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Chapter 1

Introduction

Today’s restructured electricity markets illustrate the importance and power of effective market design. Over

the last 25 years, electricity markets have evolved to address complex economic and engineering challenges. Despite

some impediments along the way, the markets have largely succeeded in the goal of providing reliable electricity at

least cost to consumers. This is no simple task. Every second, supply and demand must balance. Thousands of

resource and network constraints must be satisfied. And the market must send the right price signals to motivate

efficient generation and investment in resources over time.

The complexity of the economic problem that the market must solve makes the market design complex. Good

electricity market design has always been important. Design mistakes can cost consumers tens of billions of dollars,

as illustrated by the California electricity crisis of 2000 and 2001 (Borenstein (2002)). Fortunately, because of good

governance and technological progress, market designs have improved over time. Flaws have been identified and

largely addressed.

Electricity market design still needs steady improvement. New challenges are emerging with the ongoing

transformation of the electricity industry. These modern challenges are the huge integration of renewables, demand

response, distributed generation, smart homes, and battery storage. The electricity market design must be able to

handle this transformation.

There are many different electricity market designs around the world mainly due to the diverse economic and

political tastes as well as technical differences. But all market designs must address variety of important issues such

as:

� Transmission network and generation resources restrictions must be considered to impede the failure of equip-

ments.

� Demand and supply uncertainty originating from generators or network failure or intermittent generation

from solar and wind resources.

� Momentarily supply and demand balance.

Cramton (2017) categorizes market designs into two main groups: 1- integrated market and 2- exchange-based

market.
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Based on his description, in the integrated markets, by a central optimization, the system operator finds the

optimal scheduling and dispatch of all generation units. Hence, the system operator has access to the detailed and

private cost and technology information of each unit. Even though the market is centralized, market participants

have enough freedom for their decentralized decisions. This centralization on market clearing and dispatch lets the

system operator to simultaneously reach reliability and economic efficiency objectives. This model is the dominant

market design utilized in most of North America. North America spot markets composed of two day-ahead and

real-time markets. Both of them are utilizing very complex optimization techniques and hardware. In order to give

a clue on the size of the problems, the Texas market -which is run by its independent system operator (ERCOT)- is

given as an example. By using thousands of computer servers, ERCOT is like a smart market. In order to reach to

the highest possible welfare, optimization is done subject to the very sophisticated bid/offer curves and constraints.

In the day-ahead market, participants submit bids and offers not only for energy but also for reserves for each hour of

the next day. The result of the day-ahead clearing is a schedule of generation units with hourly locational marginal

prices. The day-ahead market allows participants to efficiently utilize their physical assets by ahead planning and

hedge against volatile real-time prices. The real-time market is a 5-minute bid-based security-constrained economic

dispatch of generation resources along with 5-minute locational prices.

On the other hand, in exchange-based markets, there is not a centralized optimization like the first case

but generation companies trade at spot markets by cleared prices. Most European markets tend to follow this

model. Despite all efforts put into integration of European markets by Euphemia and XBID projects to integrate

day-ahead and intraday markets respectively, still they can be considered as more fragmented markets than in

the US. This fragmentation particularly originates from national preferences with limited cooperation possibilities

across countries. The most crucial difference between US and Europe markets is on how the transmission network

is modeled. Locational price signals are much weaker in Europe, because usually prices are cleared for larger

zones that are composed of several nodes. By zonal simplification, either within or across countries, transmission

congestion is not efficiently priced. Cramton (2017) suggests that European-wide commitment and dispatch of

resources along with a more efficient congestion pricing could bring considerable benefits, particularly in the case

that rapid integration of renewables put significant pressure on the transmission network.

European spot markets are composed of three sequential markets: day-ahead, intraday and balancing markets.

In the first two markets the simplified zonal structure based on either Available Transmission Capacity (ATC) or

Flow-based approach is utilized. In real-time, a voluntary balancing market which tends to be thinner than the

US real-time markets is run. Since this balancing market is more simplified than the security-constrained economic

dispatch of the US, less reliable real-time prices may appear. Hence, the need for intraday trading increases since

it provides an opportunity to resolve imbalances ahead of real-time.

