.  

▪ Already excavated parts are considered to be stable and the 
process of tunnel lining installation is not dealt with in the 
simulation.  

▪ If installed, support ahead of the face always consists of 10 m 
long face anchors. The supported area ahead is stable and 
excavation within that stable area cannot lead to failure. No 
other types of rock support are considered, such as radial bolts 
and shotcrete.  

▪ We evaluate if stable conditions are at hand in the excavation 
area by the face pressure equation for open face tunneling after 
[29] (see Eq. (3) in Section 3.3.2). We chose this analytical 
solution as it is a computationally efficient way for a stability 
assessment that tells if stability is given or not at a certain 
ground type. Although this is only one aspect of the tunnel 
stability considerations, we see this approach as sufficient for 
the present initial study.  

▪ The stability assessment considers the cross-sectional area only 
and no longitudinal effects. 

▪ Rockmass quality is reduced to few mechanical values repre
senting “favorable” or “unfavorable” rockmass conditions.  

▪ There are only two available advance lengths (i.e. the length of 
one blasting round/round of excavation) with 2 and 4 m each.  

▪ Information from probe drilling or deformation monitoring is 
not simulated and used in the decision process. That means that 
the agent has no information about the rockmass ahead of the 
face or no information about eventual deformation behind the 
face. 

3. A simulation of conventional tunneling 

As the main goal of this study is to train a RL agent to execute an 
excavation sequence as efficiently as possible, we designed a simulation 
of such a scenario. The simulation consists of a longitudinal tunnel 
section of a specific length (tl), where two different types of ground 
conditions can occur – one favorable and one unfavorable. Before the 
excavation, the agent is unaware of the distribution of ground types and 
the distribution of the ground types is only revealed by the excavation 
itself. The ultimate goal of the agent is to achieve a breakthrough of both 
the top heading and the bench of the tunnel or in other words, the po
sition of the top heading excavation (posth) and the position of the bench 
excavation (posbi) must be greater than, or equal to tl. During the exca
vation the agent can choose from different actions, e.g. top heading 
excavation with 2 m advance length, bench excavation with 4 m 
advance length and installation of face support etc. 

3.1. Geotechnical scenario 

For this study’s simulation we have chosen the following tunneling 
scenario: The total length of the tunnel (tl) is 200 m, as this does not lead 
to an excessively large state space in the RL model (see Section 3.3.1) but 
is still a realistic length. The tunnel’s cross section has a total area of 
91.31m2 and a height of 10 m with 58.56m2 and 32.75m2 being the 
areas of the top heading - and the bench and invert excavation respec
tively (see Fig. 3). From these areas, equivalent diameters (D, i.e. the 
diameter of a circle with that area) of 8.41 m and 6.46 m can be 
computed for both parts of the excavation. 

There is a penalty if the distance between the top heading’s- and the 
bench’s tunnel face is too big. This distance (distmax) is set to be 50 m and 
the idea behind this is, that in many real projects – especially in soil 
conditions and long tunnels -, the top heading cannot be driven indefi
nitely long ahead of the bench, because of safety reasons, necessities to 

Fig. 2. Simplified schematic plot of components of drill and blast tunneling (grey) as a reinforcement learning process - TunnRL.  

Fig. 3. Tunnel cross section of the given simulation.  
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have a fast final ring closure, excavate cross cuts or general construction 
logistics. 

We defined two ground types (gt) for the simulation and the relevant 
ground properties are given in Table 1. Both are considered to be of 
homogeneous, isotropic and continuous nature and one can imagine 
them as a type of hard soil/soft rock (HSSR) material [30,31]. With the 
chosen parameters, gt1 represents “unfavorable” ground conditions and 
gt2 represents “favorable” ground conditions. The condition for a gt to 
be favorable/unfavorable is based on the ground properties in combi
nation with the given tunnel geometry (see above) as evaluated by the 
chosen stability assessment criterion (see Section 3.3.2). The simulated 
tunnel is situated above the groundwater table and the permeability is 
set to 10− 5 m/s for both gt. 

Choosing the given properties to define the gt, is closely connected to 
the way the stability assessment of the excavation is done (see Eq. (3) in 
Section 3.3.2). The permeability of 10− 5 justifies the use of Eq. (3) for a 
stability assessment as according to [32] conditions are considered to be 
drained when the permeability is above 10− 7 to 10− 6 m/s. Nevertheless, 
if ground types with lower permeability/undrained conditions are to be 
used for the simulation, appropriate solutions for stability assessments 
must be chosen. Implementing more sophisticated stability assessments 
that take phenomena like ground water conditions into account is 
desirable but must be done with care as this heavily influences the 
overall performance of the tunneling simulation and the RL itself. The 
outlook and discussion of stability assessments in Section 7 goes into 
more detail on this topic. 

