
Title page for master’s thesis
Faculty of Science and Technology

Faculty of Science and Technology

MASTER’S THESIS

Study program/Specialization:
Engineering Structures and Materials – Mechanical
Systems

Spring semester, 2021

Open / Restricted access

Author:
 Mehrdad Saaedi

(Author's signature)

Faculty supervisor: Hirpa G. Lemu

 External advisor(s): Seyed Mohsen Mirkhalaf, Behdad Dashtbozorg

 Thesis title:

Predicting the Cancer Tumor Position in Liver Using Finite Element Analysis (FEA) and Artificial
Intelligence (AI)

Credits (ECTS): 30

Keywords:
Soft tissue deformation
FEM
Machine Learning
Artificial Neural Network

Number of Pages: xiv + 76

Stavanger, 15th June 2021

Summary

The computational power and advantages of the Finite Element Method (FEM) are notice-
able. When dealing with high nonlinearity of the materials and geometrical complexity,
FEM is a powerful solution, depending on the correct definition of the problem. The avail-
ability of this method has benefited many engineering areas. In the field of biomechanics
and, more specifically, in Computer-Assisted Surgery, FEM is even more appreciated. This
approach, however, comes at a high computational cost. Thus, a significant delay in the
response impedes its implementation for real-time applications in clinical practices, even
by using parallelization or utilizing Graphics Processing Unit (GPU). This is where an
alternative approach is needed to accelerate FEM-based simulations to provide the desired
outputs and minimizing the time lag, preventing using FEM during intra-operative appli-
cations.

A novel technique that may help to overcome the obstacles mentioned above and im-
prove the response time is the field of Machine Learning (ML). In particular, the Artificial
Neural Network (ANN), as a subset of ML, has demonstrated high potentials in computer
vision and pattern recognition, whose implementation can be extended to replace a FEM
model once it has been trained with sufficient inputs.

In this work, a FEM-ML framework is established to drastically increase the response
time for predicting tumor and internal structures’ locations in the human liver for surgical
applications by using ANN. This technique takes advantage of the FEM results to train
a model capable of capturing large deformations of liver tissue during the surgical inter-
vention while reporting back the nodal locations of the components with high accuracy
and efficiency. For doing so, a biomechanical model of the liver, accounting for the ef-
fect of the stiffness of blood vessels, is developed, and multiple simulations with random
nodal loads on the surface of the liver are conducted in the commercial software Abaqus
to produce the input required for the ANN. The ANN then predicts the nodes’ coordinates
resulting from the applied forces that can be used to reconstruct the deformed model of
the organ.

i

Preface

This thesis is an endeavor to find the possible linkage between the areas of finite element
method and machine learning in medical applications. This work has been conducted in
collaboration with the University of Gothenburg and Netherlands Cancer Institute.

I would like to express my gratitude to Seyed Mohsen Mirkhalaf at the University of
Gothenburg, Behdad Dashtbozorg at Netherlands Cancer Institute, and Hirpa G. Lemu at
the University of Stavanger.

Further, a special thanks go to Ove Mikkelsen at the University of Stavanger for pro-
viding me with the license of Abaqus and helping with its remote usage.

Ultimately, despite the limitations, I am satisfied with the results of this work and the
takeaway knowledge from it.

ii

Table of Contents

Summary i

Preface ii

Table of Contents v

List of Figures viii

List of Tables ix

List of Program Codes xi

Nomenclature xii

1 Introduction 1
1.1 Motivation and Background . 1
1.2 Aim and Scope . 2
1.3 Thesis Layout . 3
1.4 Limitations . 3

1.4.1 Time . 3
1.4.2 Literature . 3

2 Theory 5
2.1 Liver Anatomy . 5

2.1.1 Parenchyma . 5
2.1.2 Blood Vessels and Bile Ducts 5
2.1.3 Glisson’s Capsule . 6

2.2 Nonlinear Constitutive Theories for Hyperelasticity 7
2.2.1 Strain Energy Function . 8
2.2.2 First Piola-Kirchhoff Stress in Uniaxial Loading 10

2.3 Hyperelastic Models . 11
2.3.1 Categorization of Hyperelastic Models 11

iii

2.3.2 Mooney-Rivlin Model . 12
2.3.3 Ogden Model . 13

2.4 Finite Element Analysis . 14
2.4.1 Nonlinear FEA . 15
2.4.2 Elements . 16
2.4.3 Solution Methods . 17

2.5 Machine Learning . 18
2.5.1 Supervised Learning . 18
2.5.2 Unsupervised Learning . 20
2.5.3 Reinforcement Learning . 20

2.6 Artificial Neural Networks . 21
2.6.1 Perceptron Model . 21
2.6.2 Multi-layer Perceptrons . 22
2.6.3 Activation Functions . 22
2.6.4 Cost Functions . 25
2.6.5 Optimization Algorithms . 26
2.6.6 Backpropagation . 27
2.6.7 Generalization and Overfitting 27

3 State-of-the-art Review of the Employment of Machine Learning and Finite
Element Analysis in Biomechanics of Soft Tissues 29
3.1 Liver . 29
3.2 Brain . 33
3.3 Breast . 34

4 Methodology And Simulations 37
4.1 Preparatory Works . 38
4.2 Geometry Acquisition . 38

4.2.1 Segmentation . 38
4.2.2 Modification and Generation of Solid Models 39

4.3 Finite Element Simulations . 40
4.3.1 Material Model and Parameters 40
4.3.2 Meshing . 42
4.3.3 Vascularization and Tumor . 45
4.3.4 Boundary Conditions . 47
4.3.5 Loading and Simulations . 47
4.3.6 Post Processing . 49

4.4 Training of the ANN . 49
4.4.1 Overview of the Tools . 49
4.4.2 Preparation of the Dataset . 50
4.4.3 Splitting Strategies . 51
4.4.4 Feature Scaling . 52
4.4.5 Hyperparameter Tuning . 52

iv

5 Results and Discussion 57
5.1 First Splitting Scenario . 58
5.2 Second Splitting Scenario . 62
5.3 Comparison of the Results . 65

6 Conclusions and Future Work 67
6.1 Conclusions . 67
6.2 Future Work . 67

Bibliography 69

v

vi

List of Figures

2.1 Liver’s vascular system (Adapted from: Anatomy Note [20]) 6
2.2 Liver’s structure [23] . 7
2.3 Transition from undeformed to deformed configuration (adapted from [29]) 9
2.4 Examples of stress-strain curves of second order Mooney-Rivlin model

against compression test data, fitted for soft tissues [35]. 13
2.5 Stress-strain curve of Ogden third order and uniaxial tension test data of

liver tissue [57] . 14
2.6 Underlying bases of FEA in solving solid mechanics problems [58] . . . 15
2.7 Tetrohedral and hexahedral elements . 16
2.8 Uniform pressure . 17
2.9 Learning and performance evaluation of a supervised ML model (adapted

from [61]) . 19
2.10 Classification vs. regression [63] . 19
2.11 Reinforcement learning process adapted from [67] 20
2.12 Biological and artificial neurons [68] . 21
2.13 Multi-layer neural network . 22
2.14 ReLU activation function . 23
2.15 Sigmoid activation function . 24
2.16 Hyperbolic tangent activation function 24
2.17 Softmax activation function [75] . 25
2.18 Gradient descent [77] . 26
2.19 An illustration over the concepts of overfitting, balanced, and underfitting 28

3.1 Displacement error in Euclidean space [49] 31
3.2 Outline of Tonutti et al. work [10] . 34
3.3 BCs used in Tonutti et al. work [10] . 34
3.4 Outline of Martı́nez et al. proposed workflow [11] 35
3.5 Error distribution of splitting strategies in the work of Martı́nez et al. [11] 36

4.1 The flowchart of proposed method . 37

vii

4.2 Abdominal CT image and segmented liver 39
4.3 Modified liver geometry and conversion of voxels to standard triangles . . 39
4.4 Ogden material parameters stability status 41
4.5 The effect of combination of material parameters on the deflection results

in the form of contour plot . 42
4.6 Stress-strain curve of the selected material parameters 42
4.7 Mesh size control of the basic liver geometry 43
4.8 Mesh sensitivity study first loading case with a 10 N concentrated force . 44
4.9 Mesh sensitivity study displacement results for the first loading case . . . 44
4.10 Mesh sensitivity study displacement results for the second loading case . 44
4.11 Approximation of hepatic vessels with simplified geometry 45
4.12 Liver model with hepatic vessels and tumor 46
4.13 The boundary conditions of the liver . 47
4.14 The optimal region for choosing the number of epochs 53
4.15 Decay of learning rate with epochs . 54

5.1 The layout of the designed ANNs showing the inputs and comparison of
the results with finite element method’s nodal coordinates 57

5.2 Decay of training and validation loss in the first splitting strategy 58
5.3 Acutal vs. predicted coordinates of the model trained with 75% of the data

in the random splitting strategy . 59
5.4 Acutal vs. predicted coordinates of the model trained with 85% of the data

in the random splitting strategy . 59
5.5 Distribution of the samples with respect to the magnitude of their Eu-

clidean errors (mm) in the first splitting strategy 60
5.6 Box plots of the absolute errors in the first splitting strategy (sub-case

75%/25%) . 60
5.7 Box plots of the absolute errors in the first splitting strategy (sub-case

85%/15%) . 61
5.8 Box plots of the relative errors in the first splitting strategy 62
5.9 Decay of training and validation loss in the node-based splitting strategy . 62
5.10 Acutal vs. predicted coordinates of the model trained with 75% of the data

in the node-based splitting strategy . 63
5.11 Acutal vs. predicted coordinates of the model trained with 85% of the data

in the node-based splitting strategy . 63
5.12 Distribution of the samples with respect to the magnitude of their Eu-

clidean errors (mm) in the node-based splitting strategy 64
5.13 Box plots of the absolute errors in the node-based splitting strategy 64
5.14 Box plots of the relative errors in the node-based splitting strategy 65

viii

List of Tables

2.1 Main hyperelastic models used for the description of the liver’s mechanical
behavior and some prominent studies over their applications 12

3.1 Performance assessment of ML models used in the research work of Lorente
et al. [49] . 32

3.2 Simulation scenarios in the work presented by Pellicer-Valero et al. [6] . . 32
3.3 Neural network performance measurement for Scenarios in work presented

by Pellicer-Valero et al. 33

4.1 Ogden material parameters stability check 41
4.2 Mesh details, computational time, data size and summary of displacement

results, in mesh sensitivity analysis . 45
4.3 Comparison of FE simulation of models with segmented and approxi-

mated vessel structures . 46
4.4 The Pandas DataFrame prepared from FEM values 50
4.5 Tuned values of hyperparameters for the first and second splitting strategies 56

5.1 Summary of all results: Euclidean Error (EE); Mean Absolute Error (MAE)) 65

ix

x

List of Program Codes

4.1 Code used for generating random displacement loads 48
4.2 Hyperparameter tuning using GridSearchCV (code adapted from Scikit-

Learn documentation [97] . 55

xi

Nomenclature

2D = Two-dimensional
3D = Three-dimensional
A0 = Two-dimensional
Adagrad = Aaptive Gradient Desscent
Adam = Adaptive Momentum Estimation
AI = Artificial Inteligence
ANN = Artificial Neural Network
b = Neuron’s bias
BCs = Boundary Condintions
C = Right Cauchy-Green deformation tensor
CAS = Computer-Assisted Surgery
Cij = Mooney-Rivlin model material parameter
CPU = Central processing unit
csv = comma-separated value
CT = Computed Tomography
det = determinent
Di = Indication of incompressibility
DT = Decision Tree
EEuc = Euclidean error
E

r
= The output of training example

ERelative = Relative error
ET = Extremely randomized trees
F = Deformation gradient tensor
f(x) = Similarity function
f(z) = Activation function
FE = Finite Element
FEA = Finite Element Analysis
FEM = Finite Element Method
GB = Gigabyte
GHz = Gigahertz
GPU = Graphics Processing Unit
Ii (i = 1, 2, 3) = Strain invariant
IVC = Inferior Vena Cava
J

el
= Elastic volume ratio

K0 = Bulk modulus
L0 = Initial length
Lf = Final length
log = logarithm
LR = Linear Regression

xii

LIST OF PROGRAM CODES

MAE = Mean absolute error
MAE = Mean absolute error
MB = Megabyte
MEEuc = Mean Euclidean Error
min = Minute
ML = Machine Learning
mm = Millimeter
MR = Magnetic resonance
ms = Millisecond
MSE = Mean squared error
N = Newton
ntest = Number of samples in the test set
p = Hydrostatic pressure
PC = Personal Computer
PDEs = Partial Differential Equations
R = Orthogonal finite rotation tensor
RAM = Random-access memory
ReLU = Rectified Linear Unit
RF = Random Forests
RMSE = Root mean squared error
RMSprop = Root Mean Square Propagation
SGD = Stochastic Gradient Descent
S

r
= Input of training example

Stl = Stereolithography
SVR = Support Vector Regression
T = First Piola-Kirchhoff stress tensor
U = Right stretch tensor
V = Left stretch tensor
W = Strain energy function
wi = Neural network’s input weight
xi = Neural network’s input
ŷi = Predicted output
yi = True value
z = Summed activation of the node
Γ = Learning rate
Γ0 = Initial learning rate
δti = Increment size
εeng = Engineering strain
λi (i = 1, 2, 3) = Principal stretch
µ = Shear modulus
ν = Poisson’s ratio
σi (i = 1, 2, 3) = Principal Cauchy stress

xiii

LIST OF PROGRAM CODES

xiv

Chapter 1
Introduction

1.1 Motivation and Background

The value of Finite Element Method (FEM) for solving complex engineering problems
has been widely acknowledged. It has become a popular tool to numerically solve the
governing partial differential equations rather than resorting to analytical methods. As for
specific fields and applications like biomechanical engineering, due to the primarily non-
linear nature of the materials, large deformations, and complex geometries, using FEM
has been perceived as a popular approach [1].

In the field of medicine, one flow of the efforts is toward using less invasive meth-
ods with smaller and more precise incisions to reduce undesirable side effects of surgery
such as the risk of bleeding and development of infection and subsequently reducing the
patient’s recovery duration. As of today, this is even more realistic by the availability of
Computer-Assisted Surgery (CAS) tools that can help the improvement of surgical skills
during preoperative training for the planning of the surgery or on the course of the surgery
by predicting the internal structure of the organ for better navigation and guidance dur-
ing the intervention. This is where a FEM-based biomechanical model can potentially be
implemented to predict the intraoperative deformed shape of the organ. In this approach,
the operating field is viewed by a laparoscopic camera, inserted through small abdominal
incisions, and the operation is directed by watching the augmented view of the camera on
a monitor [2], while the locations of internal components such as vessels and tumors are
shown in real-time.

Nevertheless, a solution from a FEM simulation is a trade-off between the computa-
tional time and accuracy that both are of high importance during surgery that demands
high precision and has a low tolerance for delay in the response. Therefore, embedding
FEM in a real-time, accurate, and interactive system is very challenging. To reduce the
computation time, several methods of using parallelism of the problem [3], using Graph-
ics Processing Unit (GPU) [4], and dimensionality reduction technique [5] are among the

1

Chapter 1. Introduction

most outstanding proposals in the literature. These techniques, however, to different ex-
tents lack enough accuracy for clinical applications and do not expedite the processes to a
real-time level, achievable on general level hardware [6, 7].

Another different approach in addition to the aforementioned techniques that will be
the focus of this work is the emerging field of Machine Learning (ML). Although the un-
derlying basis of this approach dates back as early as mid-20th century, yet its dramatic
progress did not begin until the past two decades with the arrival of high computing ca-
pacity [8, 9]. ML as a subcategory of Artificial Intelligence (AI), can take in a data-set
consisting of several features (in the case of this thesis: applied loads, nodal displace-
ments, material parameters, nodal coordinates, ...) and train a model based on the existing
patterns between the features. This model is expected to anticipate specific values (in this
study, the intended outputs are the nodal coordinates after deformation) for the unseen
inputs fed into the model. This method, despite being expensive concerning the time it
takes to train the model during the offline and preoperative stages, has given promising
results concerning the requirements of real-time simulation and accuracy, and several au-
thors have implemented this approach with success for different organs, and tissues such
as brain [10], breast [11], and liver [2, 6, 7].

1.2 Aim and Scope

This thesis aims at utilizing and training an Artificial Neural Network (ANN) as a sub-field
of ML to create a pipeline able to predict the shape deformation of the human liver by re-
ceiving the outputs of multiple FEM simulations from the commercial software Abaqus/-
CAE. This can then be further developed to build an integrated, real-time, and interactive
system assisting the surgeon in tumor localization during surgery.

To fulfill this endeavour, several questions will be raised and need to be properly ad-
dressed during this thesis:

1. How is the structure of a liver and how its different tissues behave?

I What constitutive material models can properly describe the biomechanical
behavior of these tissues?

II What are the material parameters for these tissues/tumor?