It seems that the advocates of financial exchanges tried to persuade electricity regulators to model intraday

electricity market as a continuous trading market, similar to stock market. Even though Henriot (2012a) and

Hagemann (2013a) point out that continuous trading is superior to discrete auctions from ease of trade point of

view especially for intermittent generators to balance their forecast errors before delivery time, it has been shown

in many other papers that this method just encourage speed rather than optimal trading. Moreover, continuous

trading is not suitable for electricity markets, because it is based on bilateral trades while Wu and Varaiya (1999)

prove that to relieve congestion of just one congested line at least a 3-lateral trade is required. Therefore, if we are

eager to consider both aspects speed and optimal feasibility of trades, more frequent intraday auctions seem to be

more reasonable.
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With respect to these explanations, I reckon that the European sequential market design needs to be further

investigated to see whether market objectives which are short-term and long-term efficiency have been attained

yet. The aim of this thesis is to find the major deficiencies of the current design and to present the remedial or

alternative market designs. Hence, chapter 2 focuses on the potential of market power exercise in the current design

and the other chapters spotlight the different intraday market designs and the issues coming from each design.

In chapter 2, ”market power under nodal and zonal congestion management techniques”, it has been shown

that one of the challenges that European sequential market design can arise is providing some opportunities to

exercise market power. The main reason of such issue is the different congestion management techniques utilized in

the day-ahead market than in the real-time (balancing) market. In European zonal markets, at the day-ahead stage,

the physical transmission lines are partially neglected; meaning that the intra-zonal lines are neglected and just

cross-border inter-zonal capacities are modeled by Available transmission Capacity (ATC) or flow-based models.

Then at the real-time stage, all physical transmission constraints are captured based on Kirchhoff’s law. In this

paper, the market power potential of nodal model (wherein the same congestion management technique is utilized

at both day-ahead and real-time with full transmission constraints) is compared with ATC and flow-based zonal

models. By a simple 3 nodes (2 zones) illustrative example, we show that despite the common objection to nodal

pricing that has the more potential of market power in zonal models the need for redispatch at real-time (to make

the day-ahead result feasible with respect to physical transmission constraints) creats a place for gaming. Our

results show that in zonal ATC model, market power could be very dependent on the ATC levels and therefore

this model has the highest potential of market power among others. Above all, infinite ATC which is equivalent

to uniform pricing model is the worst case. Our results do not show very different surpluses for strategic player

in various flow-based models than in the nodal model, although the social surplus of nodal model with a great

difference is higher than the other models.

With the large-scale penetration of intermittent resources in the Europe, it becomes more challenging for

market participants to be in balance between day-ahead and real-time markets. Therefore, intraday market has

been designed and now the integration of all European intraday markets is on the agenda. As mentioned before,

the intraday market follows the same congestion management technique as day-ahead. Hence, the imbalances due

to the network simplification still exist. In the current continuous trading market, whenever a matching happens

the shared order book (SOB) calculates the required quantity to be transferred between the source and destination

zone. Then capacity management module (CMM) is responsible to find an optimal routing plan by minimum cost

flow routing problem to select routes with minimum cost satisfying the flow constraints over cross-border interfaces.

But these interfaces are not reflecting the physical transmission network. Consequently, it is still very probable that

the trades occur in the intraday market lead to infeasible flows and therefore imbalances in the real-time market.

In chapter 3, I will show that in addition to its original functionality, intraday market can also be designed such

that gradually and by an iterative procedure feasible flows are achievable at the end of the intraday market. By

customizing the coordinated multilateral trading (CMT) approach to the current European structure, our model is

able to reach to the optimal nodal solution, provided that all circumstances such as bid and offers remain unchanged

and no uncertainty is modeled. By these assumptions and running day-ahead market with different ATCs, we reach

to the conclusion that irrespective of what ATCs are adopted in the day-ahead market, at the end of the intraday

market optimal nodal solution is achievable. This means that no imbalances occur in the real-time market due to

the network violation.