Using random walks with barriers [33], we created unique, 210 m 
long geological sections with a decimeter resolution (see Section 3.3.1 
for why the sections are 210 and not 200 m long). We created a ground 
type-vector (gt-vector) of 2100 datapoints by scaling the random walk 
between 0 and 1, rounding to full numbers and using 0 as gt1 and 1 as 
gt2 (see Fig. 4 bottom row). To transform the gt-vector to a full 
geological section with one row for the top heading and one for the 
bench excavation, the vector is horizontally duplicated to an array of 2 
× 2100 datapoints. + 1 is then added to the array so that the number 1 
represents gt1, number 2 gt2 and number 0 represents the unexcavated 
part of the tunnel. The top row of Fig. 4 shows a visualization of such an 
array, where posth and posbi are at 165 and 125 m respectively. 

Given the complexity of simulating the process of conventional 
tunneling (see Section 2), we chose not to complicate the scenario by 
introducing more gt. However, increasing the number of gt can easily be 
done with the above described random walk based approach. For 
example, if it was necessary to simulate four gt then the values of the 
random walk must be split into four within the boundaries: gt1 < 0.25, 
0.25 ≤ gt2 < 0.5, 0.5 ≤ gt3 < 0.75 and 0.75 ≥ gt4. 

3.2. Agent 

Translating the above described geotechnical scenario to RL, the 
geotechnician who observes the state of the construction and rockmass 
behavior and makes decisions based on this information, now becomes 
the “RL agent”. Due to the state-complexity of the problem, we chose a 
deep Q-network (DQN) as the RL agent. Deep Q-learning is a deep 
reinforcement learning technique that extends the capabilities of clas
sical Q-learning [34,35] by replacing the value iteration in the Q-table 
with the function approximator of deep artificial neural networks 
(ANN). Although applications of ANNs for geotechnical purposes are 

still often seen as complementary to conventional computational models 
[36,37], in this case the use of ANNs allows for applications in complex 
and continuous states spaces while classical Q-learning is confined to 
discrete states. 

DQN algorithms are off-policy, model free RL techniques following 
the Bellman equation (Eq. (1) after [14]) where the optimal action-value 
function Q*(s,a) is based on a state s and after having taken an action a. 
The best action is chosen by maximizing the expected value of r +
γQ*(s′,a′) where r is the reward, γ is the discount factor that determines 
how important the future reward is to the algorithm (see also Table 2), s′
is the state at the next time step and a′ are all possible actions [14]. 

Q*(s, a) = Es′

[

r+ γmax
a′

Q*(s
′

, a′

) |s, a
]

(1)  

[14] have shown that the DQN algorithm can be used for a wide range of 
different RL problems and albeit there are improvements to deep Q- 
learning we chose the original implementation as we see it as well suited 
to establish a baseline for further developments in geotechnical RL. Our 
implementation is based on the DQN after [14] and the custom DQN 
implementation from [38]. The main deviations of the network archi
tecture in comparison to [14,38] are due to the shape of the input and 
output data with the input being an 2 × 2100 × 2 array and the output a 
vector of length 8. The number of hidden layers and the decreasing 
kernel size from the top to the bottom convolutional layers is in accor
dance with [14] as is the size of the kernel’s stride which is half the size 
of the kernel itself. While [14] used 32, 64 and 64 filters for each of the 
three hidden layers respectively, we used 32, 64 and 32 filters for these 
layers, as we observed that the agent’s performance did not suffer from 
this decrease, while the computational speed increased. In accordance 
with these authors we used rectified linear units (ReLU) [39] activation 
functions. ReLU activation functions have been widely adopted for 
ANNs within the past decade as they have shown to achieve a better 
performance than previously used activation functions like the sigmoid 
(see [40]). As given in [14] the general DQN’s ANN architecture is that 
of a deep convolutional neural network [41] whose hierarchical struc
ture mimics the effect of receptive fields and is inspired by [42]. Like 
[14] we did not perform systematic hyperparameter tuning by random 
search or similar techniques (see e.g. [43]) due to the big computational 
effort of the simulation. Hyperparameters were thus optimized manually 
throughout the course of the development of the RL-simulation. We 
nevertheless point out that the given DQN architecture as well as the 
used hyperparameters still have room for improvement (see outlook in 
Section 7). 

Table 2 lists all hyperparameters for our DQN implementation. As we 
use the same terminology as [14] the reader is referred to this paper for 
more information on the individual parameters. 