2. What are the Boundary Conditions (BCs), the loads, and their magnitudes that the
liver undergoes?

3. What type of element is a sound choice for this application?

4. What ANN architecture is suitable to use?

2

1.3 Thesis Layout

1.3 Thesis Layout
Concerning the aims mentioned above and the scope, this work contains six chapters.
Chapter 2 tries to shed light on the liver structure and the theory of hyperelasticity as
constitutive modeling for soft tissues and rubber-like materials. Moreover, this chapter
aims at providing the necessary information about the finite element method and the basis
behind machine learning with a focus on artificial neural networks. The reader can find
information about the most recent findings and studies over the implementation of AI in
the field of biomechanics in Chapter 3. In Chapter 4, the objective is to build a framework
to perform the FEM simulations from the obtained information in Chapter 2 and Chapter
3. Furthermore, an initial setup of the required neural networks is executed, and the model
is fed by the data gathered from the FEM. In Chapter 5, the results and findings of the
preceding sections are assessed, and the ANN performance is evaluated. This thesis is
concluded in Chapter 6, and the potentials for future works are also outlined.

1.4 Limitations
As mentioned before, the ultimate purpose of this work is to be able to use the end results
to develop a computer-aided surgery platform capable of predicting the internal deforma-
tion of the liver from the organ’s surface configuration as seen by a camera in real-time.
However, several factors can potentially limit the objectives of this thesis as well as their
extent.

1.4.1 Time
Due to the multidisciplinary nature of this thesis, tremendous efforts are required both in
literature review and its technical aspect, which involves extensive computer programming
and data acquisition. For this reason, a period of six months (the duration of the thesis)
may not allow for real-world applicability of the outcome of this thesis, and inevitable
compromises to contract the scope of this work might occur. For instance, reconstruction
of the organ’s model from the prediction of neural network’s model is of high interest of
this work yet out of the time scope.

1.4.2 Literature
This work relies heavily on the experimental results of previous researchers in the field
of biomechanics. To the author’s best knowledge, in certain areas such as biaxial test in
compression of the liver tissue or mechanical properties of Glisson’s capsule, due to the
complexity of performing tests on biological tissues, there is a lack of solid and reliable
experimental data. Hence, this work might have to settle for the existing material param-
eters extracted from the experimental data in uniaxial test results and disregard the effect
of Glisson’s capsule.

3

Chapter 1. Introduction

4

Chapter 2
Theory

As outlined in the previous chapter, this chapter intends to elaborate on the relevant theory
and concepts inside liver anatomy, hyperelastic materials, a brief introduction of finite
element analysis, and machine learning.

2.1 Liver Anatomy
In human, the liver is the largest internal organ that lies in the abdominal upper-right
quadrant with a weight close to 1.5 kg [12]. The liver has specific functions ranging
from detoxification of the metabolisms’ products to bacterial removal from the blood [13].
This organ, partially covered by the lower ribs, is divided into right and left lobes by the
falciform ligament that attaches the organ to the diaphragm and the abdomen’s ventral wall
[14]. The liver volume is also further split into eight segments by Couinaud classification,
seven occupying the anterior and posterior volume of the liver, while the remaining one
is located on the backside of the organ. In the following subsections, the main parts of
the liver and their characteristics, important for a precise biomechanical model are briefly
explained.

2.1.1 Parenchyma
The majority of the liver’s building cells are hepatocytes, belonging to the parenchyma,
which is the functional tissue constituting up to 80% of the total cells in the organ [15, 16].
Hepatocytes make up hepatic lobules, the liver’s most minor functional units that have
hexagonal forms. These lobules, in turn, are grouped to form the liver parenchyma.

2.1.2 Blood Vessels and Bile Ducts
The network of internal blood vessels (also referred to as the hepatic tree) in the liver
is also of significant interest in biomechanics. This network includes the hepatic veins
draining into the inferior vena cava (IVC) (the largest vessel in the body), hepatic artery

5

Chapter 2. Theory

connected to the abdominal aorta, and portal vein receiving blood for detoxification from
the pancreas, spleen, gallbladder, and gastrointestinal tract [17]. Bile ducts are also another
tubular network present in the liver that gathers the secreted (produced and discharged) bile
in the liver and ultimately releases it into the small intestine [18]. The hepatic tree and the
bile ducts are seen as the primary reason for the liver’s heterogeneity [19]. In Figure 2.1,
these different vessels can be seen.

Hepatic arteries

Portal vein

Thoracic aorta

Abdominal aorta

Hepatic vein

Diaphragm

Central vein system

Inferior vena cava

Common bile duct

Figure 2.1: Liver’s vascular system (Adapted from: Anatomy Note [20])

2.1.3 Glisson’s Capsule

Another comparatively significant tissue in the liver that can affect the mechanical re-
sponse of the entire organ is the Glisson capsule. This tissue is a collagen layer and, as
indicated by Figure 2.2, surrounds the organ and ensheaths its vascular structure. The
thickness of Glisson’s capsule is species-dependent. In humans, however, it can vary from
70 to 100 µm [21, 22].

6

2.2 Nonlinear Constitutive Theories for Hyperelasticity

Right lobe
Left lobe

Falciform ligament

Liver lobule

Glisson's capsuleParenchyma

Hepatocytes

Central vein

Hepatic arteryBile duct
Portal vein

Figure 2.2: Liver’s structure [23]

2.2 Nonlinear Constitutive Theories for Hyperelasticity

The liver has a relatively soft material whose mechanical behavior is characterized by the
existence of different tissues that together act similar to a composite material. While var-
ious researches over the mechanical response of the liver have been conducted in high
stretch rate regimes, minimally invasive interventions, especially laparoscopic surgeries,
are more initiating lower rates of strain. Besides, during a clinical intervention, the organ
may undergo several loading scenarios like shear, tension, compression, or a combination
of these [24]. Therefore, to obtain reliable results from the FEA, the utilized constitutive
model must account for the liver tissue’s variety of stiffness and different loading condi-
tions.

Due to the effect of the fluids (blood and bile) and porosity present in the parenchyma,
the most realistic model for the liver is a visco-poro-hyperelastic material [6, 25]. A hy-
perelastic material for this tissue, though, can also be considered as a fair assumption for
the slow rate of load application and minor strain energy dissipation [6, 26]. Ignoring the
effect of viscoelasticity is tipically valid when static equilibrium is expected, and transient
deformation is not taken into account [3].

7

Chapter 2. Theory

2.2.1 Strain Energy Function

A constitutive law is an equation that relates physical quantities to a material’s general
characteristics. As opposed to Hook’s law that decently describes the behavior of linear
elastic materials, there is no universal formulation proficient enough to describe the non-
linear behavior of all rubber-like materials [27]. Instead, many researchers have attempted
to develop proper hyperelastic models that fit a more significant segment of the soft mate-
rial’s stress-strain curve with the assumption of deformations’ reversibility. These models
derive the relationship between the displacement and its corresponding stress from a strain
energy function (W) [26].

Strain energy function (also known as stored-energy function) refers to the energy
stored in the system as a result of deformation, which is released once the system goes
back to its initial configuration. If the material homogeneity is assumed; meaning that the
properties are the same at every point but may differ along different direction throughout
the volume, then

F =
∂x

∂X
=

∣∣∣∣∣∣∣∣∣
∂x
∂X

∂x
∂Y

∂x
∂Z

∂y
∂X

∂y
∂Y

∂y
∂Z

∂z
∂X

∂z
∂Y

∂z
∂Z

∣∣∣∣∣∣∣∣∣ , (2.1)

where F is the deformation gradient tensor (second order) that provides the information
to describe every current relative position of two particles in terms of their initial relative
position, X is an arbitrary point in the reference configuration and x denotes the position
of the same point in the current configuration. As shown in Figure 2.3 the deformation
gradient F , which is the gradient of φ, transforms a material element dX (relative position
between two particles in the reference configuration) into the corresponding spatial ele-
ment vector dx which is the relative position of the particles in the current configuration
[26, 28].

8

2.2 Nonlinear Constitutive Theories for Hyperelasticity

P

Q

P'

Q'dX

dx

X

x

Reference configuration (t
0
) Current configuration (t > t

0
)

Time t > 0

e
2

e
1

e
3

φ(X, t)

Figure 2.3: Transition from undeformed to deformed configuration (adapted from [29])

Based on polar decomposition, F can be decomposed into stretch and rotational com-
ponent as

F = RU = V R, (2.2)

where U is the right stretch tensor, V the left stretch tensor, and R is an orthogonal finite
rotation tensor by which the rotation of eigenvectors U , Ni to the eigenvectors of V ,
ni : ni = RNi is represented [26]. The right Cauchy-Green deformation tensor C, which
is a symmetric second order tensor, is a measure of the strain, the body experiences [30]
and is derived from the deformation gradient tensor as

C = FTF. (2.3)

An invariant is a quantity that does not change under a specific mathematical/physical
transformation or operation [31]. If the liver is assumed isotropic, i.e., the mechanical
properties are not direction dependent but can differ from point to point, the strain energy
function W = W (F) is a function of three strain invariants of the deformation tensor I1,
I2, and I3 that are preferred instead of direct use of strain tensors [32] and are defined by

I1 = trace(C) = λ21 + λ22 + λ23, (2.4)

I2 =
1

2
(I21 − trace(C2)) = (λ1λ2)2 + (λ1λ3)2 + (λ2λ3)2, (2.5)

and
I3 = det(C) = (λ1λ2λ3)2, (2.6)

where trace is an operator calculating the sum of the elements on the main diagonal as∑n
i=1 aii, λ1, λ2, and λ3 are principal stretches of deformation and the stretch tensors’

9

Chapter 2. Theory

eigenvalues [26, 27].

Since the liver is not highly confined within the abdominal cavity (otherwise, the de-
gree of compressibility needed to be accounted for [33]), contains water (a nearly in-
compressible substance), and maintains its volume during deformation, it is a reasonable
assumption to consider it highly incompressible. The mathematical interpretation of this
is that the determinant of the Cauchy-Green deformation tensor (Eq. 2.6) for an incom-
pressible material must be equal to 1.

2.2.2 First Piola-Kirchhoff Stress in Uniaxial Loading
From mechanics of material:

εeng =
∆L

L0
=
Lf − L0

L0
, (2.7)

where εeng is the engineering strain, L0 initial length and Lf is the final length. Since we
know that λ =

Lf
L0

, Eq. 2.7 can be rewritten to obtain the stretch ratio as

λ =
∆L+ L0

L0
. (2.8)

The 1st Piola-Kirchhoff stress tensor is defined as T = F
A0

, whereA0 is the initial area
of the sample in tension or compression and F is the applied force. With the assumption
of incompressibility, T, λ, and Cauchy stress are related by

T = σλ−1, (2.9)

where for uniaxial deformation the stretch ratio is equal to the first principal stretch λ = λ1
and Cauchy stress to the first principal stress σ = σ1. Chui et al. [27] reported that in the
uniaxial tensile test of a cylindrical liver sample, the sample had a 1/λ reduction of the
cross-sectional area when the sample length showed an increase in height by a factor of λ.
Therefore, By setting λ = λ1, there will be λ2 = λ3 = 1/

√
λ3, meaning that under uniaxial

deformation the three invariants can be assessed as I1 = λ2 + 2/λ, I2 = 2λ + 1/λ2 and
I3 = 1. Hence, F is only a function of I1 and I2 [27]. The principal Cauchy stresses are
also defined as [34]:

σi = λi
∂W

∂λi
− p, (i = 1, 2, 3) (2.10)

sinceW = W (I1, I2), Eq. 2.10 is expanded by the chain rule for the first principal Cauchy
stress as

σ1 = λ1(
∂W

∂I1

∂I1
∂λ1

+
∂W

∂I2

∂I2
∂λ1

)− p, (2.11)

and by having σ2 = σ3 = 0 (because of uniaxial tension/compression and no lateral
force), hydrostatic pressure p can be calculated from

σ2 = λ1(
∂W

∂I1

∂I1
∂λ2

+
∂W

∂I2

∂I2
∂λ2

)− p = 0. (2.12)

10

2.3 Hyperelastic Models

Combining Eq. 2.11 and 2.12 leads to the removal of p from the general Eq. 2.10 and sub-
stitutes σ in Eq. 2.9 to derive the expression of the 1st Piola-Kirchhoff stress for uniaxial
loading and the assumption of incompressible material as

T =
2

λ

∂W

∂I1
(λ2 − 1

λ
) +

2

λ

∂W

∂I2
(λ− 1

λ2
). (2.13)

2.3 Hyperelastic Models

Several hyperelastic models have been proposed in the literature. These constitutive laws
contain certain material parameters in their formulations, which are determined from the
stress-strain curve derived from experimental test data like compression, elongation in
uniaxial/biaxial, and shear tests. However, the data from the uniaxial tensile test of liver
tissue are more readily available because of its relative simplicity in the procedure and
measurement [24, 27, 35]. Considering that the vast theory behind all of the hyperelastic
models and their several numbers is out of the scope of this work, this section only briefly
explains Ogden [36] and Mooney-Rivlin [37] models and limits itself to the presentation
of the strain energy functions (Table 2.1) of the other common constitutive laws used to
describe the liver’s mechanical behavior.

2.3.1 Categorization of Hyperelastic Models

Hyperelastic constitutive laws can first be categorized based on the form of their func-
tions to polynomial, exponential and logarithmic, and combined exponential-polynomial.
As illustrated in Table 2.1, they can also be classified based on their dependence on the
Cauchy-Green tensor’s strain invariants. In this classification, specific models such as
Yeoh [38], Arruda-Boyce [39], and Neo-Hookean [40] only depend on I1, and they are re-
ferred to as I1-based models. For the characterization of the material represented by these
models, only one type of test, e.g., uniaxial test, is required. Therefore, it is unrealistic to
expect them to fully describe the behavior of a rubber-like material that may be prone to
other deformation modes such as shear, biaxial extension, or compression [26]. However,
under certain conditions, they might present an acceptable approximation. For instance,
the Neo-Hookean model can provide a relatively decent fit with the experimental data for
a low stress-strain regime. Mooney-Rivlin model is another invariant-based model that
depends on both I1 and I2.

Another category of hyperelastic models (e.g., Ogden, logarithmic and exponential
models) is directly based on the principal stretches. Invariants I1 and I2, therefore, are not
seen in their functions.

11

Chapter 2. Theory

Table 2.1: Main hyperelastic models used for the description of the liver’s mechanical behavior and
some prominent studies over their applications

Model type Model Form Function
Usage in literature

for the liver’s tissue

Invariant

Based

(I1 − I2)

Neo Hookean Polynomial W = C1(I1 − 3) Chui et al. [27], Zaeimdar [41]

Mooney-Rivlin
(generalized) Polynomial

W =
N∑

i+j>0

Cij [(I1 − 3)
i

(I2 − 3)j]

Chui et al. [27], Hu and Desai [42],

Fu et al. [43], Hostettler et al. [44],

Umale et al. [35]

Yeoh Polynomial W =

N∑
k=1

Ck(I1 − 3)
k Zaeimdar [41]

Arruda-Boyce Polynomial

W = nkBθ[
1
2
(I1 − 3)

+ 1
20N

(I21 − 9)

+ 1
1050N2 (I31 − 27)

+ ...]

Marchesseau et al. [12]

Fung-Demiray Exponential W =
C1
2C2

(eC2(I1−3) − 1)
Chui et al. [27],

Roan and Vemaganti [45]

Veronda-Westmann Combined
W = C1(e

C3(I1−3) − 1)

+ C2(I2 − 3) Chui et al. [27], Yin et al. [46]

Stretch Based

Ogden Polynomial
W =

N∑
k=1

µk

αk
(λ
αk
1 + λ

αk
2

+λ
αk
3 − 3)

Pellicer-Valero et al. [6],

Martı́n-Guerrero et al. [47],

Untaroiu and Lu [48], Chui et al. [27],

Lorente et al. [49], Hu and Desai [42],

Lister et al [50]

Bogen Polynomial W =

N∑
k=1

µ1

α1

(λ
α1
1 + λ

α1
2

+λα1
3 − 1)

Chui et al. [27]Logarithmic Logaritihmic W = −C1ln(1 − C2(λ
α1
1

+λα1
2 + λ

α1
3 − 3))

Exponential Exponential
W = C1(e

C2(λα1 1+λα2 1+λα3 1)

-1)

2.3.2 Mooney-Rivlin Model
Mooney-Rivlin model is an instance of both invariant-based (I1 and I2) and polyno-
mial form of the strain energy function that proposed by Mooney [37] and has been

12

2.3 Hyperelastic Models

used in multiple studies to characterize the behavior of soft biological tissues such as
liver’s parenchyma, kidney [35, 51, 52] and brain [53]. The strain energy function for the
Mooney-Rivlin model is given by

W =

N∑
i+j>0

Cij(I1 − 3)i(I2 − 3)j , (2.14)

where N is the order of the model and Cij the material parameter. Figure 2.4 shows the
implementation of the second-order of this model for liver and kidney, where the model’s
curve fits perfectly with the mean experimental curve.

(a) Renal cortex of kidney (b) Liver’s parenchyma

Figure 2.4: Examples of stress-strain curves of second order Mooney-Rivlin model against com-
pression test data, fitted for soft tissues [35].

2.3.3 Ogden Model
Ogden model, first derived in 1972 [54], has a stretch-based approach and, similar to the
Mooney-Rivlin model, has a polynomial form. Due to the provision of a good fit with test
data, this model has been widely used for modeling the liver’s parenchyma and hepatic
vessels [6, 27, 47–49, 55]. Ogden model is viewed as one of the most suitable constitutive
laws for the description of incompressible, isotropic hyperelastic materials [56] and in its
most comprehensive form is defined by

W =

N∑
k=1

µk
αk

(λαk1 + λαk2 + λαk3 − 3) +

N∑
i=1

1

Di
(Jel − 1)2i, (2.15)

whereN is the model’s order generally between 1-3, µk (shear modulus) and αk (a dimen-
sionless number) are material parameters, Di is an indication of incompressibility that is
defined by the bulk modulus K0 as D1 = 2

K0
and Jel is the elastic volume ratio [33].