The recent decision of the European commission to integrate intraday markets by continuous trading through

XBID project launches new challenges regarding to the pricing of cross-zonal capacity. Consequently, recently agency
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for the cooperation of energy regulators (ACER) has decided to complement the already established continuous

trading intraday with three pan-European auctions (ACER, (2019)). Once the necessity of having intraday auctions

proved, the next question is the optimal timing of these auctions. Decision on timing of auctions is heavily dependent

on two factors: the share of uncertain production and flexibility of the system to respond to that uncertainty. By

getting closer to the delivery time, the forecast errors and therefore uncertainty is declining while the flexibility of

the power system decreases and the related cost increases. In chapter 4, the optimal timing of one intraday auction

in the presence of wind uncertainty and flexibility costs is examined. For a specific delivery hour, the day-ahead

economic dispatch problem with expected wind power at delivery hour is optimized. Then for 3 intraday places,

optimal re-adjustments are done to correct expected wind deviations from day-ahead market. Likewise, the final

optimal reschedule is done in real-time to cope with the real wind deviations from intraday. By testing several

scenario trees with uncertainty reduction characteristic from day-ahead to real-time, a tight trade-off between these

two factors has been observed. Our findings reveal that even though standard deviation reduction is an important

measure for uncertainty its reduction is not enough to say that always the latest intraday is the best by assuming the

other variables as fixed. Therefore, the standard deviation reduction is mainly reflected in re-adjustment quantities.

This means that the more STD is reducing from day-ahead to real-time, the more re-adjustments are required and

finally, in the sequential market setting that the expected wind power is utilized for clearing stochastic generators,

the multiplicative effect of flexibility cost and re-adjustment quantities determine the best intraday place not the

trade-off between flexibility cost and STD reduction.

In most papers on intraday market design, the continuous trading structure of this market has not paid too

much attention. Limit order book is the tool for continuous trading operation. In chapter 5, I focus on limit

order book modeling and simulation wherein market participants (intermittent and conventional generators, elastic

demands and financial traders) randomly submit market orders or limit orders with random quantities chosen

from their residual capacity or cleared capacity (depending on ask or bid order submission) and marginal cost as

the submitted price. The model is able to manage the order arrivals, their addition to the list (as limit order)

or matching them with the best available opposite order (market order), store the matched trades, update the

quantities of matched orders and lastly accept part (or whole) of matched order to maintain the feasibility of

transmission network with respect to the nodal constraints of the network.

Before going through the other chapters of the thesis, further introduction to European intraday market, the

relevant terms and terminologies and specifically integration of intraday markets with XBID project will be reviewed

in the following subsections of introduction chapter.

1.1 An overview over European intraday markets and the cross-border

integrated intraday market (XBID)

The integration of electricity markets when transaction is allowed among entities from different market areas

is refered to as market coupling. Meeus et al. (2009) and Hobbs et al. (2005) show that market coupling can be

considered as an important instrument for increasing economic efficiency. In a coupled market, demand and supply

orders in one market are no longer confined to the local market. On the contrary, energy transactions can involve

sellers and buyers from different areas, only restricted by the electricity network constraints.

The main benefit of the market coupling approach is to improve the market liquidity along with the less volatile
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electricity prices. It is also advantageous for market participants. They no longer need to acquire transmission

capacity rights to conduct cross-border exchanges, since these cross-border exchanges are the result of the market

coupling mechanism now. They only have to submit a single order in their market (via their corresponding PX)

which will be matched with other competitive orders in the same market or other markets (provided that enough

electricity network capacity is available).

In this regard, after the successful experience of implementing Price Coupling of Regions (PCR) that aims to

integrate all European day-ahead markets, the Cross-border Integrated Intraday Market (XBID) project is high on

the agenda. The XBID project is a joint work by four power exchanges (PXs) - EPEX SPOT, GME, Nord Pool

and OMIE - together with the transmission system operators (TSOs) from eleven countries, to create an integrated

intraday cross-border market. The coupled intraday market enables continuous cross-border trading across all of

Europe.