We implemented the DQN using the tensorflow [44] based Python 
library Keras [45]. Training was done on a NVIDIA GeForce RTX 2080 
Ti. 

From input to output, the agent’s architecture goes as follows and a 
graphical representation is given in Fig. 5 (with adaptions of architec
ture from [14] as described in the section ahead):  

▪ The input consists of an array with the shape 2 × 2100 × 2 (see 
Section 3.3.1).  

▪ One convolutional layer, with 32 filters, a kernel size of 1 × 16 
and a stride of 1 and 8 applying a ReLU activation function [39]  

▪ One convolutional layer, with 64 filters, a kernel size of 1 × 8 
and a stride of 1 and 4 applying a ReLU activation function  

▪ One convolutional layer, with 32 filters, a kernel size of 1 × 4 
and a stride of 1 and 2 applying a ReLU activation function  

▪ One fully connected layer with 256 neurons applying a ReLU 
activation function  

▪ One fully connected layer with 8 neurons (one per action) as the 
output layer which applies a linear activation 

Table 1 
The mechanical parameters and permeability of the two ground types, where gt1 
represents weak rock and gt2 stronger rock.  

Ground 
type 

Specific weight 
[kN/m3] 

Cohesion 
[kPa] 

Friction 
angle [◦] 

Permeability 
[m/s] 

gt1 24 23 20 10− 5 

gt2 25 40 30 10− 5  
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The output of the third convolutional layer is flattened/vectorized 
before it is fed into the dense layer and we used the mean squared error 
as a loss function. 

3.2.1. Actions 
The agent can choose from 8 different actions (Table 3). Possible 

actions are either top heading – or bench excavation with advance 
lengths of either 2 or 4 m. In each step the simulation carries out the 
following operations:  

▪ the agent chooses and executes one of the 8 actions of Table 3 
and the respective length of the generated geological section is 
revealed  

▪ it is calculated/checked if the new position of the excavation 
face is within a stable area or not (details in Section 3.3.2) 

As given in Section 2.1, the support ahead of the face has the effect on 
the simulation that, there cannot be unstable conditions as long as the 
excavation face is within the supported area. Because of technical rea
sons - mostly related to the reward system (see Table 4) - each action is 
assigned an “action code” (a). An a < 200 denotes top heading exca
vation and a ≥ 200 bench excavation. 

The choice of actions of Table 3 is based on practical engineering 
experience on the one hand and technical limitations of the RL agent on 
the other hand. On the practical side, especially the advance length is 

Fig. 4. Top row: an exemplary unique geological section, where brown indicates weak (gt1) and blue stronger rock (gt2). The positions of the top heading and bench 
are at 165.0 m and 125.0 m respectively. Bottom row: the random walk that is used to generate the geological section. Values above 0.5 are converted to gt2 and 
below to gt1. Note that the x-axis is the tunnel length in decimeters which corresponds to the number of datapoints of the random walk. 

Table 2 
Used hyperparameters for the DQN agent. Except for the exploration 
decay (see Section 3.2.1) all are identical in their meaning as the 
extended data Table 1 in [14].  

Hyperparameter Value 

Replay memory size 100,000 
Replay start size 1000 
Minibatch size 64 
Discount (γ) 0.99 
Target network update frequency 10 
Initial exploration (ε) 1 
Final exploration (ε) 0.05 
Learning rate 0.00025 
Gradient momentum 0.95 
Exploration decay (εd) 0.99997  

Fig. 5. Schematic representation of the DQN agent’s ANN architecture. Note the visualization of rockmass-matrix and the support-matrix to the left. The numbers 
below each layer are the respective shape of the layer’s weights. Dashed connection lines between layers are only for illustrational purposes. Symbols at the output 
layer represent the eight possible actions (ordered as in Table 3) that are chosen via Q-values by the agent. 

Table 3 
The eight possible actions the agent can choose from.  

Action code (a) Excavation Advance length [m] Face support 

110 top heading 2 no 
112 top heading 2 yes 
150 top heading 4 no 
152 top heading 4 yes 
200 bench 2 no 
202 bench 2 yes 
220 bench 4 no 
222 bench 4 yes  
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highly influential on the stability of the excavation with longer advance 
lengths being more prone to failures than short ones (e.g. advance 
lengths in the Austrian standard ÖNORM B2203–1 [46]: 1.0, 1.3, 1.7, 
2.2, 3.0 and 4.0 m). After experimenting with advances lengths based on 
the standards in the beginning, we experienced that a big number of 
actions leads to a deterioration of the performance/confuses the agent in 
this model setup. This is also in accordance with other studies which 
have found that special measures/adaptations of the agent are necessary 
if the action space becomes increasingly complex [47,48]. The final set 
of actions in Table 3 therefore aims at giving the agent realistic options 
to choose from while also keeping the number of actions small (see the 
outlook in Section 7 for a discussion on increasing the number of 
actions). 