In Figure 2.5, an example of a curved fit by the third order of this hyperelastic model
can be seen. The curve plotted from the experimental data of the uniaxial test of liver
tissue is also presented. As is apparent, decent proximity exists between the two curves.

13

Chapter 2. Theory

Figure 2.5: Stress-strain curve of Ogden third order and uniaxial tension test data of liver tissue [57]

2.4 Finite Element Analysis

Finite element is a numerical method for solving partial differential equations (PDEs)
governing a physical problem that is difficult if solved analytically. As the naming also
suggests, the foundation of this method is lying over using the discretization of the problem
into smaller domains known as elements. It is essential to know that FEM only delivers an
approximate solution to a problem whose accuracy depends on various parameters. The
underlying bases of FEM, by which a solid mechanics problem is solved, is shown in
Figure 2.6 and can be summarized as

• Compatibility

• Stress-strain relationship (constitutive law)

• Equilibrium

14

2.4 Finite Element Analysis

Figure 2.6: Underlying bases of FEA in solving solid mechanics problems [58]

Due to the vastness of the FEA theory, in this section, only the topics directly concerning
the specific analyses performed in this thesis are reviewed. Unless otherwise stated, the
theory presented in this section is studied from Abaqus User’s Manual [33].

2.4.1 Nonlinear FEA

In contrast to linear FEA, a nonlinear analysis is more inclusive, and the stiffness and load
matrices are not dependent on the displacement. This independence leads to the need for
regular updates of the stiffness matrix throughout the analysis, and taking derivatives of
the displacement does not necessarily result in finding the strains. In FEA, three sources
that cause nonlinearity have been identified as

• Geometry

• Boundary

• Material.

Geometric Nonlinearity

This type of nonlinearity occurs when the magnitude of the displacement changes the
response of the structure. The change in the initial shape, in turn, leads to the change in
the stiffness of the structure under loading.

Boundary Nonlinearity

Boundary or contact nonlinearity takes place when interference or contact occurs between
multiple parts. This interference causes a significant and sudden change in the structure’s
response, leading to the variation in the stiffness of the assembly.

15

Chapter 2. Theory

Material Nonlinearity

This nonlinearity is the one expected to be the primary source in the analyses carried out
for this thesis and occurs when the material itself is nonlinear in nature. In other words, the
material’s stress-strain curve does not show a linear relationship which is also observed in
the behavior of biological soft tissues.

2.4.2 Elements
Two types of elements are expected to be used for the discretization of the liver tissue
models. The first formulation, which makes up most of the elements in the parenchyma
tissue, belongs to the continuum category of elements, which are solid with the hybrid for-
mulation. The second element formulation is shell element, with the usage in modeling of
parts with small thickness relative to the overall dimension of the tissues such as Glisson’s
capsule or the network of hepatic vessels.

Solid Element

Hexahedral and tetrahedral (Figure 2.7), are two general types of solid elements, suitable
for discretizing three-dimensional parts. A hexahedron consists of six faces and eight cor-
ners, while 4 faces and 4 corners are the geometrical characteristics by which a tetrahedron
is known. A geometry discretized with hexahedral elements generally results in a more
structured mesh and thus higher solution accuracy. On the other hand, a mesh with tetra-
hedral elements can better fit geometries with complex features.

Figure 2.7: Tetrohedral and hexahedral elements

These elements can be further divided into elements with linear (first-order) and quadratic
shape functions (second-order) categories, where in addition to the nodes located on the
corner of the elements, each edge contains an extra node in the middle which is not shared
by multiple edges. If large deformation is expected, the selection of a second-order ele-
ment provides more accurate results at the expense of a higher computational cost.

Suppose the material is incompressible (ν = 0.5) or nearly incompressible (ν >
0.475) and uniform pressure (Figure 2.8) exists. In that case, since the volume of the ele-
ment does not change, general formulations of solid elements cannot model the response
of the material. Consequently, displacements of the nodes cannot be used for the calcu-
lation of pressure stress. For this situation, elements with hybrid formulation have been

16

2.4 Finite Element Analysis

proposed that directly compute the pressure stress from an additional degree of freedom,
and shear strains and stresses are computed from nodal displacements.

Figure 2.8: Uniform pressure

Shell Element

Using shell elements for members whose one dimension (e.g., thickness) is significantly
smaller than the others can lower the computational burden. This is because these ele-
ments approximate a 3D space using a 2D theory, and dimensionality reduction can lead
to a lower number of elements. In the Abaqus package, general-purpose 3D shell elements
can be classified into triangular (S3) and quadrilateral (S4) elements. Furthermore, the lin-
ear or quadratic interpolation can also be used in S4 elements depending on the expected
accuracy.

General-purpose shell elements ensure accurate and robust results under various load-
ing scenarios and can be utilized in thin and thick parts, and shear locking is not a source
of concern. These elements also allow for variation in thickness as a function of in-plane
deformation.

2.4.3 Solution Methods

To find numerical approximation in finite element problems, the user can choose between
two implicit and explicit methods. Although the simulations needed in this thesis are
performed using an implicit solver, both methods are briefly introduced below due to the
requirements of the problem.

Implicit

When dealing with nonlinear analyses, the time is discretized into finite increments known
as time steps. In an implicit method, to find a solution, the displacements are formulated
using velocities and accelerations in the current time step and the information from the
previous step. One advantage of using this method is unconditional stability in most cases.
Furthermore, large time increments can be used as long as large tolerance exists on the
solution accuracy. This method, however, demands convergence checks at each step. This
solution method is known to work best with various analyses such as linear and nonlinear
static, heat transfer, and mass diffusion problems.

17

Chapter 2. Theory

Explicit

As opposed to implicit, an explicit solver finds the solution for acceleration at the nth
time step. When the values for accelerations are found, the velocity at n+1/2th step and
displacement at n+1th can be calculated. Very small time increments are required for
using an explicit solver, and the method is only conditionally stable. The explicit method
is known for best handling high-speed dynamics, impact, buckling, and damage modeling
problems [59].

2.5 Machine Learning

This section aims to give a short overview of the definition o machine learning and present
the most common algorithms. A more in-depth exploration of the artificial neural network,
which is the preferred technique to use in this thesis, will also be provided.

Machine Learning is a general concept enveloping all statistical algorithms developed
to identify patterns and relationships between a given input instance, typically known as a
dataset [60]. Machine Learning techniques are broadly categorized into three main classes
of Supervised Learning, Unsupervised Learning and Reinforcement Learning. In the fol-
lowing subsections these classes are briefly introduced.

2.5.1 Supervised Learning

Supervised learning algorithms are the most extensively used ML algorithms, working on
the principle of finding a similarity function f(x) that maps the given inputs to the known
outputs. The model trained by this approach is then expected to predict the unseen inputs
without any human assistance. As illustrated in Figure 2.9, the instances existing in the
dataset used for training a model in a supervised learning algorithm are split in two by a
user-defined percentage, e.g., 80 percent for training and the remainder for testing. Once
the training, which usually is a time-consuming process, is done, the model’s performance
can be assessed by comparing the outputs it predicts for the descriptive features against
the target features in the test dataset.

18

2.5 Machine Learning

Training
Data

Machine
Learning

Algorithm

Test
Data

Dataset

Descriptive Features
Target
Feature

….. ….. ….. …..

….. ….. ….. …..

….. ….. ….. …..

Prediction
Model

Spliting
1

D
es

cr
ip

tiv
e

 F
ea

tu
re

s
Performance
Evaluation

Metrics

2

3

4 5

Figure 2.9: Learning and performance evaluation of a supervised ML model (adapted from [61])

Classification and Regression

Supervised learning is further divided into classification and regression tasks. In classifica-
tion, the predicted outcome of the algorithm is qualitative (also referred to as categorical).
The least complex type of these problems is the binary classification, where a label is either
predicted as 0 or 1. In the example of predicting the presence of a dog in a picture, 1 can
be associated with the presence, and 0 with absence [8]. In regression tasks, on the other
hand, as also seen from the Figure 2.10 the quantitative output of regression algorithm is
invariably a function, approximating the dataset’s labels [8, 62].

(a) Classification (b) Regression

Figure 2.10: Classification vs. regression [63]

19

Chapter 2. Theory

2.5.2 Unsupervised Learning

In unsupervised learning, the collected data is unlabeled, the output of the dataset fed to
the learning algorithm is not known, and the algorithm does not receive any feedback.
Nevertheless, it is still possible to learn the structure and pattern between the inputs [64].
In these algorithms fitting a linear regression model is impossible, and without a response
variable yi (an output), the algorithm analysis cannot be supervised [62]. An example of
unsupervised learning is cluster analysis that aims at creating a new representation of the
data by a distinct grouping of the input’s variables. In the example of grouping personal
photos uploaded into social media, for instance, without knowing which photo represents
which person, the website algorithm can group the photos depicting the same person based
on similar facial features [65].

2.5.3 Reinforcement Learning

Reinforcement learning algorithms are the third introductory class of machine learning.
In these algorithms, unlike supervised learning, the need for paired input/output data is
alleviated, while finding a balanced exploration-exploitation approach is emphasized [66].
In this area, the idea is to train an agent in interaction with a dynamic environment by
receiving observations, sending actions, and receiving reward signals as a measure of suc-
cess evaluation. As shown in Figure 2.11, reinforcement learning algorithm and policy
are the terms referred to as the constituent components of the agent. By observing the
environment, policy decides the actions, and the learning algorithm repeatedly updates the
parameters of the policy in accordance to the sent actions and received observations and
rewards in the hope of finding the most favorable policy that maximizes rewards of doing
a task in the long run [67].

Environment

Agent

Reinforcement
Learning Algorithm

Policy

Reward

Observation Action

Policy
Update

Figure 2.11: Reinforcement learning process adapted from [67]

20

2.6 Artificial Neural Networks

2.6 Artificial Neural Networks
Artificial neural networks are a technique, falling under both supervised and unsupervised
machine learning algorithms, that mimics natural biological intelligence. ANN comprises
several to large numbers of interconnected elements, comparable to the biological neurons
in the cerebral cortex of mammals (Figure 2.12), located on various layers that link the
input information to the output. This subsection intends to present the key concepts and
features required to understand the function and implementation of ANN as a subset of
machine learning.

Signal flow

∑

x
1

x
2

x
3

x
n

...

 y

w
1

w
2

w
3

w
n

b

f
z

Figure 2.12: Biological and artificial neurons [68]

2.6.1 Perceptron Model
Being invented in the late 1950s by Frank Rosenblatt [69], perceptron1 was initially hard-
ware rather than an algorithm. Perceptron is the simplest form of a feedforward neural
network containing one neuron whose synaptic weights w and bias b can be adjusted. In
Figure 2.12, the perceptron takes inputs (x1, x2, ..., xn) and sums them up. However, to
empower the perceptron with the ability to learn from the surrounding environment to
correct the summed value and enable the predefined

∑
to take multiple shapes, weights

w1, w2, .., wn, must be multiplied to each input [8, 70]. Furthermore, assigning a particu-
lar bias to the neuron in a situation where input equals zero ensures that the neuron only
receives nonzero quantities. Thus, the product of xiwi must first overcome the value of the
bias to affect the output before the activation function f . Therefore, a simple summation
is defined as

z =

n∑
i=1

xiwi + b, (2.16)

where n is the number of inputs and z is known as summed activation of the node.

1Perceptron and neuron are interchangeable terms.

21

Chapter 2. Theory

2.6.2 Multi-layer Perceptrons
Activities in the field of neural networks came to stagnation after Minsky and Papert [71]
showed the limitation of a single-layer perceptron of solving only linearly separable prob-
lems. A famous example of perceptron’s limitation is the XOR problem which a single-
layer perceptron is not capable of its simulation [72]. This was where the need for a multi-
layer neural network to learn more complicated systems arose. As Figure 2.13 shows, a
fully connected multi-layer neural network is built upon the connection of multiple layers
of perceptrons, where the first layer is the input layer, directly receiving the data, the last
layer is the output layer and all other layers between the input and output layers are re-
ferred to as hidden layers. The terms width and depth also indicate the number of neurons
in a layer and the total number of layers, respectively.

x
1

x
2

x
3

x
n

...

...

...

...

Input layer

Hidden layers

Output layer

Neurons

x
1

x
2

x
3

x
n

y
1

y
n

Figure 2.13: Multi-layer neural network

2.6.3 Activation Functions
In a neural network, the purpose of activation function f (also known as transfer function)
is to rescale the amplitude of the output of a neuron between particular values and ensure
the nonlinearity of the signal before feeding to the succeeding neurons in the next layer
[73, 74]. This function has several forms, of which some of popular forms are presented
below.

• ReLU: Due to low computational effort, rectified linear unit, or short, ReLU is the

22

2.6 Artificial Neural Networks

most popular activation function in ANN. ReLU limits the neuron’s output between
zero and values greater than zero by considering zero for all subzero signals and
returning the values ≥ 0 with their own magnitudes as

f(z) =

{
0 if z < 0,

z if z ≥ 0,
(2.17)

and the corresponding graph showing this function is illustrated in Figure 2.14.

5.0 2.5 0.0 2.5 5.0
z

0

1

2

3

4

f(z
)

Figure 2.14: ReLU activation function

• Sigmoid: As shown in Figure 2.15, the Sigmoid is a nonlinear function and is re-
garded as an extensively used activation function in ANN. Sigmoid (also referred to
as logistic or Soft step) transfers the values to a range of 1 and 0, and defined as

f(z) =
1

1 + e−z
. (2.18)

23

Chapter 2. Theory

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
z

0.0

0.2

0.4

0.6

0.8

1.0

f(z
)

Figure 2.15: Sigmoid activation function

Sigmoid is a computationally demanding activation function due to its exponential
form.

• TanH: As Figure 2.16 also demonstrates, a hyperbolic tangent function is in shape
similar to the Sigmoid activation function, while it rescales the summed value of
the node within -1 and +1. Hence, the neurons situated inside the next layer are not
constantly receiving values of the same sign. Tanh is defined as

f(z) = tanh(z) =
2

1 + e−2z
− 1. (2.19)

5.0 2.5 0.0 2.5 5.0
z

1.0

0.5

0.0

0.5

1.0

f(z
)

Figure 2.16: Hyperbolic tangent activation function

24

2.6 Artificial Neural Networks

In contrast to the Sigmoid activation function, TanH facilitates the subsequent layer’s
learning since the mean value of the function is close to zero.

• Softmax: This function is typically used in the final layer in classification problems
with multiple classes. The Softmax function converts all the outputs into normalized
probabilities distribution of the target class over K possible target classes and is
written as

f(~z) =
ezi∑K
j=1 e

zj
. (2.20)

Thus, if the vector of the outputs ~z enters a Softmax activation function, the proba-
bility of each class will be as shown in Figure 2.17.

Figure 2.17: Softmax activation function [75]

2.6.4 Cost Functions

Cost functions (also known as loss or error functions) are used to compare the neural
network outputs with the actual values in supervised learning; i.e., they are monitoring
the network’s performance by returning a value that is subsequently used for updating
weights and biases through a process known as backpropagation. That being said, during
each iteration of training, the goal is to reach convergence to a minimum cost. A cost
function in a feedforward neural network is a function of weights w, biases b, the input of
a training example Sr, and the expected output of Sr, Er. Therefore, if the cost function
is only a function of a weight or a bias, the cost function can be minimized by finding
optimal values of w and b through an approach known as gradient descent which is shown
in Figure 2.18, where the steps sizes are referred to as learning rate [76].

25

Chapter 2. Theory

c(w)

w* w

(a) Too small steps leads to slow convergence

c(w)

w* w

(b) Too large steps can result in overshooting and diver-
gence

Figure 2.18: Gradient descent [77]

Three popular qualified examples of cost functions to use in regression tasks are Mean-
Squared Logarithmic, Mean Absolute Error (MAE) and Mean Squared Error (MSE) and
respectively defined as

C =
1

n

n∑
i=1

(log(yi + 1)− log(ŷi + 1))2, (2.21)

C =
1

n

n∑
i=1

(yi − ŷi), (2.22)

and

C =
1

n

n∑
i=1

(yi − ŷi)2, (2.23)

where ŷi is the predicted output for a point, yi is the true value of the same point and n is
the total number of points.

2.6.5 Optimization Algorithms
To minimize the loss during training, certain values of the network parameters such as
learning rate and weights need to be found. Optimization algorithms define the extent
and manner of changes in these parameters and regulate the path through finding the cost
function minimum values. In other words, the approach by which the NN learns is defined
by optimizers. In deep learning, several optimization algorithms exist. However, in this
subsection, only the most well-known algorithms suitable to use in regression tasks are
briefly presented, and for further information, the reader is encouraged to refer to highly

26

2.6 Artificial Neural Networks

educative online sources such as Deep Learning Demystified [78].

Stochastic Gradient Descent

Stochastic gradient descent, or in short SGD, is an efficient variant of gradient descent with
the difference of random selection of a sample data point instead of performing derivation
calculation for the entire dataset. This results in a significant reduction in computational
overload associated with using normal gradient descent algorithm [79].