The benefits of intraday market coupling mentioned in the related official documents (NordPool (2016a)) are

the following:

1. A cross-border trading opportunity within the day across Europe on a consistent platform

2. More efficient utilization of generation resources across Europe, especially variable renewable energy sources

3. A complement to the existing day-ahead market

4. The capability of delivering a wide range of products - 15 minutes, 30 minutes, hourly and block products

and a wide range of order types which provide easier trading possibilities

XBID enables the continuous matching of orders from market participants either in the same market area or

from any other market area provided that cross-zonal capacity is available. It comprises three main modules and

each of them performs part of the algorithm tasks: the Shared Ordered Book (SOB), the Capacity Management

Module (CMM) and the Shipping Module (SM). The combined entity allows multiple power exchanges in different

geographical places to trade cross-border energy products continuously on a centralized platform. In the following

sections the relevant XBID terminology and the different XBID modules will be presented.

1.1.1 Terminology

� Delivery area

Is the smallest element in the transmission network which is managed by one TSO. Market participants

that are physically connected to those TSOs can submit their orders with reference to the delivery area they are

connected by. The information related to the source and destination delivery area of the matched trades is also

recorded. Each delivery area is assigned to a market area.

� Market area

Illustrates an uncongested price area, meaning that the transmission capacity between market areas is subject

to the congestion. Each market area can contain more than one delivery area. There is not any transmission

capacity limitation between delivery areas within the same market area.

� Interconnector

Is a connection between two delivery areas. An interconnector A Ñ B is a directional connection between

source delivery area A and destination delivery area B. Only one interconnector per direction and pair of delivery
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areas is considered. If there is an interconnector in one direction, the interconnector in the opposite direction must

also exist which is called the reverse interconnector.

� Border

Is a connection between two market areas.

� Path

A path A Ñ B Ñ ... Ñ Z is a sequence of distinct delivery areas in the grid where subsequent areas of the

path are connected by interconnectors. The first delivery area of a path is called the source of the path and the

last delivery area of a path is called its destination. A path cannot contain the same delivery area more than once,

meaning that no loop is allowed.

� Available transmission capacity (ATC)

ATC is an interconnector attribute indicating the maximum available amount of power that can be transported

in the direction of the interconnector. The ATC quantity varies per period and changes after each capacity

allocation.

� Flow

A flow is an interconnector attribute indicating the flow of power in the direction of the interconnector that

is used in the routing calculation. The value cannot be negative and must be smaller than or equal to the ATC.

� Capacity information

Everyday the involved TSOs announce the transmission capacity of their own interconnectors or borders for

both direction. They provide two values: Net transfer capacity (NTC) which conveys the physical transfer capacity

of the interconnectors or borders and already allocated capacity (AAC).

� Cost coefficient

Is an interconnector attribute indicating the mathematical cost of a flow. It must be a positive value. This

coefficient is independent of the period and determines over which path power should be routed preferably. It has

no financial bearing and is only a mathematical construct to make a distinction between interconnectors in terms

of routing priority. Interconnectors with a lower cost coefficient will be prioritized over interconnectors with a

higher cost coefficient. The cost coefficient is direction-independent, i.e. it is the same for an interconnector and

its reverse. The default value of a cost coefficient is 1.

� Transport

Is the transfer of power through the grid, determined by a path and a quantity. A cross-border trade may

require the transportation of power on several paths, i.e. a set of transports.

� Network flow

A set of transports starting at the same source and ending at the same destination can be gathered into a

network flow. Network flows are obtained by merging multiple transports where parallel and opposing flows are

combined per interconnector in common, the resulting network flow on this interconnector is the sum of the flows

of the individual transports.
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� Internal netting

When the paths of two transports share the same pair of adjacent areas with flows in opposite directions or in

other words, if a certain interconnector is part of the first transport and its reverse is part of the second transport,

then internal netting is applied on that interconnector and its reverse.