During an episode, the actions are chosen based on an “ε-greedy 
action selection process”, (see also “exploration vs. exploitation trade
off”, e.g. [26]). ε is the exploration rate and is initially set to 1 (see 
“initial exploration in Table 2). Before every move, a number (r) is 
drawn from a random uniform distribution in the range between 0 and 
1. r governs the probability for a move to be a random action (if r ≤ ε) or 
to be based on the agent’s prior experience (if r > ε). Throughout 
training ε will decay following Eq. (2), where the new ε for the next 
episode (εi+1) is computed by the previous ε (εi) times a constant – the 
epsilon decay (εd). 

εi+1 = εi*εd (2) 

This process guarantees that the agent can explore the environment 
in the beginning and shifts towards more exploitation of its knowledge 
towards the end of training. We set the minimum ε to 0.05 below which 
there is no more decay and ε will be kept constant (see “final explora
tion” in Table 2). 

3.3. Environment 

As the DQN agent is the RL pendant to the real life geotechnician, the 
environment is the RL representation of the rockmass and of logistical 
processes of the construction site (state) as well as the feedback that is 
received for better or worse excavation performance (reward). Based on 
the agent’s actions, its main tasks are to update and yield the current 
state of the construction-site and to provide feedback. 

3.3.1. States 
The state that is observed by the DQN agent (see Section 3.2) is a 

hypermatrix of the shape 2 × 2100 × 2 which represents a geological 
section and a section that shows where support is already installed. The 
hypermatrix is structured in the following way (see Fig. 6): 2 rows for 
top heading and bench respectively; 2100 columns for the total length of 
the tunnel in decimeters plus an additional area beyond the break
through (see below); 2 channels for the geological section and the sec
tion with the installed support respectively. The values of the 
hypermatrix – originally ranging from 0 to 2 (see Section 3.1) - are then 
scaled between 0 and 1. In the channel of the geological section, 

0 therefore translates to “not yet excavated area” and 0.5 and 1 represent 
gt1 and gt2 respectively (see Table 1 and Section 3.1). In the channel of 
the already installed support, 0 means “no installed support” and 1 
means “installed support”. 

There are 2 terminal states in the simulation (i.e. states that lead to 
abortion of the simulation after their occurrence):  

▪ A breakthrough is achieved if and only if both posth and posbi 
are ≥ tl. In this case a breakthrough reward is given (see next 
section) and the simulation is finished. 

▪ The second terminal state is a timeout which is set to 200 ac
tions; i.e. the agent must achieve a breakthrough within less 
than 200 actions or otherwise the simulation is aborted, and a 
negative breakthrough reward is given. 

The environment is designed in a way that once posth or posbi are ≥ tl, 
the position of this part of the excavation is not updated anymore even if 
it is further excavated. We introduced the “timeout” as we observed in 
the experimental phase of the study that the agent sometimes reaches a 
breakthrough with the top heading or the bench but keeps on excavating 
in the already excavated part of the tunnel. On the one hand this causes 
the episode to be infinitely long, and on the other hand this leads to 
excessively large negative penalties which negatively affect the training 
process. 

We set the total length of the sections to 210 m (i.e. tunnellength +
maximum possible length of face support) to give the agent the freedom 
to use actions that install face support even for the last few blasts. From a 
“real world tunneling” perspective this does not make sense and in the 
simulation, this would lead to additional penalties, however, the goal is 
that the agent learns things like this and is not forced to do so. 

3.3.2. Reward system 
Rewards have the purpose to tell the agent if its actions are beneficial 

for the total reward. The ultimate goal of the agent is to maximize the 
return (i.e. sum of the rewards throughout the episode – here: excavate 
the whole tunnel). During an episode, a reward (also called penalty in 
case of a negative reward) is given for each individual move that the 
agent takes [26]. The action is chosen to maximize the expected return 
of discounted rewards. 

Reward systems in RL can vary greatly depending on the given task. 
While [14], who trained their DQN to play classical Atari 2600 games, 
took a modified version of the original games’ scoring systems as a 
means to deal with the reward in each timestep, [15] only gave a reward 
of +1 or − 1 at the end of the game depending on whether or not the 
agent has won the respective Go-match. 