Adam

This optimization algorithm has a solid reputation for reducing the processing effort needed
to find the cost function’s global minima. Adam takes advantage of an adaptive learning
rate algorithm by opting for different step sizes for different parameters that can lead to
faster convergence when noticeable updates in the weights do not occur [80].

As examples for other well-known gradient-descent-based optimization algorithms,
RMSprop, Momentum, Adagrad, and Nadam can be mentioned [81]. However, their ex-
planations are out of the scope of this thesis.

2.6.6 Backpropagation
An artificial neural network is comparable to a function capable of taking any shape
through choosing the coefficients of the function. This flexibility of ANN can be reached
by proper adjustment and optimization of weights and biases of the network (training pa-
rameters) during the training phase. Having a training dataset with the input and known
outputs available, the predicted values of the final layer are evaluated against the expected
results using the loss function. The deviation from the training outputs can then be mini-
mized by going backward in the network and adjusting the training parameters to reach an
acceptable range of error. This process is referred to as backpropagation [8, 82].

2.6.7 Generalization and Overfitting
A well-trained artificial neural network is expected to generalize the input-output relation-
ship even for the datasets with slight differences from those used to train the network. For
doing so, the network must see many training instances to be able to estimate the corre-
sponding outputs of unseen inputs. By seeing the network as nonlinear mapping of the
input signal to the outputs, a curve fitting approach in which generalization for new points
accomplished by interpolation can be a good example for understanding the network’s
overall function. Nevertheless, excessive data points or the presence of noise in the train-
ing data might eventuate in a phenomenon known as overfitting or overtraining, where
the network memorizes the data instead of modeling the underlying function present in
the dataset. Therefore, an overtrained network is not capable of proper generalization of
the input-output relationship [70]. As opposed to overfitting, the term underfitting exists,

27

Chapter 2. Theory

where the neural network is not trained with enough data. Thus, the accurate prediction
of an undertrained network for new inputs is under question. Figure 2.19 illustrates the
concepts of underfitting, overfitting, and balanced fitting.

*

*

*

*

*

Output

Input

.

*. Training points
Generalization point

(a) Underfitting

*

*

*

*

*

Output

Input

.

*.
Training points
Generalization point

(b) Balanced

*

*

*

*

*

Output

Input

.

*. Training points
Generalization point

(c) Overfitting

Figure 2.19: An illustration over the concepts of overfitting, balanced, and underfitting

28

Chapter 3
State-of-the-art Review of the
Employment of Machine Learning
and Finite Element Analysis in
Biomechanics of Soft Tissues

Machine learning techniques as a high-speed substitution for FEA simulations in biome-
chanical applications have been of high interest in the literature and increased in the past
decade. Many researchers have implemented different ML algorithms for the prediction of
large deformation in various organs and provided their comparative results, emphasizing
the advantages of using particular algorithms and constitutive laws over the others. This
chapter of the thesis highlights the most recent techniques used for simulating the behav-
ior of biological organs, such as the 3D reconstruction of geometries, applied constitutive
laws, FEA considerations, ML models, accuracy, and computational costs, as a way for
better understanding of progress expanse in this field.

3.1 Liver

The framework presented by Morooka et al. [83] in 2008, to our best knowledge, was
the pioneer of the researches exploring a solution to reduce the response delay of FEM
simulations of the liver by resorting to a neural network. The method proposed in this
work was based on the superposition of basic deformation modes of the model where the
network learned the organ’s response to the applied external forces. The approach adopted
in this work consisted of these general steps:

• discritization of the computational domain using hexahedral elements

29

Chapter 3. State-of-the-art Review of the Employment of Machine Learning and Finite
Element Analysis in Biomechanics of Soft Tissues

• generation of 500 pairs of external forces with random directions and apply them as
nodal loads

• capturing the resultant nonlinear deformation modes caused by these forces

• building the required dataset for the training of the neural network

• setting up the neural network with empirically determined numbers for width and
depth of the network

• training the network with the dataset generated from FEM and using a backpropa-
gation algorithm to limit the error below the defined threshold

While this study does not provide any information regarding the utilized hyperelastic
model, including its parameters and the model order, accounting for the effect of vascu-
larization or the stiffness of the Glisson’s capsule, which are essential for a physically
realistic simulation, it stated that, on a PC platform of Pentium4 2.8 GHz with 1 GB mem-
ory, the neural network model expedited the computational time by a factor of 1000 faster
than nonlinear FEM and produced the outputs in 0.28 ms.

Another work investigating the integration of data-driven models in computer-aided
surgery of the human liver was presented by Lorente et al. [49]. This study evaluated the
feasibility of using ML for real-time simulation of the liver’s biomechanical behavior in
the course of the inhalation and exhalation processes. For this purpose, three tree-based
regression algorithms, namely, decision tree (DT), random forests (RF), and extremely
randomized trees (ET), and two other comparatively less complicated methods of dummy
model (DM) and linear regression (LR) were evaluated. The goal of this research was to
develop a scheme not only capable of capturing large hyperelastic deformations, but to
have the ability of prediction for different geometries of the liver. Thus, this study used
data from eight geometrically different livers to train and test the ML regression models.

The first step in this work was to reconstruct the models suitable for FEM by perform-
ing Computed Tomography (CT) scanning of the livers. The CT images were then seg-
mented, and voxel-based meshes were acquired. The second-order Ogden material model
was selected, and a combination of three different material parameters was used to create
a richer dataset. The model was then discretized with tetrahedral elements, and simplified
boundary conditions, comparable to the interaction of the liver with different abdominal
organs during breathing, were defined. After running the simulations, the data describing
the deformed state of each liver in the 3D Euclidean space were gathered. These data in-
cluded the initial coordinates of the nodes, nodal displacements, and applied nodal loads,
in the later stages, together with the material parameters constituted to the required dataset
for the training of the ML models.

For splitting strategy, two approaches were adopted. The first strategy was to leave
one liver for testing and the seven other livers for the training of the models. The sec-
ond approach was 70% of the total samples (2,208,486 samples) obtained from the FEM

30

3.1 Liver

simulation were used to train the models, while the remaining 30% (946,494 samples) was
allocated as a test set. The hyperparameters, which are not automatically learned inside the
ML models, were optimized for the tree-based models. Hyperparameter optimization en-
sures the generalization of the model and prevents overfitting and underfitting the training
dataset, which subsequently increases prediction performance. After training the models,
the models’ performances were evaluated using root mean squared error (RMSE) which is

RMSE =

√∑ntest
i=1 (ŷi − yi)2

ntest
, (3.1)

and ntest defines the number of samples in the test set. Moreover, another metric known
as Mean Euclidean Error (Eq. 3.2), capable of calculating the actual nodal displacement
shown in Figure 3.1, was used to measure the percentage of samples with displacement
error equal to and lower than 1 and 3 mm.

d(ŷi, yi) =

√
(ˆdxi − dxi)2 + (d̂yi − dyi)2 + (d̂zi − dzi)2 (3.2)

Figure 3.1: Displacement error in Euclidean space [49]

As seen in Table 3.1, the comparative performance results for the five ML models are
presented, where the best results have been highlighted in bold. This table indicates the
performance superiority of the random forests algorithm in the first data splitting strategy.
At the same time, this algorithm was in second place in percentage splitting with slightly
less accurate prediction than the extremely randomized trees model. It is also noticeable
that the tree-based models outperformed the dummy model and linear regression. In terms
of computation cost, this work compared the time consumed by FEM against a trained
RF regression model for the same loading scenario. The simulations were conducted on
a computer based on a 3.4 GHz Intel Core i7 CPU and 8GB RAM. ML model completed
the task in 2.89 seconds, while it took FEM 51.63 seconds to finish the simulation. It is

31

Chapter 3. State-of-the-art Review of the Employment of Machine Learning and Finite
Element Analysis in Biomechanics of Soft Tissues

also worth mentioning that the computational time of 2.89 seconds is associated with the
simulation of ten deformed states, while in medical applications, the prediction of only
one liver is required. Therefore, a value of 0.3 seconds can satisfy real-time criteria.

Table 3.1: Performance assessment of ML models used in the research work of Lorente et al. [49]

Regression

model

One liver for test 70%/30%

Samples with

Euclidean errors

≤1 mm (%)

Samples with

Euclidean errors

≤3 mm (%)

Mean Euclidean

error (mm)

Samples with

Euclidean errors

≤1 mm (%)

Samples with

Euclidean errors

≤3 mm (%)

Mean Euclidean

error (mm)

DM 2.20 22.87 5.41 2.31 21.23 5.41

LR 15.40 66.67 3.04 10.94 59.62 3.22

DT 57.77 93.20 1.13 99.66 100.00 0.14

RF 60.19 94.31 1.06 99.99 100.00 0.09

ET 55.45 91.67 1.20 100.00 100.00 0.07

Pellicer-Valero et al. [6] also published their research in late 2019, employing feedfor-
ward neural network and random forests algorithms to build models trained by data from
FEM simulation of more than 100 different shapes of the liver. The liver segmentation
needed for the simulations was conducted in a fully automatic process, and tetrahedral el-
ements were used for discretization. First-order Ogden was employed as the hyperelastic
model, and for the boundary conditions, the nodes in contact with inferior vena cava were
considered fixed with null displacement. Nodal forces with random orientation and con-
stant magnitude of 0.4N were applied, and the corresponding nodal displacements were
obtained in the post-processing stage. For maximizing the richness of the dataset, four
different scenarios shown in Table 3.2 were selected. These scenarios were considered to
account for the cases of the presence of two surgical tools, material properties change due
to, e.g., inflammation, and the fact that a liver does not possess a unique shape. By omit-
ting viscoelasticity, the static analyses were performed. A dataset including information
about the nodes’ initial coordinates, force vector components, coordinates of the nodes
after displacement, and material properties was created to train the ML models.

Table 3.2: Simulation scenarios in the work presented by Pellicer-Valero et al. [6]

ID Two forces
Multiple
materials

Multiple
geometries

Simulated forces

1 No No No 400
2 Yes No No 1500 (×2)
3 No Yes No 3,000
4 No No Yes 10,200

As for validation of the neural network performance, 10% of the simulations were set
for the first three scenarios, while for the last scenario, this number was 12.5%. ReLU
activation function was also employed, and the network’s performance was monitored us-
ing the MSE cost function. The performance of the neural network for all scenarios is
presented in Table 3.3 based on Mean Absolute Error, Mean Euclidean Error, and the per-

32

3.2 Brain

centage of samples with Euclidean error below 1 and 3 millimeters.

Table 3.3: Neural network performance measurement for Scenarios in work presented by Pellicer-
Valero et al.

Scenario
MAE (mm) Mean Euc. Error

(mm)
% of samples

x y z EEuc 1 mm EEuc 3 mm
1 (base case) 0.1173 0.1176 0.1224 0.2389 98.2615 99.9551
2 (two forces) 0.1862 0.1825 0.1977 0.3816 93.0551 99.8382
3 (30 materials) 0.1621 0.1616 0.1548 0.3299 94.7381 98.4644
4 (102 livers) 0.4130 0.4732 0.4119 0.8643 72.4243 95.5784

Regarding the real-time applicability of this work, this work tested the neural network
response time by resorting to GPU computational power on a computer equipped with
two Core i5 processors and a low-end GT 840M GPU. For the first and last scenario, the
computational times measured to be 2ms and 5ms, respectively. Hence, using superior
hardware, the required working frequency of a haptic feedback system, which is above
500Hz, could be achieved.

The other research works contributing to the implementation of machine learning to
the real-time simulation of the deformed liver are Pfeiffer et al. [84], and Mendizabal et al.
[7]. These works used fully convolutional neural network based on U-Net architecture as
the machine learning algorithm to approximate nonlinear deformation of the liver. They
showed that their methods were high-speed with high accuracy and capable of handling
real-time conditions. With this regard, the model proposed by Mendizabal et al. [7] was
able to predict the organ deformation in 3ms with the maximal error below 0.4 mm. The
training time, however, was significant, with 149 min in value.

3.2 Brain
The study conducted by Tonutti et al. [10] in 2017 aimed at the localization of tumors
during neurosurgery. This work proposed an approach combining the results of FEM sim-
ulations with artificial neural network and support vector regression (SVR) algorithms.
The general workflow of this approach is outlined in Figure 3.2, where the patient-specific
mesh was obtained from performing pre-operative magnetic resonance imaging (MRI)
scans and high-quality segmentation of brain matters. The first-order Ogden was the con-
stitutive model of choice, and the density and bulk modulus of the tumor were set twice
as those of the healthy brain tissue to simulate its higher stiffness. For the application of
loading, 11 nodes were considered to receive a force with respectively 30 and 20 different
orientations and magnitudes (from 0.1N up to 1N), resulting in 600 simulations per node
and 6600 FEM simulations in total. Furthermore, no-slip boundary conditions were de-
cided for the majority of the nodes in contact with the internal surface of the skull, which
is illustrated as unshaded wireframe in Figure 3.3.

33

Chapter 3. State-of-the-art Review of the Employment of Machine Learning and Finite
Element Analysis in Biomechanics of Soft Tissues

Figure 3.2: Outline of Tonutti et al. work [10]

Figure 3.3: BCs used in Tonutti et al. work [10]

In the later stage of this work, a neural network with one hidden layer of four neurons
was trained based on 70% of the data. Bayesian regularization was applied to the inputs to
lower the possibility of overfitting. The authors reported that the ANN model predicted the
tumor nodes’ position by providing an accuracy below 0.3 mm, whereas the SVR model
performed better with an error under 0.2 mm. Both values, however, were stated to lie
within the acceptable threshold for this application.

3.3 Breast
In the area of the application of data-driven methods combined with FEM for character-
izing biomechanical behavior of human breast tissue, the study performed by Martı́nez

34

3.3 Breast

et al. [11] stands out in the literature. This work took advantage of the data generated
from FE analysis of ten different shapes of the breast for the training of three machine
learning models in the hope of developing a framework for the real-time application of
image-guided surgery for tumor tracking.

The entire workflow followed in this work, where the segmented models were used
for tetrahedral-discretized meshes required in FEA, is outlined in Figure 3.4. As for the
constitutive law, Mooney-Rivlin hyperelastic model was utilized for three different tis-
sues, namely glandular tissue, fat, and skin, existing in the breast. Regarding the load and
boundary conditions, the breast was considered to be compressed between two plates by
20% of its height, which imitates the real-world scenario during medical intervention. The
simulations were run in several load steps, automatically chosen by FEM software, result-
ing in 162 deformation modes for each breast. This led to 9,816,283 instances constituting
the dataset used in the training of the machine learning models.

Figure 3.4: Outline of Martı́nez et al. proposed workflow [11]

The authors evaluated the performance of random forest, decision tree, and extremely
randomized trees (ERTs) as machine learning algorithms. Two approaches were also
adopted as partitioning strategies. The first method (hold-out) was a random division of
the instances in the entire dataset based on 70% for training and the remainder as the val-

35

Chapter 3. State-of-the-art Review of the Employment of Machine Learning and Finite
Element Analysis in Biomechanics of Soft Tissues

idation set. In the second approach (leave-one-deformation-out), the instances related to
one of the 162 deformation modes were used to test the models’ performance. This pro-
cess repeated 162 times with all deformations.

Once the training of the models was done, the error of prediction pertaining to each
node was evaluated using 3D Euclidean distance. As the distribution of these errors shown
in Figure 3.5 indicates, in the two splitting approaches, ERTs performed the best by having
the smallest percentage of significant errors among the other two ML models. Neverthe-
less, in the hold-out approach, better performance of the models was obtained. The time
required by the best model to predict the deformation was also reported to be less than 0.2
seconds, showing the capacity of the model to be implemented for real-time predictions.

(a) Hold-out (b) Leave-one-deformation-out

Figure 3.5: Error distribution of splitting strategies in the work of Martı́nez et al. [11]

36

Chapter 4
Methodology And Simulations

To fulfill the objective of this thesis, several steps were taken, and several computer tools,
each serving specific purposes, were utilized. This chapter intends to present the under-
taken approaches and introduce the tools and techniques used in this work. For this reason,
it is essential to have a general overview of the required steps based on the information
presented in the previous chapter. This can ascertain the logical implementation of the
methods and flow of the information. The overall flowchart of the identified works, ex-
pected to be carried out in this project, is shown in Figure 4.1. The following subsections
aim at outlining the steps and technical aspects that existed in the project.

Image segmentation

Modification and
generation of solid model

FE Modeling

MR/CT image

Nodal load

Material
parameters

Voxel-based geometry

STL solid model with
desired accuracy

Arificial Neural
Network

Deformed model
nodal coordinates
dataHyperparameters

tuning

Deformed model
Nodal information

Boundary
conditions

Geometry
acquisition

Splitting
Strategy

Figure 4.1: The flowchart of proposed method

37

Chapter 4. Methodology And Simulations

4.1 Preparatory Works
Prior to performing FE analyses, some preliminary tasks were performed to identify the
key features and parameters useful to extract for training ML models. Since working on
a liver with all its geometrical complexity in 3D seemed challenging, the initial approach
was first to use a simple geometry for performing FEM simulations. Therefore, FE anal-
ysis of a 2D hyperelastic rectangle was considered to generate data necessary for training
a simple ML model (random forests) to lay the foundation for the future actual-shaped
model. This method resulted in two main benefits. First, the viability of the project was
checked in an early stage. Then the most challenging part of the simulations, which was
automatization of the processes, to a large degree, was solved and understood. In the later
sections, the details of the works conducted on the actual organ geometry are presented.