If the path of one transport includes an interconnector that is the reverse of an interconnector in a second

transport, the magnitude of the resulting network flow is the absolute value of the difference of the two individual

transport flows in the direction of the interconnector with the flow value that was larger initially.

1.1.2 The Capacity Management module (CMM)

The Capacity Management Module is a module in which cross border capacity between connected market

areas is managed. The main components of the CMM module are delivery area, market area, interconnector,

border and capacity information. The CMM supports separate (independent) configuration and administration of

each functional entity shown in Figure 1.1. Figure 1.2 illustrates a clearer understanding of these definitions.

 

Figure 1.1. CMM entities (Verseille and Alaimo (2018))

 

Figure 1.2. CMM configuration setting (Verseille and Alaimo (2018))

In order to allow feasible trades between different market areas, enough transmission capacity is needed. The

involved TSOs use the CMM module to allocate available transmission capacity (ATC).

14



With respect to these daily inputs, the ATC for each border is calculated as follows: ATCAÑB � NTCAÑB �

AACAÑB �AACBÑA � intraday allocationsAÑB � intraday allocationsBÑA

ATCBÑA � NTCBÑA �AACBÑA �AACAÑB � intraday allocationsBÑA � intraday allocationsAÑB

Figure 1.3 shows the European CMM topology.

 

Figure 1.3. European CMM topology (Verseille and Alaimo (2018))
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1.1.3 The Shared Order Book (SOB) module

The Shared Order Book module is a consolidated order book that connects the local order books of the involved

delivery areas. This module accommodates the basic functionality for continuous trading, like order entry, order

management and order matching. It also initiates the capacity allocation. The two main components of the limit

order book are products and orders.

1.1.3.1 Products

Products are defined based on their delivery duration. The XBID system supports the following types of

products:

� 15-minutes

� 30-minutes

� 60-minutes

� User-defined hourly block products

Products have a trading unit (MW) and a trading currency (it could be any type of currency, although Euro

will probably be used most of the time). Figure 1.4 illustrates a snapshot of the shared order book which is visible

in the delivery area of SE3 (third delivery area of Sweden). For instance, PH is a 60-minutue product while 4H

shows a 4-hour block product, etc.

 

Figure 1.4. Shared order book (NordPool (2016b))
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1.1.3.2 Orders types

� Limit order

Reflects the maximum willingness to pay (bid) or the minimum willingness to accept (ask) for each unit

(megawatt hour) of the specified quantity of a given product. As Figure 1.4 shows, bids and asks are sorted

respectively in descending and ascending orders. These sortings let the current ”best offers” to be located at the

top of the order book. The highest bid price 54 in Figure 1.4 is less than the lowest ask pric 59, which implies

that the highest willingness to pay among the buyers is not sufficiently high to encourage a seller to trade. The

magnitude of the difference between the prices at the top of the order book is called bid-ask spread. A limit order

can be matched either partly or entirely. If it is not fully matched, it will remain active in the market until it is

matched or cancelled (NordPool (2016b)).

� Market order

Participants submit a market order when they buy or sell a certain quantity at the best available sell or buy

price. Once a market order has arrived, it is matched instantly with the best available price in the order book and

trade occurs.

� Iceberg order

Iceberg order is a large single order that has been divided into smaller limit orders in order to hide the actual

order quantity. By submitting the iceberg order just one part of it is visible until it is matched, then a new part

of the hidden portion of the same size becomes visible. These smaller parts are called peak size. Therefore, for

each iceberg order, a peak size and a total quantity of the order is defined. The size of the visible portion in the

limit order book called the shown quantity is equal to the peak size.

When an iceberg order is matched in a trade, its total quantity is reduced by the trade quantity. If the shown

quantity before the trade was greater than the subtracted amount, the order remains visible in the market with

the remaining shown quantity. If the shown quantity before the trade was less than or equal to the subtracted

amount, a new slice of order quantity is made available in the market at the peak size quantity of the iceberg order.