In our tunneling simulation, we designed a hierarchical point system 
that values (i.e. rewards/penalizes) either a state or an action. The 
rewarding/penalizing is done based on a list of conditions, that is 
worked through from top to bottom after every step of an episode and 
the agent is given the first reward where the condition is fulfilled. Except 
for the reward for achieving a breakthrough, all rewards are negative (i. 

Fig. 6. 3D visualization of the 2 × 2100 × 2 hypermatrix that represents the state of the simulation.  
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e. penalties) and from top to bottom the penalties are sorted from biggest 
to smallest. It is therefore possible that multiple conditions are fulfilled 
in one state, but only the most severe penalty is given. Table 4 shows the 
list of rewards and their respective conditions. 

We designed the list of rewards based on practical engineering 
experience and requirements arising from training a completely unex
perienced agent. For example, we penalize face instabilities higher than 
a too far distance between top heading and bench excavation, as the 
immediate safety hazard of an unstable face is bigger. In contrast to that, 
an even bigger penalty (i.e. -6 points) is triggered if the agent would try 
to do bench excavation ahead of the top heading excavation. A geo
technician in real world tunneling would know from the start that doing 
so brings numerous technical-, logistical- and safety problems, but an 
untrained RL-agent does not. 

During the experiments for this study we tried to design the reward 
system in a way that it is the sum of all penalties that would be fulfilled 
in a given state and not a hierarchical system. However, doing this was 
not beneficial for training and seemed to confuse the agent as it 
apparently did not know what it was punished for. For example, a 
combination of the penalty for a too far distance between top heading 
and bench (i.e. -3) plus the penalty for using face support (i.e. -2) would 
sum up to − 5 which is the same penalty as the one for unstable face 
conditions. 

As given in Section 2.1, the evaluation to check if a newly excavated 
face is stable or not, is done based on the face pressure equation for open 
face tunneling from [29] (Eq. (3)). In Eq. (3), pf is the required pressure 
to achieve stable face conditions, where a pf < 0 indicates stable con
ditions and a pf ≥ 0 indicates unstable conditions, respectively the 
amount of pressure that is necessary to stabilize the face. γR is the 
ground’s unit weight, D the (equivalent) tunnel diameter (see chapter 
3.1), d the advance length (describing the unsupported area of the un
lined wall), c′ the effective cohesion and φ′ the effective friction angle. 

pf = γRD*

⎛

⎜
⎜
⎜
⎝

2 + 3*
(

d
D

)6*tanφ′

18*tanφ′ − 0.05

⎞

⎟
⎟
⎟
⎠

−
c′

tanφ′ (3)  

4. Training 

In RL, one episode is the whole succession of states in between an 
initial and a terminal state [26]. In other words, an episode is one whole 
match of a game, or in this simulation, one whole sequence of actions 
that ultimately should lead to a breakthrough of the tunnel. 

We started training with an ε of 1 (i.e. “initial exploration” in 
Table 2) to promote exploration in the initial phase of training. The 
exploration decay of 0.99997 (see Table 2) that decreases ε following Eq. 
(2) was determined by trial and error. A smaller exploration decay (i.e. 
faster reaching of the final exploration) has shown to increase in
stabilities in the training process at an early stage which are presenting 
themselves in spontaneous increases of the loss and decreases of the 
reward. With the given exploration decay, the final exploration is 
reached after 99,858 episodes of training. After this point ε is kept at a 
constant value of 0.05. Training does not need to be aborted after 
reaching the final exploration. In the current simulation, we aimed at 
training the agents for 120,000 episodes to observe one full epsilon 
decay and some episodes beyond that to check for stable conditions in 
different rockmasses, as illustrated in Fig. 7 (except for cases where 
training became unstable at some point; see next section). A copy of the 
agent is saved after every 1000 episodes. 

To observe how big the differences are between individual training 
runs, we trained several identical DQN agents in the above described 
environment. After every episode, 21 parameters are saved to monitor 
the training progress. Below, the parameters that are mentioned in the 
paper are given (see the code “A_utilities.py” in Appendix 1 for a list of 
all recorded parameters):  

▪ number of the current episode  
▪ cumulative reward of the episode  
▪ current value of ε  
▪ the number of face instabilities of the whole episode  
▪ average loss of the DQN agent throughout the episode  
▪ number of moves/blasts that were required to finish the 

episode/to reach a terminal state  
▪ 8 counters for how many times each of the actions of Table 3 

were used; the goal of these counters is to see if the agent favors 
some actions over others and to detect “strategy changes” 

5. Experiments 

In this section we present five training paths of exemplary agents and 
discuss the different strategies they found to deal with the given task. In 
Fig. 7, recordings of the agents’ training are given which shows that each 
agent has found a unique solution, and all training paths are substan
tially different from one another. 