4.2 Geometry Acquisition
The first step towards building geometry of liver is to obtain the scanned image of the
abdominal area of the patient. This image can be either obtained through CT scanning
or MR imaging. Both techniques can provide a multi-layered view of the body’s internal
structure, including skeletal structure, blood vessels, and organs soft tissues. CT scanning,
however, is quicker to perform, while MR images provide better resolution and contrast,
which is beneficial for differentiation of various organs, matters, and abnormal tissues like
tumors [85]. Regardless of the superior quality of MR images, this work used an abdomi-
nal CT image of an anonymous patient provided by the Netherlands Cancer Institute.

4.2.1 Segmentation
The CT images from the source mentioned above contained information about all the tis-
sues in the patient’s abdominal area. Therefore, a step known as segmentation was required
to be carried out in order to isolate the organ/tissue of interest. Today, due to the recent
development in computer vision and the power of convolutional neural networks, many
researchers [86–88] have managed to partially or even fully automatize the process of seg-
mentation. These techniques significantly expedite the process of acquisition of 3D data.
Nevertheless, due to the technical complexity of the process and time limitation, a manual
approach using the open-source software 3D Slicer [89] was selected.

As Figure 4.2 shows the viewports of the software 3D Slicer, the geometry of the liver
was reconstructed from a CT image. The basic principle of manual segmentation used in
this thesis was based on the determination of the volume and boundary of the organ as seen
in different layers of the CT image. The software could then approximate the void space
between the layers to create a voxel-based1 geometry. The higher the number of layers
used in segmentation is, the more accurate the organ shape will be. However, the resulting

1In a 3D model on a regular grid, a voxel is the smallest constituent unit making up to the totality of the
object. A voxel is comparable to a pixel on a 2D image.

38

4.2 Geometry Acquisition

geometry still included noise and artifacts that made it unsuitable for a FE analysis.

Figure 4.2: Abdominal CT image and segmented liver

4.2.2 Modification and Generation of Solid Models

The model created in 3d Slicer environment was voxel-based, had noises and unwanted
features, and, more importantly, lacked the characteristics of a solid model such as volume
that makes it suitable to use in 3D FE analysis. Hence, Autodesk Meshmixer [90], another
intermediary free software package capable of delivering a suitable model for meshing,
was utilized, and the liver model was imported into the Meshmixer in stereolithography
(STL) file format. As seen from Figure 4.3, the model’s topology was reconfigured, and
extra features and noises were discarded. Moreover, the number of surface triangles was
adjusted to a reasonable value to preserve the shape of the organ without adding up to the
computational time.

Figure 4.3: Modified liver geometry and conversion of voxels to standard triangles

39

Chapter 4. Methodology And Simulations

4.3 Finite Element Simulations

The finite element analyses conducted in this project dealt with high material nonlinear-
ity which is the natural characteristic of a liver under loading conditions. The Abaqus
package has a well-recognized ability to handle nonlinear simulations. Plus, the standard
hyperelastic models such as Ogden, Mooney-Rivlin, Yeoh have already been implemented
in the software. Another significant advantage of the software is that the entire FE sim-
ulation from pre-processing steps, including meshing, loading, material assignment, and
post-processing, is programmable with Python language. This capability not only helped
to avoid repetitive tasks for performing a large number of simulations required for training
of the neural network, but it also provided flexibility in the choice of loading conditions
imposed on the organ.

The initial approach taken was to see the liver as a homogeneous object without con-
sidering the effect of hepatic vessels to lower the computational time. The lack of a proper
segmentation mask also led to disregard the effect of the Glisson’s capsule. Viscoelasticity
would also be diminished by applying loads in small increments and avoiding any dynamic
situation. However, the intention was to later embed the vessels in the simulations, which
is of significant importance during hepatic surgery of the liver.

4.3.1 Material Model and Parameters

As covered in Section 2.3, several hyperelastic models were proposed and used in previous
works. Nonetheless, in the literature, usage of first and second order of Ogden model is
prevailing to describe the liver’s parenchyma. This model has also been reported to provide
the best fit with the material’s stress-strain curve [14, 49].

Material Evaluation

Four combinations of material parameters were obtained from the work of Lorente et al.
[49], and Pellicer-Valero et al. [6]. As explained in Chapter 2, these parameters define the
strain energy function of the material based on the Ogden formulation. The calculation of
these parameters determines the correct shape of the function that fits best the experimental
stress-strain curve from the test of liver tissue. Nevertheless, the constants obtained from
the works mentioned above first needed to be evaluated for stability check. The Abaqus
package is empowered to evaluate if the provided material parameters are stable for a spe-
cific strain regime. Table 4.1 shows the status of these combinations after evaluation.

40

4.3 Finite Element Simulations

Table 4.1: Ogden material parameters stability check

Combination of
elastic constants

µ1 (MPa) α1 µ2 (MPa) α2 Stability status

1 0.06617 61.17 0.02203 98.75 X
2 0.05934 -50 0.06691 21.5 7

3 0.0119 -36.46 0.05767 99.7 X
4 0.0041 10.06 N/A N/A X

Figure 4.4 is a snapshot of the evaluation results, showing that the parameters pre-
sented as combination 2 in Table 4.1 was not stable for the entire strain regime in uniaxial
compression and biaxial tension tests. Thus, this combination was discarded from the pos-
sible material parameters capable of adequately modeling the liver’s hyperelastic behavior.

Figure 4.4: Ogden material parameters stability status

The remaining three combinations were also compared in terms of their resulting de-
flection under a 10N nodal force, applied at the lowest node of the right lobe. As is shown
in Figure 4.5, the first and third combinations presented by Lorente et al. [49] demon-
strated higher stiffness with the maximum displacement magnitude of slightly above 3
mm, whereas, the fourth material parameters proposed in the work of Pellicer-Valero et
al. [6] resulted in the significant value of 164 mm as the maximum displacement.

41

Chapter 4. Methodology And Simulations

(a) Combination 1 (b) Combination 3 (c) Combination 4

Figure 4.5: The effect of combination of material parameters on the deflection results in the form
of contour plot

Ultimately, the first combination was selected for proceeding with the FE simulations
of this stage. The corresponding stress-strain curve of this combination is shown in Figure
4.6.

Figure 4.6: Stress-strain curve of the selected material parameters

4.3.2 Meshing

The surface of the model obtained from the Section 4.2.2 step was constructed by a finite
number of triangles. Therefore, it was logical to select an element that would not cause a
major change to the representation of the model’s surface. Unlike hexahedral, tetrahedral
elements are known for a better approximation of complex geometries. Since the surface
of the organ was already built by triangles, this type of element was selected. The element
of interest in the Abaqus/Standard package exists with C3D4H code, which stands for a
continuum three-dimensional solid element with four nodes and a hybrid formulation. The
hybrid formulation is used for a material with near or fully incompressible behavior whose
response, except in the case of plane stress, cannot be modeled with traditional elements
[33]. It must also be noted that in Abaqus, reduced integration cannot be used for tetrahe-
dral elements and these elements only use full integration.

42

4.3 Finite Element Simulations

Furthermore, the maximum and minimum size of element edges were adjusted to be
adaptive with triangles already existing in the model. The reason for adopting this ap-
proach was to prevent the over-division of the analytical faces. Thus, the total number of
nodes for the definition of the overall geometry remained within a reasonable range, and
the corresponding computational effort would not increase. Figure 4.7 demonstrates this
approach for the basic geometry of the liver, where the location of the seeds overlapped
with the corner of the triangles.

Figure 4.7: Mesh size control of the basic liver geometry

Mesh Sensitivity Analysis

The outer boundary of the liver extracted from the segmentation process can be consid-
ered geometrically complex and not capable of being defined by an analytical surface. This
surface is instead formed by a collection of triangles representing an approximation of the
entire organ. For acceleration of the FE simulations and regarding the large quantity of the
simulations and storage capacity (both memory and hard disk) required for training of the
neural network, it was preferred to lower the number of elements in the model as much as
possible. Consequently, it was essential to investigate the effect of mesh refinement on the
numerical results and, more specifically, on the magnitudes of the displacements given by
the FE simulations.

Although the comparison of the influence of different meshes is usually made between
models with similar boundaries, changing the mesh resolution also led to the change in
the model’s geometrical details. However, the overall dimensions and volume of the liver
remained similar. For the mesh sensitivity study of the liver, two models were discretized
with linear tetrahedral hybrid elements C3D4H, undergoing two loading cases, were con-
sidered. In the first case, as shown in Figure 4.8 a 10 N downward concentrated force was
applied to a node with the lowest Z coordinate, while a force with the same magnitude in
the negative direction of the X-axis was applied to the same node as for the second loading
scenario.

43

Chapter 4. Methodology And Simulations

(a) Fine mesh (b) Coarse mesh

Figure 4.8: Mesh sensitivity study first loading case with a 10 N concentrated force

The deformed shapes of the models under the first and second loading scenarios are
respectively shown in Figure 4.9 and 4.10. As these figures illustrate, the resulting max-
imum displacement magnitude of FE analysis for the fine mesh was slightly smaller than
the mesh with larger elements, with a difference of 0.324 mm. The difference in the sec-
ond case was slightly larger with 0.364 mm. In both cases, however, the results were still
reasonably close.

(a) Fine mesh (b) Coarse mesh

Figure 4.9: Mesh sensitivity study displacement results for the first loading case

(a) Fine mesh (b) Coarse mesh

Figure 4.10: Mesh sensitivity study displacement results for the second loading case

Another set of data that is of great significance is shown in Table 4.2, where mesh
information, computational time, data sizes, and a summary of the resulting displacements

44

4.3 Finite Element Simulations

are presented. As is clear, the usage of a refined mesh substantially increased the total
CPU time and the size of stored data generated by Abaqus. At the same time, deformation
results were generated with highly comparable accuracy. Therefore, using a coarse mesh
for the upcoming simulations could be justified.

Table 4.2: Mesh details, computational time, data size and summary of displacement results, in
mesh sensitivity analysis

Model
Number of
elements

Elements
edge
size (mm)

Number
of nodes

Total CPU
time (sec)

Data size
(MB)

Largest
displacement (mm)
(first case)

Largest
displacement (mm)
(second case)

Fine Mesh 206977 4 mm 38456 1030 1003 3.217 3.289
Coarse Mesh 3571 16 mm 797 6.8 14.1 2.893 3.653

4.3.3 Vascularization and Tumor
The network of blood vessels and bile ducts in the liver are geometrically complex yet play
a crucial role in the response of the organ to external stimulants. Their locations are also of
significant interest during surgical resection and tumor removal. Therefore, apart from the
proof-of-concept objective of this thesis, one of the main goals was also the incorporation
of these tissues in the FEM models.

Since the hepatic tree consisted of many intricate parts, the primary obstacle in the
embedding of the vessels was obtaining a model, computationally affordable and repre-
sentative of the geometry extracted from the segmentation process. Therefore, and as
shown in Figure 4.11, the STL model from performed segmentation was reconstructed
manually to reduce the complexity of the actual model.

Figure 4.11: Approximation of hepatic vessels with simplified geometry

The simplified vessel structure was then first subtracted from the main liver tissue, and
shell element S3 with the thickness of 2 mm was assigned to its faces in contact with the
cavities in the liver. A sphere with a radius of 14mm was also included in the FEM model

45

Chapter 4. Methodology And Simulations

to represent a tumor. The parenchyma, vessels, and tumor were then meshed simultane-
ously to ensure the conformity of their common faces. The material parameters used for
the vessels belonged to the porcine liver and were Ogden-based, with µ = 0.0196 MPa
and α = 10.3043 extracted from the work of Umale et al. [91]. As for the tumor, due
to the lack of reliable data for the mechanical properties of cancerous tissues, the same
parameters as those of the parenchyma were used. However, in general, a tumor is known
to stiffer than its surrounding tissues in the liver. In Figure 4.12, the FE model of the liver
with hepatic structure and a tumor is shown in wireframe display mode.

Figure 4.12: Liver model with hepatic vessels and tumor

Furthermore, the simplified model of the vessels was compared to the actual one by
performing a FE analysis under the same loading, boundary condition, and material prop-
erties. As Table 4.3 indicates, the deformation results, which is the primary quantity of
interest in this thesis, remained close in both vessel structures.

Table 4.3: Comparison of FE simulation of models with segmented and approximated vessel struc-
tures

Model
Number of
elements

Number
of nodes

Simulation
duration (sec)

Data size
(MB)

Maximum
Displacement
(mm)

Segmented 286,378 59,807 714 626 11.97
Approximated 46,226 10,832 52 107 9.99

The complexity of the FE model in terms of the number of nodes reduced significantly
when a reconstructed model of the vessels was used. This further resulted in a consider-
ably lower computational time and storage need, which alleviated the demand for more
powerful hardware. It is also worth mentioning that both simulations were executed in

46

4.3 Finite Element Simulations

parallel processing with four cores on an Intel(R) Core i5-8265U CPU.

4.3.4 Boundary Conditions

The liver in the human body is in contact with several organs, making finding anatom-
ically realistic BCs an arduous task. However, in the literature [6, 12], for the sake of
simplification, two different locations of the liver have been considered as fixed with null
displacement. In this regard, the most common practice has been to fix the nodes in contact
or the proximity of the inferior vena cava. Another area that can also be included in the
BCs is the points lying on the falciform ligament that separates the right and left lobes and
is connected to the diaphragm and abdominal wall. Nonetheless, due to the lack of enough
information in medical images for the segmentation and loss of details in meshing, finding
the exact position of the falciform ligament is very challenging. Hence, as also shown in
Figure 4.13, only the nodes in the proximity of vena cava were restricted in all degrees of
freedom, and the remaining nodes were left free.

Figure 4.13: The boundary conditions of the liver

4.3.5 Loading and Simulations

Loading

Applying appropriate displacement loads to the FE model was the last step before running
the simulations. In the case of this project, and as it was outlined in the introduction,
the objective was to find the corresponding change in the location of the nodes for an
external load applied on the surface of the liver. Therefore, the first step toward load
application was to identify the nodes on the surface and randomly sample them with a

47

Chapter 4. Methodology And Simulations

defined percentage. The inclusion of a percentage of random load recipient nodes was
decided for the following reasons:

• The quantity of the nodes on the surface was large, and full-loading of each required
a massive amount of time, especially if a more refined mesh were to use. Lowering
the simulations’ duration is essential because of the time limit between medical
imaging and surgical intervention.

• The location of the applied loads was not the only concern. The magnitude of the
loads, their increment of application, and orientation were also important for pro-
ducing a comprehensive dataset.

• Using all nodes on the surface could eventuate in saturation of the neural network
model and subsequently compromising its generalization ability for unseen data.

Accordingly, 60 % of the surface nodes, equivalent to 109 nodes, were randomly sampled.
As the Listing 4.1 shows the Python code for load generation, each sampled node was
then applied displacement magnitudes in a range from 10 to and including 40 mm with
the step size of 10 mm. For each magnitude, a total number of three different random
orientations were also considered, and their components along the coordinate axes were
stored in three listsDx,Dy , andDz , so that they could be consumed concurrently in a loop
while performing the simulations. This led to 12 simulations per node, and by multiplying
the number of simulation per node by the number of sampled nodes, the final number of
simulations, 1308, was obtained.

1 i m p o r t numpy as np
i m p o r t math

3 F = np . a r a n g e (s t a r t , s t op , s t e p)
Dx , Dy , Dz , magn i tude = [] , [] , [] , []

5 f o r i i n F :
f o r j i n r a n g e (3) : # Here t h e t o t a l number o f o r i e n t a t i o n s p e r

magn i tude i s d e f i n e d .
7 p h i =random . un i fo rm (0 , 2* math . p i)

t h e t a = random . un i fo rm (0 , 2* math . p i)
9 x = round (i * math . cos (p h i) * math . s i n (t h e t a) , 2)

y = round (i * math . s i n (p h i) * math . s i n (t h e t a) , 2)
11 z = round (i * math . cos (t h e t a) , 2)

Dx . append (x)
13 Dy . append (y)

Dz . append (z)
15 magn i tude . append (i)

Listing 4.1: Code used for generating random displacement loads

Simulations

The simulations were decided to be run on Abaqus/standard, which utilizes an implicit
method for analyzing nonlinear problems. The static general step, which can handle linear,
nonlinear, and quasi-static problems, was also chosen. This step does not account for

48

4.4 Training of the ANN

the inertial effects and disregards time-dependencies in the material effects such as creep
and viscoelasticity, yet it can be used for hyperelastic problems. Moreover, in nonlinear
analyses, it is essential that the FEM solver divides each step into multiple time increments.
Abaqus solver decides the time increment size based on

T =

N∑
i=1

δti, (4.1)

where N is the limitation for maximum number of increments, δti is the increment size
whose range is defined by δtmin < δti < δtmax. In FE analysis of hyperelastic materi-
als, it is recommended to use small time increments to ensure the accuracy of the results
[33]. Therefore, the maximum number of increments, initial, minimum, and maximum
increment size were set to 1000, 0.01, 10-12, and 0.1 respectively, which resulted in 15
increments, automatically chosen by the software.