When the quantity of the last slice has been reduced to zero, the iceberg order is fully executed and removed from

the order book.

Iceberg orders can be submitted with a peak price delta. Each new slice will be entered with a new limit price

which is reduced by the peak price delta for buy orders and increased by the peak price delta for sell orders.

1.1.3.3 Order execution restrictions

Some execution constraints on limit orders have been defined for continuous intraday electricity markets such

as none (NON), immediate or cancel (IOC), fill or kill (FOK) and all or nothing (AON).

� None (NON)

An order submitted with the execution restriction NON is either matched immediately or if it cannot be

matched right away, will be added to the order book. Hence, partial order execution is allowed and they can be

executed against multiple orders to create multiple trades. The default execution restriction is NON if nothing is

entered in the execution restriction field.
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� Immediate or cancel (IOC)

The IOC execution restriction forces the order to be either matched immediately or if it cannot be matched,

deleted without entering into the order book. Partial executions are allowed and IOC orders can be matched

against multiple other orders to create multiple trades. These orders are never displayed in the order book.

� Fill or Kill (FOK)

An order with an FOK execution restriction has to be matched immediately with its full quantity or if it

cannot be matched with its entire quantity, will be deleted without entering into the order book. FOK orders can

be matched against multiple other orders to create multiple trades but partial matching is not allowed. Like IOC,

they are never displayed in the order book.

� All or nothing (AON)

An order with an AON execution restriction has to be exactly matched against one other order with its entire

quantity or enters into the order book. Partial executions are not allowed. This restriction is only used for block

orders and block orders are always AON.

1.1.4 Order book creation

1.1.4.1 Timestamp

For every submitted order into the SOB, a timestamp is registered and all timestamps are sequentially allocated.

1.1.4.2 Price-time-capacity priority criteria

� Price: orders are sorted in the SOB based on their prices such that the best price is first, meaning that buy

prices are sorted descendingly (highest willingness to pay is the best bid price) while sell (ask) prices are in

ascending order (lowest willingness to accept is the best ask price). Orders with the same limit price are

prioritized based on their timestamp such that the oldest is the first.

� Time: orders with the same limit price are prioritized based on their timestamp such that the oldest is the first.

� Capacity: orders submitted in different local trading places can be matched provided that enough capacity is

available.

1.1.4.3 Cross-border trading

Trading between different market areas is called cross-border trading. As mentioned before, borders between

market areas are subject to congestion. Therefore, trades only happen between market areas provided that enough

transmission capacity is available.

The CMM provides ATCs between all connected market areas for SOB. If positive transmission capacity is

available between two delivery areas, the orders entered in one of these delivery areas will be displayed in the local

order book of the other delivery area.
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Local views will be supplemented with cross-border orders if sufficient capacity is available. Conditional to the

available transmission capacity, an order can be shown in several local views with different quantities. If partial

matching is allowed for an order - for example, for orders without an AON execution restriction - then that order

can be displayed in the local views of the other market areas with different quantities provided that available

transmission capacity is smaller than their announced quantity. For orders with full matching restriction (AON

execution restriction) either their full quantity is displayed in SOB or not displayed at all. After matching an order

which was visible in several local views it is eliminated from all of them.

1.1.4.4 The order matching process

Order matching just occurs between a buy (or several ones) and a sell (or several ones) order and on the same

product, meaning that an hourly product cannot ba matched with two 30-minute products. Moreover, for example,

an hourly product for hours 19:00-20:00 cannot be matched with hourly product for hour 20:00-21:00, etc. There

are two different matching processes in the current intraday market algorithm. Regular and batch matching.

1.1.4.4.1 Regular matching

The regular matching rule which follows the price-time-priority principle is that the limit price of the best sell

order (entails the lowest price among all sell orders for the same product) must be lower than or equal to the limit

price of the best buy order (entails the highest price among all buy orders for the same product). Then the quantity

of the matched order is declined by the trade quantity. Orders with the same limit price are prioritized based on

their timestamp so that the oldest is the first.