Comparing the five agents to one another, all of them were able to 
increase the cumulative reward per episode above 200 within 10,000 
episodes (Fig. 7 first row). After around 30,000 episodes, first differ
ences arise where first the cumulative reward of agent 2 and then of 
agent 3 started to stagnate. The reward of agent 1 stagnates at around 
80,000 episodes. The cumulative rewards of the agents 4 and 5 kept on 
increasing, whereas agent 5 became instable after around 75,000 epi
sodes and agent 4 reached the maximum reward at the end of the 
120,000 training episodes. 

Right from the start, all agents started to use long advance lengths as 
a means to decrease the number of blasts/moves per episode as this is an 
effective way to maximize the achievable reward (Fig. 7 second row). 
Where the agents 1, 4 and 5 all took a similar strategy that aims at 
continuously minimizing the blasts/moves per episode throughout the 
whole training, agents 2 and 3 reached a minimum of around 120 blasts/ 
moves per episode after around 30,000 episodes. This correlates well 
with the stagnating rewards after 30,000 episodes of agents 2 and 3 as 
described above. 

The biggest differences in training paths can be observed with 

Table 4 
Rewards that the agent receives from the environment in response to its actions.  

Reward 
(points) 

Description Condition 

tl * 3 reward for achieving breakthrough posth ≥ tl and posbi ≥ tl 
tl * 3 * -1 penalty for a timeout if number of moves in current 

episode is >200 
− 6 penalty for using the wrong 

excavation sequence, i.e. the bench 
is driven further ahead than the top 
heading 

posbi > posth 

− 5 penalty for unstable tunnel face 
conditions determined from face 
pressure pf as evaluated by Eq. (3) 
(see below) 

pf ≥ 0 

− 4 penalty for changing from top 
heading to bench excavation or vice 
versa, as this usually involves a 
delay of the excavation due to 
logistics 

if current a ≥ 200 and prev. a 
< 200 or if current a < 200 
and prev. a ≥ 200 

− 3 penalty for a too far distance 
between top heading and bench (see 
Section 3.1) 

if posth – posbi > distmax 

(initially set to 50 m) 

− 2 penalty for using face support as this 
consumes additional time and 
resources 

if a = 112; a = 152; a = 202; a 
= 222 

− 1 penalty for every other move that 
does not meet any of the above 
conditions 

no other condition is fulfilled  
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respect to face instabilities, where only the agents 2 and 3 started to 
actively decrease the number of face instabilities (Fig. 7 third row) early 
in the training process (within 10,000 episodes). In contrast to that, the 
number of face instabilities increased within the first 10,000 episodes 
for the other agents and then only decreased slowly throughout the rest 
of the training. The best performing agent 4 shows a remarkable trend of 
stagnating face instabilities until around 80,000 episodes, followed by a 

decrease towards the end of training. 
While the goal was to let all agents train for 120,000 episodes, the 

training process of the agents 2 and 5 became unstable after around 
75,000 and 85,000 episodes respectively, which led to the abortion of 
training after it could be observed that the agent would not recover from 
this. A solution would be to take a version of the agent that was saved 
before instability occurred and continue training with that, but we left 

Fig. 7. Different training paths for five exemplary agents over 120,000 episodes. The first row shows cumulative rewards per episode; the second row the average 
number of blasts/moves that were required to complete each episode; the third row the average number of face instabilities per episode; the fourth row shows the 
average loss per episode. Transparent colors in the background show the raw data records and the solid lines in the foreground a 500-episode sliding window average. 

Fig. 8. Histogram for the performance of an agent who plays 10,000 episodes with completely random moves (i.e. ε = 1).  
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the agents 2 and 5 as they are for explanatory purposes. 
Before discussing the performance of the agents, we first establish a 

baseline for the minimum performance that an agent must reach by 
letting an agent play with completely random moves (i.e. ε = 1) for 
10,000 episodes. In these 10,000 random episodes the agent reached a  

▪ minimum/maximum/median reward of − 544/255/-13 points,  
▪ minimum/maximum/median number of 0/27/8 instabilities 

per episode,  
▪ minimum/maximum/median number of 124/197/145 blasts/ 

moves per episode. 

Histograms for the 10,000 random episodes are given in Fig. 8. 
The maximum rewards, minimum number of face instabilities and 

minimum number of blasts/moves that the five agents of Fig. 7 needed 
are given in Table 5. We computed these numbers based on sliding 
window averages of 500 episodes as to avoid individual episodes that 
performed extraordinarily well. Albeit substantial differences can be 
seen in these statistics, it can generally be observed that all maximum 
rewards of the agents are above the maximum rewards of the randomly 
played episodes and therefore training was generally a success. 