Finally, the simulations were initiated using 12 cores CPU parallel processing on a
cluster machine equipped with eight E7-8870 CPUs at 2.4GHz with a total number of 80
cores. The simulations could also be divided further to be processed on more than 12 cores.
However, the higher number of cores did not necessarily result in faster computational time
due to the time the software required to perform the jobs’ division and assign them to each
core. On average, the time consumed by the software to process each job was recorded to
be 100 seconds, leading to approximately 36 hours for completing 1308 jobs.

4.3.6 Post Processing
In Abaqus, the results of FE simulations are stored inside output database (ODB) files.
By running a Python script, these files were then called, and the field values requested in
the pre-processing stage, such as nodes labels, nodal coordinates, and displacements, were
extracted for each node and were written inside another file suitable for data analysis. For
this purpose, it was decided to use comma-separated values (CSV) files. Therefore, for
each simulation, there was a corresponding CSV file. Since the tumor and the network of
hepatic vessels had shared nodes with the liver parenchyma model, it was only necessary
to export the nodes’ results on this tissue so that the location of other components could
also be determined. This led to having 8388 instances in each CSV file.

4.4 Training of the ANN

4.4.1 Overview of the Tools
Although commercial software like MATLAB provides the essential toolbox for deep
learning, the preference of this thesis was to maximize the utilization of open-source pack-
ages with a large community of users and developers. This ensured convenient access to
learning materials and the availability of discussion forums. Moreover, in general, train-
ing a deep learning model requires high computational power that made using parallel
processing a requirement to be met. For the aforementioned reasons, it was decided to use

49

Chapter 4. Methodology And Simulations

TensorFlow [92] which an open-source machine learning platform developed by Google
Brain Team, and Keras [93] which is an open-source deep-learning interface running on
top of TensorFlow as back-end library. The main benefit of the above choices for this
work was the ease of implementing other Python libraries for data analysis and visual-
ization, such as Pandas [94] and Seaborn [95] alongside the ML library in one coding
environment.

4.4.2 Preparation of the Dataset
The 1308 CSV files obtained from the post-processing stage were then needed to be con-
catenated to build a unified dataset suitable to use for the preparatory steps before feeding
to the machine learning algorithm. Therefore, they all imported into Jupyter Notebook
[96], which is an open-source web application for live coding in Python, and stored in a
dataframe containing 10,971,505 instances.

In order to provide enough information for the neural network algorithm to find the
relationship inside the data, some other features were derived from the FEM data. The
first three columns representing the X, Y, and Z initial coordinates of the nodes before de-
formation were added by subtracting their displacement values along axes of coordinates
from their coordinates after deformation. Euclidean distances of the nodes from the cen-
troid of the fixed nodes used in boundary condition was also added to the dataset as another
feature. Finally, the Euclidean distances of the nodes from the nodes, which had received
displacement loads in FE simulations, were also extracted as an additional feature. Ta-
ble 4.4 shows the final Pandas DataFrame in the Jupyter Notebook environment. This
DataFrame was built from the FEM information and contained 17 columns, out of which
14 were descriptive features. Since each row in the dataset was seen by the ML algorithm
as an independent instance, it was crucial to provide the algorithm as much information as
possible.

Table 4.4: The Pandas DataFrame prepared from FEM values

Thus, the descriptive features X , used for training the ANN model were:

• X0, Y0, Z0: initial coordinates of the nodes before loading

• Dx, Dy , Dz: the displacement vectors applied as loading

50

4.4 Training of the ANN

• Xloadnode, Yloadnode, Zloadnode: coordinates of the node on which the displacement
vectors were applied

• XBCcentroid, YBCcentroid, ZBCcentroid: coordinates of the fixed nodes centroid

• Euclidean distance between the node and the centroid of the fixed nodes

• Euclidean distance between the node and the node under loading

lastly, the matrix of the output values, expected to be predicted by the ML model, Y , con-
tained three features and was identified as the coordinates of the nodes after deformation
and were introduced to the neural network as X1, Y1, and Z1.

4.4.3 Splitting Strategies
A number of different variations were considered as methods of partitioning the dataset
into training and validation subsets. The self-explanatory term of training set refers to the
data upon which the machine learning model was trained, whose performance in predicting
unseen data could be tested by the validation set. The first method, followed by many au-
thors in the literature [10, 11, 47, 49], was a random selection of the instances in the dataset
and their assignment to the training and validation subsets by specific percentages. In this
approach, two different shares of the data, 75 %/25 % corresponding to 8,288,629 training
versus 2,742,876 test samples and 85 %/15 % resulting in 8,777,204 and 2,194,301 sam-
ples, were considered for building and evaluation of the models by using the open-source
Python library, Scikit Learn 0.21 [97], which is employed for predictive data analysis.

The first strategy generally led to highly accurate predictions in the work of other au-
thors. However, due to the proximity of a node in the model with its adjacent nodes and
similarity in their coordinates, this approach could not be considered an utterly right indi-
cation of the neural network capability in replicating the FEM results. Furthermore, there
was a high likelihood of sampling a minimum of one simulation related to all of load re-
cipient nodes in the training data, which would question the ability of the neural network
model’s prediction for a situation in which the load applied to a node, not present in the
training data. Thus, another different but novel approach was tested in this thesis for the
second splitting strategy. This technique was based on randomly leaving out the entire
simulations of a fraction of the 109 nodes undergone loading to test the model’s perfor-
mance when a new node was loaded. Therefore, similar to the first strategy, in this method,
75 % and 85 % of the 109 loading nodes equal to the simulations of the respectively 82
and 92 nodes, were set aside for training of the model.

The third approach of building the training and validation sets, aimed at assessing the
neural network model’s performance in predicting the response of the liver for new loading
values. In this method, the simulations of the 109 load nodes were present in both training
and validation sets, while only the last three out of 12 (25 %) loading values per load node
were set aside for testing the model’s performance. Therefore, the neural network’s ability
to predict the liver’s deflections corresponding to a displacement load of 40 mm in three
random orientations, applied to all load nodes, could be evaluated.

51

Chapter 4. Methodology And Simulations

4.4.4 Feature Scaling

Feature scaling is a technique utilized to normalize the range of independent features of
data. In other words, all features in a scaled input are transformed to a specific range. Us-
ing this method in a deep neural network for regression increases efficiency and facilitates
faster convergence during training. For achieving this purpose, the Scikit-Learn function
MinMaxScaler() were applied to the training and validation inputs to uniformly scale
them down them between the values of 0 and 1.

4.4.5 Hyperparameter Tuning

The primary and most time-consuming task in obtaining the best result from the neural
network was adjusting hyperparameters. Hyperparameters are all the parameters that are
defined by the user and are not learned during the training. The hyperparameters identified
to have significance in this work, along with their definitions are presented below.

Batch Size

This parameter determines the number of dataset samples propagated through the network
before the network’s internal parameters, such as weights and biases, are updated. For
instance, if the dataset contains 50 samples and the batch size is set to ten, at one time,
only ten samples are passed through the network, and this process repeats until the network
has seen all the samples. In general, a larger batch size results in shorter training duration,
while the demand for a higher computational power and memory increases. On the other
hand, choosing a smaller batch size is advantageous since it generally deters the training
at stopping at local minima by generating more noise in loss calculation.

Number of Epochs

A cycle of passing forward of the entire training samples in the dataset and their backprop-
agation through the network is referred to as an epoch. After one epoch is finished, the
weights and biases are tuned, which will be used in the next epoch to lower the training
loss. This process can continues until no further improvement in the training loss is seen.
Therefore, finding the correct number of epochs is of significant importance in both loss
reduction and prevention of overtraining. The metric used in the determination of the suit-
able number of epochs is Validation Loss, which as long as it decreases, the training can
continue. In case a reduction in the validation loss is not observed after certain epochs,
the network training can be terminated by a mechanism known as Early Stopping. The
optimal region for the number of epochs is shown in Figure 4.14.

52

4.4 Training of the ANN

Validation Loss

Training Loss

Overfitting
Zone

Underfitting
Zone

Epochs

Loss

Early Stopping

Figure 4.14: The optimal region for choosing the number of epochs

Learning Rate

Learning rate defines the amount by which the weights getting updated in the next epoch.
Choosing an appropriate learning rate affects the speed at which the cost function reaches
its minimum. An intuitive approach is in the earlier epochs of training, the learning rate
has a relatively high value, and as the training progresses, this value decays to prevent
overshooting. For achieving this goal, several functions exist that can define a variable
learning rate. In this work, however, the function representing the learning rate at each
epoch was defined as

Γ =
Γ0

1 + decay rate× epoch number
, (4.2)

where Γ0 is the initial learning rate, and based on testing different values, the value of
0.001 was chosen. The corresponding plot of this function is also illustrated in Figure
4.15.

53

Chapter 4. Methodology And Simulations

0 20 40 60 80 100 120
Epochs

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

Le
ar

ni
ng

 R
at

e

Figure 4.15: Decay of learning rate with epochs

Dropout Rate

A robust neural network algorithm tends to overfit the training data quickly. Dropout is a
computationally inexpensive technique that helps a deep network to overcome this prob-
lem and aids in the improvement of generalization. In the course of training, a dropout
rate defines the percentage of a random selection of neurons in a hidden layer to be deac-
tivated, and without being fed to the next layer’s neurons, their outputs are ignored. This
process pushes the network out of its initial configuration and injects noise into the layer’s
output. Thus, in a network with the implementation of dropout, the layers have to co-adapt
to rectify the mistakes of their previous layers, which can result in the training of a more
robust model [98].

In addition to the items introduced above, the following hyperparameters explained in
Chapter 2 were also considered for selecting their optimal values/types.

• Number of hidden layers

• Number of neuron per hidden layer

• Activation function

• Optimizer

• Loss function

For finding the desired hyperparameters, and as the corresponding Python code shown
in Listing 4.2 indicates, GridSearchCV (), which is a function available in the Scikit-
Learn package, was used. This function helps in looping through a provided space of
hyperparameters and fits an estimator on a percentage of the training set. The reason

54

4.4 Training of the ANN

for not including the entire training set was based on the significant volume of the data,
over which the algorithm was required to test multiple scenarios for a combination of
the predefined parameters that demanded high time and computational capacity. For this
reason, one percent of the training set was used for finding the best performance of the
following hyperparameters out of their predefined values:

• Epochs: 30, 60, 120;

• Batch size: 32, 64, 128, 256, 512;

• Neurons: 64, 128, 256, 512, 1024;

• Dropout rate: 0.0, 0.2, 0.4, 0.6;

• Activation function: Sigmoid, ReLU, TanH;

• Optimizer: SGD, RMSprop, Adam.

1 # I m p o r t i n g r e q u i r e d l i b r a r i e s
i m p o r t t e n s o r f l o w as t f

3 i m p o r t k e r a s
from k e r a s . l a y e r s i m p o r t Dense

5 from k e r a s . models i m p o r t S e q u e n t i a l
from t e n s o r f l o w . k e r a s . l a y e r s i m p o r t A c t i v a t i o n

7 from k e r a s . l a y e r s i m p o r t Dropout
from s k l e a r n . m o d e l s e l e c t i o n i m p o r t GridSearchCV

9
Taking a s u b s e t (1%) of t r a i n i n g s e t f o r s e a r c h i n g

11 x g r i d , x n o t u s e , y g r i d , y n o t u s e = t r a i n t e s t s p l i t (xTra in1 , yTra in1 ,
t e s t s i z e = 0 . 9 9 ,

r a n d o m s t a t e =42)
13 # F i n d i n g t h e shape o f i n p u t m a t r i x

i n p u t d i m = x g r i d . shape [1]
15

D e f i n i n g o f a f u n c t i o n f o r b u i l d i n g a deep l e a r n i n g model
17 d e f mode l func (a c t i v a t i o n = ’ r e l u ’ , o p t i m i z e r = ’Adam ’ , d r o p o u t r a t e =0 ,

n e u r o n s =0) :
model = S e q u e n t i a l ()

19 model . add (Dense (neurons , a c t i v a t i o n = a c t i v a t i o n , i n p u t d i m = i n p u t d i m))
model . add (Dropout (d r o p o u t r a t e))

21 model . add (Dense (neurons , a c t i v a t i o n = a c t i v a t i o n))
model . add (Dense (3 , a c t i v a t i o n = ’ l i n e a r ’))

23
compi l e t h e model

25 model . compi l e (o p t i m i z e r = o p t i m i z e r , l o s s = ’ mse ’ , m e t r i c s =[’ acc ’])

27 r e t u r n model

29 # Implement t h e S c i k i t L e a r n r e g r e s s o r i n t e r f a c e t h a t r e q u i r e s model
d e f i n e d as a f u n c t i o n

from k e r a s . w r a p p e r s . s c i k i t l e a r n i m p o r t K e r a s R e g r e s s o r
31 model = K e r a s R e g r e s s o r (b u i l d f n = model func , v e r b o s e =1)

33 # S p e c i f y i n g v a l u e s o f h y p e r p a r a m e t e r s by which t h e p e r f o r m a n c e o f t h e
model w i l l be t e s t e d

55

Chapter 4. Methodology And Simulations

d r o p o u t r a t e = [0 . 0 , 0 . 2 , 0 . 4 , 0 . 6]
35 n e u r o n s = [6 4 , 128 , 256 , 512 , 1024]

b a t c h s i z e = [3 2 , 64 , 128 , 256 , 512]
37 epochs = [3 0 , 60 , 120]

a c t i v a t i o n = [’ s igmoid ’ , ’ r e l u ’ , ’ t a n h ’]
39 o p t i m i z e r = [’SGD ’ , ’RMSprop ’ , ’Adam ’]

41 # Making a d i c t i o n a r y t o d e f i n e t h e g r i d s p a c e c o n t a i n i n g a l l s p e c i f i e d
h y p e r p a r a m a t e r s

t o e x p l o r e
43 p a r a m g r i d = d i c t (a c t i v a t i o n = a c t i v a t i o n , o p t i m i z e r = o p t i m i z e r ,

d r o p o u t r a t e = d r o p o u t r a t e , n e u r o n s = neurons ,
45 b a t c h s i z e = b a t c h s i z e , epochs = epochs)

47 # n j o b s = 3 u s e s 3 CPU c o r e s , c r o s s v a l i d a t i o n = cv
g r i d = GridSearchCV (e s t i m a t o r =model , p a r a m g r i d = p a r a m g r i d , n j o b s =3 , cv

=3)
49

Every p o i n t on t h e d e f i n e d g r i d w i l l be f i t t e d
51 g r i d r e s u l t s = g r i d . f i t (x g r i d , y g r i d)

Listing 4.2: Hyperparameter tuning using GridSearchCV (code adapted from Scikit-Learn
documentation [97]

The tuned values of hyperparameters used in the first and second splitting approaches
are summarized in Table 4.5.

Table 4.5: Tuned values of hyperparameters for the first and second splitting strategies

Splitting strategy
Number of
hidden layer

Number of neurons
per hidden layer

Batch size Dropout Epochs
Activation
function

Optimizer
Loss
function

First 2 (256, 256) 32 0.0, 0.0 120 TanH Adam MSE
Second 2 (128, 128) 64 0.0, 0.0 420 ReLU Adam MAE

It must be noted that, in both strategies, the algorithm returned the highest value of the
specified epochs, and technically the learning process could continue. For this reason, in
the node-based splitting, this number was manually identified from observing an insignif-
icant change in the loss of the network. Furthermore, the dropout rate was reported back
with zero values since overfitting did not occur during training.

The interesting takeaway of this experiment was that the models’ best performance was
not achieved using the same loss function. While training of the first models using MSE
proved efficient, the second model did not respond well to this function and demanded
using other alternatives. This lead to the choice of MAE for the training of this model.

56

Chapter 5
Results and Discussion

The performance of the artificial neural networks designed and configured in this project
can be assessed in different ways. However, the most important assessment is to compare
the predicted nodal coordinates with those of the finite element method to evaluate the
accuracy. The layout illustrated in Figure 5.1 shows the overall logic behind the assessment
of the trained ML models.

...

X
0

...

Y
0

Z
0

D
x

D
y

D
z

X
load node

Y
load node

Z
load node

X
BCs centroid

Y
BCs centroid

Z
BCs centroid

Euc. dist. from fixed
nodes centroid

Euc. dist. from load
recipient node

Evaluation
Metrics

FEM

X
2

Y
2

Z
2

X
1

Y
1

Z
1

Figure 5.1: The layout of the designed ANNs showing the inputs and comparison of the results with
finite element method’s nodal coordinates

For the evaluation metrics shown in this figure, several choices similar to the cost functions
explained in Chapter 2 existed. Nevertheless, the results in this thesis were generally ana-

57

Chapter 5. Results and Discussion

lyzed using absolute error in directional coordinates and Euclidean error. Another metric,
namely relative error, for in-depth investigation of the results was also used.

In this chapter, the results of the trained neural networks are presented and analyzed.
First, the outcome of each case is presented in the form of graphs and plots, and the key
points are discussed and explained. In the last section, the comparative results of the first
and second cases of splitting strategies have been put under scrutiny.

5.1 First Splitting Scenario
The first case investigated in the previous chapter utilized a common approach of splitting
in machine learning. Namely, randomly sampling out of the instances in the main dataset
by a percentage. After adjusting the hyperparameters and running the training for the sub-
cases of 75 and 85 percent for training data, as can be observed from Figure 5.2, the loss
of both training and validation data decreased with a close agreement between the curves.