Whenever an order with a new timestamp is submitted, regular matching is triggered. An order with a new

timestamp can be a newly entered order, a modified order or a reactivated order or a new slice of an iceberg order.

� Price determination

By the entry of an order with a new timestamp, its price is checked with the best price of the order already

existing on the other side (buy checked with sell or reverse). If it satisfies the matching rule, then the two orders

will be matched at the limit price of the order that was already in the order book. For instance, if a buy order

which is newly entered is matched with an existing sell order, the limit price of the sell order is set as the trade

execution price.

� Iceberg orders in regular matching

If a newly entered single order is matched with more than one slice of an iceberg order which was already in

the order book, the price of the existing iceberg order determines the trade price and the timestamp renewal of

the iceberg order during the matching process does not effect the trade execution price. Figure 1.5 shows how a

new single order is matched with an iceberg order and what would be the matching prices and quantities.

In the first top left table of Figure 1.5 three sell orders I, Z and Y are represented, where I is an iceberg order

with total quantity 200 MW, peak size 50 MW, price 15e with peak price delta equals to 1e. This means that

each new slice will be entered with a new limit price which is increased by 1e. Z and Y are regular sell orders

with price and quantity pair (15,25) and (16,25), respectively.

Let’s assume that a regular buy order B with price and quantity pair (99,225) just entered and can be matched
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Figure 1.5. Iceberg matching example

with the existing orders as shown in the right table of Figure 1.5. First, 50 MW of B is matched with the first

slice of best available sell order I with price of 15e. Since the second slice of I will come with price 16e, this has

to be wait until Z and Y are matched because both of them have lower or equal price than second slice and Y has

time priority over second slice of I. Therefore, after matching B with Z and Y, second, third and fourth slices of I

will be matched with B until total quantity of B is matched.

� Unmatchable orders

If a newly entered order does not satisfy the matching rule and is not an IOC or FOK order, it will be added

to the order book, while IOC and FOK orders (if not matched) are instantly deleted.

� Matching against multiple orders

If a newly entered order can be matched, it is not necessarily matched with just a single best order on the

other side of limit order book. After first matching, if the new order still has positive quantity and better price

than the existing order on the other side of limit order book, it can be matched with that at a different transaction

price. Hence, it is possible with multiple transactions against multiple orders that already exist in the order book.

Finally, the new order is deleted if the order quantity becomes zero or if it has the IOC restriction. Otherwise, it

will be added to the limit order book with its remaining quantity.

1.1.4.4.2 Batch matching

Batch matching rounds are referred to as intraday auctions, because the matching criterion has an auction-like

characteristic.

Budish et al. (2014) argue that the design of markets based on a continuous limit order book (which is the

predominant design for financial exchanges) has some weaknesses. Therefore, they suggest frequent batch auctions

as an alternative. These auctions are uniform-price double auctions run frequently but at discrete time intervals.

The advantage of batch auctions over continuous limit order book is getting rid of the speed race and its

related detrimental effects on liquidity and social welfare. In a continuous time market just having a very tiny

speed advantage is enough to win the race while in a discrete time market, even in the most frequent ones, tiny

speed advantages are less valuable. Moreover, by modifying the market design from continuous to discrete time the
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Figure 1.6. Batch matching process flow, Budish et al. (2014)

nature of competition transforms from speed to price. Budish et al. (2015) prove that these two benefits result in

more liquidity and higher social welfare.

Figure 1.6 which represents the batch auction process flow is composed of 3 components: order submission,

auction and reporting.

� Order submission

Order submission in batch auctions is exactly similar to submission in the continuous limit order book. During

the order submission time period, orders can be submitted, modified or removed. If an order is not executed in

the batch auction at time t, it will automatically be transfered to the next auction at time t+1, etc., until it is

either matched or cancelled.

The main important aspect of batch auctions is that they are sealed-bid auctions, meaning that they are not

displayed during the order submission time period to avoid gaming possibilities. But after running the auctions,

orders are shown in aggregate at the reporting stage.