In these five agents, two groups can be observed, where the agents 2 
and 3 reached their maximum performance between episodes 40,000 
and 60,000 and the agents 1, 4 and 5 reached their maximum perfor
mance between episodes 80,000 and 120,000. Although the first group 
has reached their peak performance sooner, the achieved reward is 
generally lower than that of the second group (see description of training 
paths above). 

We conclude this section by presenting the strategy that the best 
performing agent 4 has found after 119,000 episodes – at its peak per
formance (in terms of highest reward and low instabilities). We tested 
the saved agent’s checkpoint for 10,000 episodes with a fixed ε of 0.05 
which corresponds to the ε at that stage of training and is in accordance 
to [14] who recommend an ε > 0 also for testing, as this helps the agent 
to deal with unexpected situations. The histograms of Fig. 9 show the 
same test statistics as given for the random moves in Fig. 8. 

The strategy that the agent adopted is focused on long advance 
lengths without face support, in alternation with long advance lengths 
with face support. By doing so the agent avoids face instabilities, while 
also minimizing the required support (see Table 4 for the respective 
rewards/penalties). The boxplot of Fig. 10 illustrates this, as it can be 
observed that the majority of actions is 4 m long advance lengths. 
Furthermore, the agent focuses on long advance lengths without face 
support in both excavation types (top heading and bench) which shows 
that it tries to avoid excessive use of support measures, thus showing a 
tendency towards economical optimization. It can also be seen that the 
agent still uses small advance lengths sometimes and, in this case, favors 
the actions without face support as it has realized that the small advance 
lengths do not lead to face instabilities in the given conditions. 

In Fig. 11 an example of one episode for the agent 4 is visualized. The 
time-distance diagram in the top row of this figure shows that the agent 
has learned to optimize the excavation process by minimizing changes 
between top heading and bench excavation which would be associated 

with unwanted delays in “real life” tunneling (e.g. building and 
removing of access ramps). As given in Section 2.1, installed support 
ahead of the current face always covers 10 m. With the maximum 
advance length being set to 4 m it would be unnecessary and uneco
nomical to install face support in two consecutive rounds. In the second 
row of Fig. 11 it can be seen that within individual sequences of top 
heading or bench excavation, the agent alternates between supported 
and unsupported blasts which shows that it has successfully learned to 
avoid excessive use of support ahead of the face. 

6. Conclusion and implications for digital tunneling 

Before drawing conclusions from the experiments, it should be 
pointed out that in this initial study, the agent’s possibilities to find 
creative and not yet imagined solutions to real world tunneling problems 
are confined to the given set of actions and the taken simplifications (see 
Section 2.1). We therefore see it as a success that the agent optimizes the 
given scenario and finds strategies that are comparable to current 
practices in tunneling. As given in the introduction, the current study 
should serve as a base for future developments of RL in tunneling. 
Consequently, optimizations that improve the current practices of “real 
life” tunneling are to be expected from future studies. 

In the experiments of the previous chapter, we can observe that the 
agents have found policies that minimize the overall amount of neces
sary blasts, minimize changes between top heading and bench excava
tion, favor long over short advance lengths and minimize the use of face 
support. These strategies show that the agents have learned to work in 
an efficient and economically optimized way. We see similarities in this 
RL-based tunneling strategy to real world tunneling paradigms like the 
NATM [49] which uses partial excavation to minimize the necessary 
support. Minimizing the number of changes between top heading or 
bench excavation while at the same time not exceeding a too long dis
tance between them is also part of NATM tunneling as this optimizes 
construction site logistics on the one hand and safety requirements on 
the other. The found strategies that rely on support ahead of the face 
show similarities to the “Adeco” method [25] which uses heavy support 
installation and long advance lengths to deal with the encountered 
rockmass conditions. While adhering to safety requirements is impera
tive, most “real life” tunneling methods work towards minimizing the 
number of necessary blasts which is a policy that was found by all the 
agents. 