0 20 40 60 80 100 120

Epochs

0.18
0.21

0.90

Lo
ss

 (M
SE

)

Trained with 75%

Training loss
Validation loss

0 20 40 60 80 100 120

Epochs

0.18
0.21

0.90

Lo
ss

 (M
SE

)

Trained with 85%

Training loss
Validation loss

Figure 5.2: Decay of training and validation loss in the first splitting strategy

The 85%/15% case, however, showed a slightly lower mean squared error (MSE) value
compared to the 75%/25% splitting strategy by the end of training. A value in the loss
function represents the distance between the actual and the predicted location of the nodes.
The fitness between the curves also indicates a comparable performance of the model on
both training and test data.

The scatter plots in Figure 5.3 and 5.4, show the predicted against the actual coor-
dinates of the nodes in X, Y, and Z directions for two splitting approaches, where the
variables with the subscripts of 1 and 2 respectively represent actual and predicted values.

58

5.1 First Splitting Scenario

Figure 5.3: Acutal vs. predicted coordinates of the model trained with 75% of the data in the random
splitting strategy

Figure 5.4: Acutal vs. predicted coordinates of the model trained with 85% of the data in the random
splitting strategy

As is clear from these visualizations, the majority of the scatters have accumulated to
form 45◦ lines. This orientation indicates that both predicted and actual coordinates have
very close values, which is a desirable figure in evaluating ML models. Nevertheless, a
minority of the predicted coordinates is far from the actual values. A close examination of
the plots also reveals that these far-off predictions are more widespread in the first splitting
approach, confirming the outperformance of the model trained with a more significant
portion of the dataset.

The distribution of the number of samples with various magnitudes of Euclidean error
is presented in Figure 5.5. As is apparent, these illustrations show that the quantity of the
nodes with Euclidean errors (EEuc) below 3 mm are predominant within the predictions.
It is essential to note that these sub-figures, belonging to training with two dissimilar per-
centages of data, are not meant to be compared since they are representative of a different
number of samples in the validation datasets (1,645,726 equals 15% and 2,742,876, 25%
of the samples).

59

Chapter 5. Results and Discussion

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EEuc

0

100000

200000

300000

400000

N
um

be
r o

f n
od

es

Trained with 75% of the data

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
EEuc

0

50000

100000

150000

200000

250000

N
um

be
r o

f n
od

es

Trained with 85% of the data

Figure 5.5: Distribution of the samples with respect to the magnitude of their Euclidean errors
(mm) in the first splitting strategy

A more comprehensible illustration of the extent and median of directional and Eu-
clidean errors has been depicted in Figure 5.6 and 5.7.

Figure 5.6: Box plots of the absolute errors in the first splitting strategy (sub-case 75%/25%)

60

5.1 First Splitting Scenario

Figure 5.7: Box plots of the absolute errors in the first splitting strategy (sub-case 85%/15%)

These plots indicate the mean absolute error of the samples and divide the error domains
into four quartiles. The horizontal lines in the middle of the boxes identify the median
of these errors, where the Euclidean errors are lying between 0.4 and 0.5 mm. However,
medians of the values corresponding to the 85%/15% case are slightly lower than the
case trained with 75% of the dataset. A similar trend can also be seen with regard to the
upper extremes of these plots. Nevertheless, a low value around 0.4 mm for the absolute
errors does not invariably convey a sense of high accuracy of the machine learning models.
One particular reason for this is that a significant share of the nodes can have relatively
small displacements, and an error below 1 mm may still be seen as a considerable value.
Therefore, a need for a new metric was felt to be implemented to consider the absolute
errors and account for the displacement magnitude of a particular node. This metric was
decided to be named as Relative error and was defined by

ERelative =
Euclidean error

displacement magnitude
, (5.1)

where the relative error shows the percentage of the Euclidean error relative to the magni-
tude of the displacement magnitude. The box plots in Figure 5.8 show the extent of this
new metric for both sub-cases of the first splitting strategy. As is evident from the plots,
the medians of the ERelatives are close to 15%, indicating that the errors are proportion-
ately smaller than the magnitudes of the displacements. There are some cases, however
than the errors are greater than the displacement. Nevertheless, these instances represent a
small share of the overall predictions.

61

Chapter 5. Results and Discussion

ERelative

0

20

40

60

80

100

Eu
cl

id
ea

n
er

ro
r

di
sp

la
ce

m
en

tm
ag

ni
tu

de
(%

)

Trained with 75% of the data

ERelative

0

20

40

60

80

100

Eu
cl

id
ea

n
er

ro
r

di
sp

la
ce

m
en

tm
ag

ni
tu

de
(%

)

Trained with 85% of the data

Figure 5.8: Box plots of the relative errors in the first splitting strategy

5.2 Second Splitting Scenario

Training a neural network model using a node-based splitting approach was the greatest
challenge of this thesis. Unlike the first approach, the results for the two sub-cases differed
significantly, with substantial differences in terms of accuracy. Figure 5.9, shows the drop
of the training loss with progress in the epochs number.

0 100 200 300 400

Epochs
0.6

0.8

1.0

1.2

1.4

Lo
ss

 (M
AE

)

Trained with 75%

Training loss
Validation loss

0 100 200 300 400

Epochs

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

 (M
AE

)

Trained with 85%

Training loss
Validation loss

Figure 5.9: Decay of training and validation loss in the node-based splitting strategy

This figures explicitly indicate a better learning process of the model trained with 75%
of the dataset, where both training and validation loss closely decreased as the training
continued. In contrast, reduction in the validation loss during training for the 85% of the

62

5.2 Second Splitting Scenario

data showed a poorer trend, and the model failed to react decently to the unseen inputs.

The difference between the learning process of both models became more distinct
when the actual plot against predicted coordinates was made. Figure 5.10 and 5.11, convey
a general overview of the accuracy of these models in prediction.

Figure 5.10: Acutal vs. predicted coordinates of the model trained with 75% of the data in the
node-based splitting strategy

Figure 5.11: Acutal vs. predicted coordinates of the model trained with 85% of the data in the
node-based splitting strategy

As expected from the previous plots in Figure 5.9, the first sub-case outperformed the case
with a lower percentage of data set aside for validation. This was in contrast to the random
splitting approach, where a slightly higher performance was achieved by training with
85% of the data. For this reason, in this subsection, the best model was chosen to proceed
with, and sub-case two was excluded in the further analyses and performance check.

Compared to the first splitting approach and as shown in Figure 5.12, the distribution
of the Euclidean errors in the second approach covers a more considerable extent of the
horizontal axis. This histogram clearly shows that most errors in the prediction of nodal
locations remained below 4 mm. At the same time, this range for the first approach was
more accurate, with an insignificant number of nodes having Euclidean errors above 2
mm.

63

Chapter 5. Results and Discussion

Figure 5.12: Distribution of the samples with respect to the magnitude of their Euclidean errors
(mm) in the node-based splitting strategy

The box plots presented in Figure 5.13 provides a more informative aspect of the av-
erage size and extent of the directional and Euclidean errors.

Figure 5.13: Box plots of the absolute errors in the node-based splitting strategy

As the figure shows, the medians of all directional and Euclidean errors were below 1mm.

64

5.3 Comparison of the Results

Furthermore, the fourth quartile of the Euclidean absolute errors was below ranged from
1.5 mm to slightly above 3 mm, showing that the errors were marginally inside the ac-
ceptable threshold for clinical applications [49]. It must be noted that far-off predictions in
the form of outliers were also present in the data, which for the sake of better illustration,
they were excluded in the box plots.

Finally, in this subsection, relative error pertaining to the model trained with 75% of the
data is presented in Figure 5.14. As can be seen, the extent of this metric for this approach
is comparatively larger than the first strategy. However, the median of the relative errors is
located slightly below 30% as opposed to the first approach with approximately 15%.

ERelative

0

20

40

60

80

100

120

140

Eu
cl

id
ea

n
er

ro
r

di
sp

la
ce

m
en

tm
ag

ni
tu

de
(%

)

Trained with 75% of the data

Figure 5.14: Box plots of the relative errors in the node-based splitting strategy

5.3 Comparison of the Results
The summary of all results and noticeable information is presented in Table 5.1.

Table 5.1: Summary of all results: Euclidean Error (EE); Mean Absolute Error (MAE))

Splitting

method

MAE (mm) Percentage of instances
Maximum

error (mm)
Training

time (sec)

Prediction

time (sec)
X Y Z EE 1 mm EE 3 mm EE 5 mm X Y Z

First (75) 0.308 0.306 0.284 87.184 99.337 99.858 42.47 40.99 30.80 46137 0.268

First (85) 0.283 0.282 0.273 88.945 99.477 99.884 38.96 43.89 30.52 51277 0.331

Second (75) 0.675 0.631 0.654 59.367 91.622 96.165 23.53 26.33 24.53 69734 0.172

65

Chapter 5. Results and Discussion

The values specified with bold font are the best performance among the rest of the data.
In terms of mean absolute error, the first splitting method trained with 85% of the FEM
data outperformed the two other sub-cases. Moreover, this method contained a lower
percentage of instances with significant errors. Nonetheless, the node-based method had
the smallest maximum error sizes and the prediction time. However, this model required
a higher number of epochs for reaching its current accuracy, which resulted in the longest
training time among other models.

66

Chapter 6
Conclusions and Future Work

6.1 Conclusions

The primary motivation behind the conduction of studies and experiments in this thesis
was to investigate the feasibility of replacing finite element analysis of liver tissues with a
trained artificial neural network to proceed towards the requirements necessary in clinical
applications. The results presented in this work showed the applicability of this method
and backed up the expectations of computational efficiency and accuracy compared with
the data generated from FEM. The ANNs model was capable of capturing the deforma-
tions caused by displacement loads applied to random nodes on the liver’s surface and
delivered the outputs in terms of the nodal coordinates, from which the locations of the
internal structures, including tumor and the network of vessels, could be determined.

This work also used a novel approach in the training of the ML models using a random
node-based splitting approach and presented a comparative analysis of the results with the
more conventional random instance-based approach. Although accuracy-wise, the latter
showed superior performance, the node-based method demanded shorter prediction time,
and the outputs were still within the required threshold for accuracy. Regarding the train-
ing time, it is essential to notice that these models were trained on a personal computer
with limited computational resources. However, in real-world applications, the utilization
of graphics processing units and parallel processing is standard and substantially decreases
the training time for both finite element simulations and training of the machine learning
models. Thus, even more improvement in the results can be expected.

6.2 Future Work

Due to the time limitation, this thesis predominantly focused on the proof of concept as-
pect of the project, and some areas can be considered for further research and experiment.

67

Chapter 6. Conclusions and Future Work

First, due to the geometrical difference of the liver, the inclusion of an automatic algo-
rithm for the segmentation and mesh generation process into the general pipeline seemed
to be necessary. This will result in a significant reduction in time and also allows for the
training of the machine learning models to be performed with more than one geometry,
which in turn increases the generalization capability of the models.

Another significant contribution in future work can be using convolutional layers,
known to work well with image processing. This approach is most likely the missing
link between capturing the organ images directly from a camera, computing the deformed
internal structure, and showing a representative mesh of the organ.

Furthermore, the accuracy of the FEM simulations can be elevated by finding better
boundary conditions and accounting for the effects of the neighboring tissues. Provid-
ing finding reliable biomechanical test data, the effect of Glisson’s capsule may also be
included in the FEM simulations.

68

Bibliography

[1] Kristy K Brock, Laura A Dawson, Michael B Sharpe, Douglas J Moseley, and
David A Jaffray. Feasibility of a novel deformable image registration technique to
facilitate classification, targeting, and monitoring of tumor and normal tissue. Inter-
national Journal of Radiation Oncology* Biology* Physics, 64(4):1245–1254, 2006.

[2] Rosalie Plantefève, Igor Peterlik, Nazim Haouchine, and Stéphane Cotin. Patient-
specific biomechanical modeling for guidance during minimally-invasive hepatic
surgery. Annals of biomedical engineering, 44(1):139–153, 2016.

[3] François Faure, Christian Duriez, Hervé Delingette, Jérémie Allard, Benjamin Gilles,
Stéphanie Marchesseau, Hugo Talbot, Hadrien Courtecuisse, Guillaume Bousquet,
Igor Peterlik, et al. Sofa: A multi-model framework for interactive physical simu-
lation. In Soft tissue biomechanical modeling for computer assisted surgery, pages
283–321. Springer, 2012.

[4] Hadrien Courtecuisse, Hoeryong Jung, Jérémie Allard, Christian Duriez, Doo Yong
Lee, and Stéphane Cotin. Gpu-based real-time soft tissue deformation with cutting
and haptic feedback. Progress in biophysics and molecular biology, 103(2-3):159–
168, 2010.

[5] Francisco Chinesta, Adrien Leygue, Felipe Bordeu, Jose Vicente Aguado, Elı́as
Cueto, David González, Iciar Alfaro, Amine Ammar, and Antonio Huerta. Pgd-based
computational vademecum for efficient design, optimization and control. Archives
of Computational Methods in Engineering, 20(1):31–59, 2013.

[6] Oscar J Pellicer-Valero, Marı́a José Rupérez, Sandra Martı́nez-Sanchis, and José D
Martı́n-Guerrero. Real-time biomechanical modeling of the liver using machine
learning models trained on finite element method simulations. Expert Systems with
Applications, 143:113083, 2020.

[7] Andrea Mendizabal, Pablo Márquez-Neila, and Stéphane Cotin. Simulation of
hyperelastic materials in real-time using deep learning. Medical image analysis,
59:101569, 2020.

69

[8] Tom Gulikers. An integrated machine learning and finite element analysis frame-
work, applied to composite substructures including damage. 2018.

[9] Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

[10] Michele Tonutti, Gauthier Gras, and Guang-Zhong Yang. A machine learning ap-
proach for real-time modelling of tissue deformation in image-guided neurosurgery.
Artificial intelligence in medicine, 80:39–47, 2017.

[11] Francisco Martı́nez-Martı́nez, Marı́a J Rupérez-Moreno, Marcelino Martı́nez-Sober,
Juan Antonio Solves-Llorens, Delia Lorente, AJ Serrano-López, Sandra Martı́nez-
Sanchis, C Monserrat, and José David Martı́n-Guerrero. A finite element-based ma-
chine learning approach for modeling the mechanical behavior of the breast tissues
under compression in real-time. Computers in biology and medicine, 90:116–124,
2017.

[12] Stéphanie Marchesseau, Simon Chatelin, and Hervé Delingette. Nonlinear biome-
chanical model of the liver. In Biomechanics of living organs, pages 243–265. Else-
vier, 2017.

[13] UCLThe Johns Hopkins University. Liver: Anatomy and functions. https://
www.hopkinsmedicine.org/health/conditions-and-diseases/
liver-anatomy-and-functions.

[14] Veronica Garbar and Bruce W Newton. Anatomy, abdomen and pelvis, falciform
ligament. In StatPearls [Internet]. StatPearls Publishing, 2019.

[15] Wonhyo Seo and Won-Il Jeong. Hepatic non-parenchymal cells: Master regulators
of alcoholic liver disease? World Journal of Gastroenterology, 22(4):1348, 2016.

[16] Zbigniew Kmiec. Cooperation of liver cells in health and disease: with 18 tables,
volume 161. Springer Science & Business Media, 2001.

[17] Pietro Majno, Gilles Mentha, Christian Toso, Philippe Morel, Heinz O Peitgen, and
Jean HD Fasel. Anatomy of the liver: an outline with three levels of complexity–
a further step towards tailored territorial liver resections. Journal of hepatology,
60(3):654–662, 2014.

[18] American Cancer Society. What is bile duct cancer? https:
//www.cancer.org/cancer/bile-duct-cancer/about/
what-is-bile-duct-cancer.html.

[19] Nazim Haouchine, Jeremie Dequidt, Igor Peterlik, Erwan Kerrien, Marie-Odile
Berger, and Stéphane Cotin. Image-guided simulation of heterogeneous tissue de-
formation for augmented reality during hepatic surgery. In 2013 IEEE international
symposium on mixed and augmented reality (ISMAR), pages 199–208. IEEE, 2013.

[20] Liver blood supply diagram. https://www.
anatomynote.com/human-anatomy/blood-supplement/
liver-blood-supply-diagram. Accessed: 2021-01-20.

70

https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
https://www.hopkinsmedicine.org/health/conditions-and-diseases/liver-anatomy-and-functions
https://www.cancer.org/cancer/bile-duct-cancer/about/what-is-bile-duct-cancer.html
https://www.cancer.org/cancer/bile-duct-cancer/about/what-is-bile-duct-cancer.html
https://www.cancer.org/cancer/bile-duct-cancer/about/what-is-bile-duct-cancer.html
https://www.anatomynote.com/human-anatomy/blood-supplement/liver-blood-supply-diagram
https://www.anatomynote.com/human-anatomy/blood-supplement/liver-blood-supply-diagram
https://www.anatomynote.com/human-anatomy/blood-supplement/liver-blood-supply-diagram

[21] Osamu OHTANI. Three-dimensional organization of the collagen fibrillar frame-
work of the human and rat livers. Archives of histology and cytology, 51(5):473–488,
1988.

[22] Esra Roan. The effect of glisson’s capsule on the superficial elasticity measurements
of the liver. Journal of biomechanical engineering, 132(10), 2010.

[23] Patterns of toxic injury. http://www.toxmsdt.com/topic-6-patho.
html. Accessed: 2021-01-18.

[24] Zhan Gao, Kevin Lister, and Jaydev P Desai. Constitutive modeling of liver tissue:
experiment and theory. Annals of biomedical engineering, 38(2):505–516, 2010.

[25] Stéphanie Marchesseau, Tobias Heimann, Simon Chatelin, Rémy Willinger, and
Hervé Delingette. Fast porous visco-hyperelastic soft tissue model for surgery sim-
ulation: application to liver surgery. Progress in biophysics and molecular biology,
103(2-3):185–196, 2010.

[26] Cora Wex, Susann Arndt, Anke Stoll, Christiane Bruns, and Yuliya Kupriyanova.
Isotropic incompressible hyperelastic models for modelling the mechanical be-
haviour of biological tissues: a review. Biomedical Engineering/Biomedizinische
Technik, 60(6):577–592, 2015.

[27] Cheekong Chui, E Kobayashi, X Chen, T Hisada, and I Sakuma. Combined compres-
sion and elongation experiments and non-linear modelling of liver tissue for surgical
simulation. Medical and Biological Engineering and Computing, 42(6):787–798,
2004.

[28] Minh Tuan Duong and Universitätsprofessor Dr-Ing RUS Mikhail Itskov. Hypere-
lastic modeling and soft-tissue growth integrated with the smoothed finite element
method-SFEM. PhD thesis, Universitätsbibliothek der RWTH Aachen, 2015.

[29] Sahbi Aloui and Mohammed El Yaagoubi. Determining the compression-equivalent
deformation of sbr-based rubber material measured in tensile mode using the finite
element method. Applied Mechanics, 2(1):195–208, 2021.

[30] Holm Altenbach and Andreas Öchsner. Encyclopedia of Continuum Mechanics.
Springer Berlin Heidelberg, 2020.

[31] invariant. https://www.merriam-webster.com/dictionary/
invariant. Accessed: 2021-02-28.

[32] Grégory Chagnon, Marie Rebouah, and Denis Favier. Hyperelastic energy densities
for soft biological tissues: a review. Journal of Elasticity, 120(2):129–160, 2015.

[33] Michael Smith. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes
Simulia Corp, United States, 2009.

[34] Gerhard A Holzapfel et al. Biomechanics of soft tissue. The handbook of materials
behavior models, 3:1049–1063, 2001.

71

http://www.toxmsdt.com/topic-6-patho.html
http://www.toxmsdt.com/topic-6-patho.html
https://www.merriam-webster.com/dictionary/invariant
https://www.merriam-webster.com/dictionary/invariant

[35] Sagar Umale, Caroline Deck, Nicolas Bourdet, Parag Dhumane, Luc Soler, Jacques
Marescaux, and Remy Willinger. Experimental mechanical characterization of ab-
dominal organs: liver, kidney & spleen. Journal of the mechanical behavior of
biomedical materials, 17:22–33, 2013.

[36] Raymond William Ogden. Large deformation isotropic elasticity–on the correlation
of theory and experiment for incompressible rubberlike solids. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 326(1567):565–
584, 1972.

[37] Melvin Mooney. A theory of large elastic deformation. Journal of applied physics,
11(9):582–592, 1940.

[38] Oon H Yeoh. Some forms of the strain energy function for rubber. Rubber Chemistry
and technology, 66(5):754–771, 1993.

[39] Ellen M Arruda and Mary C Boyce. A three-dimensional constitutive model for
the large stretch behavior of rubber elastic materials. Journal of the Mechanics and
Physics of Solids, 41(2):389–412, 1993.

[40] Raymond W Ogden. Non-linear elastic deformations. Courier Corporation, 1997.

[41] Shima Zaeimdar. Mechanical characterization of breast tissue constituents for can-
cer assessment. PhD thesis, Applied Sciences: School of Mechatronic Systems En-
gineering, 2014.

[42] Tie Hu and Jaydev P Desai. Characterization of soft-tissue material properties: large
deformation analysis. In International Symposium on Medical Simulation, pages
28–37. Springer, 2004.

[43] YB Fu, CK Chui, and CL Teo. Liver tissue characterization from uniaxial stress–
strain data using probabilistic and inverse finite element methods. Journal of The
Mechanical Behavior of Biomedical Materials, 20:105–112, 2013.

[44] Alexandre Hostettler, SA Nicolau, Y Rémond, Jacques Marescaux, and Luc Soler.
A real-time predictive simulation of abdominal viscera positions during quiet free
breathing. Progress in biophysics and molecular biology, 103(2-3):169–184, 2010.

[45] Esra Roan and Kumar Vemaganti. The nonlinear material properties of liver tissue
determined from no-slip uniaxial compression experiments. 2007.

[46] HM Yin, LZ Sun, Ge Wang, and Michael W Vannier. Modeling of elastic modulus
evolution of cirrhotic human liver. IEEE Transactions on biomedical engineering,
51(10):1854–1857, 2004.

[47] José D Martı́n-Guerrero, Marı́a J Rupérez-Moreno, Francisco Martinez-Martı́nez,
Delia Lorente-Garrido, Antonio J Serrano-López, Carlos Monserrat, Sandra
Martı́nez-Sanchis, and Marcelino Martı́nez-Sober. Machine learning for modeling
the biomechanical behavior of human soft tissue. In 2016 IEEE 16th International
Conference on Data Mining Workshops (ICDMW), pages 247–253. IEEE, 2016.

72

[48] Costin D Untaroiu and Yuan-Chiao Lu. Material characterization of liver
parenchyma using specimen-specific finite element models. Journal of the mechani-
cal behavior of biomedical materials, 26:11–22, 2013.

[49] Delia Lorente, Francisco Martı́nez-Martı́nez, Marı́a José Rupérez, MA Lago,
Marcelino Martı́nez-Sober, Pablo Escandell-Montero, José Marı́a Martı́nez-
Martı́nez, Sandra Martı́nez-Sanchis, Antonio J Serrano-López, C Monserrat, et al.
A framework for modelling the biomechanical behaviour of the human liver during
breathing in real time using machine learning. Expert Systems with Applications,
71:342–357, 2017.

[50] Kevin Lister, Zhan Gao, and Jaydev P Desai. Development of in vivo constitutive
models for liver: Application to surgical simulation. Annals of biomedical engineer-
ing, 39(3):1060–1073, 2011.

[51] Jung Kim and Mandayam A Srinivasan. Characterization of viscoelastic soft tis-
sue properties from in vivo animal experiments and inverse fe parameter estimation.
In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 599–606. Springer, 2005.

[52] Abbas Samani and Donald Plewes. A method to measure the hyperelastic parameters
of ex vivo breast tissue samples. Physics in Medicine & Biology, 49(18):4395, 2004.

[53] Badar Rashid, Michel Destrade, and Michael D Gilchrist. Mechanical characteriza-
tion of brain tissue in simple shear at dynamic strain rates. Journal of the mechanical
behavior of biomedical materials, 28:71–85, 2013.

[54] Raymond William Ogden. Large deformation isotropic elasticity on the correlation
of theory and experiment for incompressible rubberlike solids. Proceedings of the
Royal Society of London. A. Mathematical and Physical Sciences, 326(1567):565–
584, 1972.

[55] Amy E Kerdok, Mark P Ottensmeyer, and Robert D Howe. Effects of perfusion on
the viscoelastic characteristics of liver. Journal of Biomechanics, 39(12):2221–2231,
2006.

[56] Daniel J O’Shea. Hyperelasticity for soft biological tissues and fibre-reinforced com-
posites using orthotropic fourth-order tensors. 2019.

[57] Chen Jiqing, Du Tianya, Lan Fengchong, and Liu Chaoyang. Progress of research
on injury biomechanical model and tests of human liver in impact. In 2016 Eighth
International Conference on Measuring Technology and Mechatronics Automation
(ICMTMA), pages 479–484. IEEE, 2016.

[58] Xila Liu and Leiming Zhang. Structural theory. Bridge Engineering Handbook. Ed.
Wai-Fah Chen and Lian Duan Boca Raton: CRC Press, 2000.

[59] Implicit vs explicit finite element method (fem): What is the difference? https://
www.simscale.com/blog/2019/01/implicit-vs-explicit-fem.
Accessed: 2021-02-30.

73

https://www.simscale.com/blog/2019/01/implicit-vs-explicit-fem
https://www.simscale.com/blog/2019/01/implicit-vs-explicit-fem

[60] Tom M Mitchell et al. Machine learning. 1997.

[61] Machine learning workflow. https://commandstech.com/ml/. Accessed:
2021-03-18.

[62] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction
to statistical learning, volume 112. Springer, 2013.

[63] What is the difference between classification and re-
gression. https://kindsonthegenius.com/blog/
what-is-the-difference-between-classification-and-\
regression. Accessed: 2021-01-18.

[64] Zoubin Ghahramani. Unsupervised learning. In Summer School on Machine Learn-
ing, pages 72–112. Springer, 2003.

[65] Andreas C Müller, Sarah Guido, et al. Introduction to machine learning with Python:
a guide for data scientists. ” O’Reilly Media, Inc.”, 2016.

[66] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[67] MATLAB. 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts,
2018.

[68] Andreas C Neves, Ignacio González, John Leander, and Raid Karoumi. A new ap-
proach to damage detection in bridges using machine learning. In International Con-
ference on Experimental Vibration Analysis for Civil Engineering Structures, pages
73–84. Springer, 2017.

[69] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[70] Simon Haykin. Neural networks: a comprehensive foundation. Prentice-Hall, Inc.,
2007.

[71] Marvin Minsky and Seymour A Papert. Perceptrons. MIT press, Cambridge, MA.,
1969.

[72] Jinming Zou, Yi Han, and Sung-Sau So. Overview of artificial neural networks. In
Artificial Neural Networks, pages 14–22. Springer, 2008.

[73] Snehashish Chakraverty and Susmita Mall. Artificial neural networks for engineers
and scientists: solving ordinary differential equations. CRC Press, 2017.

[74] Sagar Sharma. Activation functions in neural networks. Towards Data Science, 6,
2017.

[75] Softmax activation function explained. https://towardsdatascience.
com/softmax-activation-function-explained-a7e1bc3ad60.
Accessed: 2021-01-20.

74

https://commandstech.com/ml/
https://kindsonthegenius.com/blog/what-is-the-difference-between-classification-and-\regression
https://kindsonthegenius.com/blog/what-is-the-difference-between-classification-and-\regression
https://kindsonthegenius.com/blog/what-is-the-difference-between-classification-and-\regression
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60

[76] Cost, activation, loss function—— neural network—— deep learn-
ing. what are these? https://medium.com/@zeeshanmulla/
cost-activation-loss-function-neural-network-deep-\
learning-what-are-these-91167825a4de. Accessed: 2021-03-02.

[77] Chapter 7 training neural networks part 1. https://srdas.github.io/
DLBook/GradientDescentTechniques.html. Accessed: 2021-02-10.

[78] Understanding optimizers. https://deeplearningdemystified.com/
article/fdl-4. Accessed: 2021-03-19.

[79] Stochastic gradient descent — clearly explained
!! https://towardsdatascience.com/
stochastic-gradient-descent-clearly-explained-\
53d239905d31. Accessed: 2021-02-15.

[80] Adam — latest trends in deep learning optimiza-
tion. https://towardsdatascience.com/
adam-latest-trends-in-deep-learning-optimization\
-6be9a291375c. Accessed: 2021-02-17.

[81] An overview of gradient descent optimization algorithms. https://ruder.io/
optimizing-gradient-descent/. Accessed: 2021-02-27.

[82] B Scott Kessler, A Sherif El-Gizawy, and Douglas E Smith. Incorporating neural
network material models within finite element analysis for rheological behavior pre-
diction. 2007.

[83] Ken’ichi Morooka, Xian Chen, Ryo Kurazume, Seiichi Uchida, Kenji Hara, Yumi
Iwashita, and Makoto Hashizume. Real-time nonlinear fem with neural network
for simulating soft organ model deformation. In International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention, pages 742–749. Springer,
2008.

[84] Micha Pfeiffer, Carina Riediger, Jürgen Weitz, and Stefanie Speidel. Learning soft
tissue behavior of organs for surgical navigation with convolutional neural networks.
International journal of computer assisted radiology and surgery, 14(7):1147–1155,
2019.

[85] Ct scan vs. mri. https://www.healthline.com/health/
ct-scan-vs-mri. Accessed: 2021-03-09.

[86] Peijun Hu, Fa Wu, Jialin Peng, Yuanyuan Bao, Feng Chen, and Dexing Kong. Auto-
matic abdominal multi-organ segmentation using deep convolutional neural network
and time-implicit level sets. International journal of computer assisted radiology
and surgery, 12(3):399–411, 2017.

[87] Hojin Kim, Jinhong Jung, Jieun Kim, Byungchul Cho, Jungwon Kwak, Jeong Yun
Jang, Sang-wook Lee, June-Goo Lee, and Sang Min Yoon. Abdominal multi-organ
auto-segmentation using 3d-patch-based deep convolutional neural network. Scien-
tific reports, 10(1):1–9, 2020.

75

https://medium.com/@zeeshanmulla/cost-activation-loss-function-neural-network-deep-\learning-what-are-these-91167825a4de
https://medium.com/@zeeshanmulla/cost-activation-loss-function-neural-network-deep-\learning-what-are-these-91167825a4de
https://medium.com/@zeeshanmulla/cost-activation-loss-function-neural-network-deep-\learning-what-are-these-91167825a4de
https://srdas.github.io/DLBook/GradientDescentTechniques.html
https://srdas.github.io/DLBook/GradientDescentTechniques.html
https://deeplearningdemystified.com/article/fdl-4
https://deeplearningdemystified.com/article/fdl-4
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-\53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-\53d239905d31
https://towardsdatascience.com/stochastic-gradient-descent-clearly-explained-\53d239905d31
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization\-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization\-6be9a291375c
https://towardsdatascience.com/adam-latest-trends-in-deep-learning-optimization\-6be9a291375c
https://ruder.io/optimizing-gradient-descent/
https://ruder.io/optimizing-gradient-descent/
https://www.healthline.com/health/ct-scan-vs-mri
https://www.healthline.com/health/ct-scan-vs-mri

[88] Fang Lu, Fa Wu, Peijun Hu, Zhiyi Peng, and Dexing Kong. Automatic 3d liver loca-
tion and segmentation via convolutional neural network and graph cut. International
journal of computer assisted radiology and surgery, 12(2):171–182, 2017.

[89] 3d slicer image computing platform. https://www.slicer.org/. Accessed:
2021-04-07.

[90] Autodesk meshmixer. https://www.meshmixer.com/. Accessed: 2021-04-
07.

[91] S Umale, C Deck, N Bourdet, M Diana, L Soler, and R Willinger. Modeling and
validation of the human liver and kidney models. The International Research Council
on Biomechanics of Injury Conferance, 2013.

[92] Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-
lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin
Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-
scale machine learning on heterogeneous systems, 2015. Software available from
tensorflow.org.

[93] François Chollet et al. Keras. https://keras.io, 2015.

[94] Wes McKinney et al. Data structures for statistical computing in python. In Proceed-
ings of the 9th Python in Science Conference, volume 445, pages 51–56. Austin, TX,
2010.

[95] Michael Waskom and the seaborn development team. mwaskom/seaborn, September
2020.

[96] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger, Matthias
Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout, Syl-
vain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks – a publishing format for reproducible computational workflows. In
F. Loizides and B. Schmidt, editors, Positioning and Power in Academic Publish-
ing: Players, Agents and Agendas, pages 87 – 90. IOS Press, 2016.

[97] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[98] A gentle introduction to dropout for regularizing deep neu-
ral networks. https://machinelearningmastery.com/
dropout-for-regularizing-deep-neural-networks. Accessed:
2021-03-05.

76

https://www.slicer.org/
https://www.meshmixer.com/
https://keras.io
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks

	Summary
	Preface
	Table of Contents
	List of Figures
	List of Tables
	List of Program Codes
	Nomenclature
	Introduction
	Motivation and Background
	Aim and Scope
	Thesis Layout
	Limitations
	Time
	Literature

	Theory
	Liver Anatomy
	Parenchyma
	Blood Vessels and Bile Ducts
	Glisson's Capsule

	Nonlinear Constitutive Theories for Hyperelasticity
	Strain Energy Function
	First Piola-Kirchhoff Stress in Uniaxial Loading

	Hyperelastic Models
	Categorization of Hyperelastic Models
	Mooney-Rivlin Model
	Ogden Model

	Finite Element Analysis
	Nonlinear FEA
	Elements
	Solution Methods

	Machine Learning
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Artificial Neural Networks
	Perceptron Model
	Multi-layer Perceptrons
	Activation Functions
	Cost Functions
	Optimization Algorithms
	Backpropagation
	Generalization and Overfitting

	State-of-the-art Review of the Employment of Machine Learning and Finite Element Analysis in Biomechanics of Soft Tissues
	Liver
	Brain
	Breast

	Methodology And Simulations
	Preparatory Works
	Geometry Acquisition
	Segmentation
	Modification and Generation of Solid Models

	Finite Element Simulations
	Material Model and Parameters
	Meshing
	Vascularization and Tumor
	Boundary Conditions
	Loading and Simulations
	Post Processing

	Training of the ANN
	Overview of the Tools
	Preparation of the Dataset
	Splitting Strategies
	Feature Scaling
	Hyperparameter Tuning

	Results and Discussion
	First Splitting Scenario
	Second Splitting Scenario
	Comparison of the Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