TunnRL (see Section 2) has shown that it is not only a functioning 
environment/simulation of conventional tunneling, but also that a RL 
agent can successfully interact with it and learn optimized and inno
vative strategies that seem realistic compared to real world tunnel 
excavation. At the same time, we see the challenges of computational 
instabilities and trial and error approach in the process of developing 
well-functioning models, highlighting this early stage in RL for 
tunneling. Clearly both the reward system, the rockmass-environment 
and the action-system has room for improvement. Still we see a signif
icant potential in the TunnRL-concept: firstly, for an on-face decision 
support system in a further developed and more realistic version, and 
secondly as a first step to more advanced automation in underground 

Table 5 
Statistics of the training runs presented in Fig. 7. Values were computed from the 500-episode sliding window average and the episode of the respective value is given in 
parenthesis behind it. Row-wise best performances are highlighted in grey.  
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construction. Where many of the developments of tunnel processes 
today address the automation of small-scale processes in the tunnel or at 
the excavation face, a further developed TunnRL could be part of the 
main controlling mechanism that operates the overall tunnel construc
tion site. Albeit the agents in this simulation were not able to find new 
and undiscovered strategies of tunnel excavation (see previous chapter), 
we see the fact that completely untrained agents are able to find 
tunneling strategies which are comparable to “real world tunneling” as a 
proof of concept that RL is successfully applicable to this kind of prob
lem. The main goal of the study is therefore fulfilled, and future studies 
will work towards giving the agent more capabilities and increasing the 
environment’s realism. This will ultimately pave the way for an opti
mized decision finding process in sequential tunneling. 

7. Outlook 

Albeit we designed TunnRL in a practice related context, there are 
numerous improvements to make the framework more realistic and 
more robust. As the present paper should be the first introduction of RL 
into tunneling we refrained from over-complicating the simulation and 
rather give an impetus for future studies that build upon this work. The 
below given improvements are a non-exhaustive list of ideas that we 
think are worth to be further explored. 

Ever improving processing power will alleviate problems related to 
computational cost over time. Nevertheless, all improvements must 
consider that each step in the framework will be done millions of times 
throughout the training and state of the art RL is by itself already 
computationally heavy. 

Improvements address either the agent or the environment:  

▪ On the environment’s side, improvements could work towards 
making the geotechnical scenario more realistic by involving 
more ground types and other phenomena like groundwater and 
in-situ stress conditions. The excavation geometry could 
become more complex so that also other excavation shapes and 
sequences such as full-face excavation, or a further division of 
the top heading and bench excavation are possible.  

▪ Closely related to the excavation geometry – and in our view 
one of the main points that should be improved – is the stability 
evaluation of the simulation. The reason why we used Eq. (3) 
after [29] as a substitute for more sophisticated means of sta
bility assessment (e.g. tunnel cross sectional analyses such as 
analytical convergence confinement methods or 2D and 3D 
finite element analysis) is that this analytical solutions is 
computationally very efficient and does not prolongate the 
training process too much. For example, 100,000 episodes of 
the current framework with around 120 moves per episode 
would require ~1.2e+7 FEM based stability assessments. 
However, this reduction of the stability assessment is only us
able for the ground conditions described in [29] and also ne
glects other phenomena like the 3D stress state at the tunnel 
face. Improvements could be to do the stability assessment 
based on stand-up time concepts that also involve the rockmass 
quality [50] or ideally 3D finite element analysis as given 
above.  

▪ Improvements for the agent on the one hand address the agent’s 
performance by modifying the agent’s architecture itself. Sys
tematic hyperparameter tuning was not conducted yet and may 

Fig. 9. Histograms showing the performance of the agent 4 that was tested for 10,000 episodes in Fig. 7. Note the different scales of the x-axes in comparison to the 
histograms of Fig. 8. 

Fig. 10. Boxplot that shows how many times the agent 4 uses each action 
throughout 10,000 test episodes. Bold black lines in the boxes represent median 
values; the boxes confine the upper and lower quartiles and the whiskers show 
min.-max. Values; “al” in the x-labels refers to “advance length”. 
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help to further improve the agent’s performance (e.g. grid− / 
random search or even RL based hyperparameter optimization 
[51]). From a geotechnical point of view though, interesting 
improvements mainly concern an extension of the agent’s ca
pabilities by introducing more possible actions. Whereas direct 
improvements to the given framework would be more advance 
lengths and types of tunnel support, other ideas are to involve 
exploration ahead of the face by simulated measurement while 
drilling [52] or geophysical exploration [53] to give the agent 
an idea what might be in front of the current excavation face. 
An idea in this regard is also to extend the agent to a multi- 
agent framework as it was used successfully before [15] 
where different agents have different tasks to fulfill. 

Future studies will work towards a more realistic environment and 
more complex agents in the TunnRL framework. Where TunnRL fits well 
in the line of the current development of automation, the greatest po
tential lies in the possibility to develop new and not yet considered 
tunneling strategies for sequential tunnel excavation. 
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Appendix 

Appendix 1: Link to the GitHub repository where this paper’s code 
can be found: https://github.com/geograz/Tunnel-automation-with-Re 
inforcement-Learning-TunnRL- 
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