� Auctions

At the end of the order submission time period, all orders are sorted ascendingly for sell and descendingly

for buy and therefore, aggregate supply and demand functions will be computed. As Figure 1.7 demonstrates two

cases may happen:

1. No intersect of supply and demand functions: this case illustrates that the lowest ask price is higher than the

highest bid price. Hence, no trade can occur and all orders transfer to the next batch auction.

2. Supply and demand functions intersect: in step-wise supply and demand functions usually there is a horizontal

intersection with a unique price p� and a maximum quantity q�. For buy orders with prices greater than p�

and sell orders with prices less than p�, their full quantity is cleared at price p�. For orders with price equal

to p�, one of the buy or sell orders is cleared at full quantity while for the other, only a portion of the full

quantity is cleared. Therefore, the portion which is not cleared at the current auction will be automatically

transferred to the next auction with time priority, meaning that orders from earlier auctions are filled first.

Instead of a horizontal intersection, a vertical cross may also happen and this is sometimes referred to as

a knife-edge situation. In contrast to the horizontal case, the quantity is uniquely determined while the

midpoint of the price interval is often set as the clearing price. Since the full portion of crossed buy and sell

orders are cleared, there is no need to transfer orders prorata to the next auction.

21



 

Figure 1.7. Batch auction supply and demand curves and outcome

� Reporting

After clearing every single auction, the following information is announced publicly:

– Price: the market clearing price p� or ’no trade’ outcome

– Quantity : the cleared quantity of q�

– The aggregate supply and demand curves

Moreover, the outcome of each particular order is sent to the submitter of the relevant order through a private

message.

� Duration of the Batch auctions

The most important and open question in designing batch auctions is to determine the duration of the batch

intervals.

1.1.4.5 Trade creation

A trade is a commitment to transfer a certain amount of energy from seller to buyer at the trade price. Moreover,

a trade contains information on 1- seller’s and buyer’s delivery areas between which the energy is transferred, 2-

the paths of transferring energy, 3- the delivery period of the energy.

A trade is created whenever two orders are matched. Even in the case of multiple matching, a trade is always

between exactly two orders. The order matching event comprises price, quantity, value and timestamp attributes.

The price and quantity establishment of a trade is explained in the regular matching and batch matching

sections. The financial value of a trade is calculated as follows:

V pEURq � QpMW q.P pEUR{MWhq.dphq (1.1)

V : The value of the trade in Euros
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Q: Quantity of the power traded in megawatt

P : The matched price of one megawatt hour energy in Euros

d: The duration of the delivery period of the trade in hours

1.1.4.6 Routing

The flow of a certain quantity of power between delivery areas may be routable via different routes. The

selection of the optimal route is a deterministic process following certain rules. This process is called the routing

calculation. The routing calculation is performed in two cases 1- order book recalculation 2- a trade flow calculation.

Whenever a new order is submitted in a local trading system, the SOB checks if sufficient transmission capacity

is available to display the newly arrived order in the other local trading systems of the other market areas. Therefore,

a change in ATC or a change in the order book content result in an order book recalculation and therefore a routing

calculation.

In the case of a cross-border trade creation or cancellation, the SOB calculates the required quantity to be

transferred between the source and destination areas. Then the CMM is responsible to find a routing plan which

results in capacity allocations.

The XBID routing model applies the minimum cost flow routing problem principle to select the optimal routing

plan. The minimum cost flow principle selects the routing plans with minimum cost among all feasible routing plans

satisfying the flow constraints. In order to have a better understanding of how the XBID routing model works, an

overview of the classic linear minimum cost network flow problem (MCNFP) is given.

� Minimum cost network flow problem

Let’s assume that the whole network which is going to be covered by XBID is a directed graph G � pN,Aq

with n nodes (delivery areas based on the XBID definition) and m arcs (interconnectors based on the XBID

definition), where N and A are the sets of delivery areas and interconnectors, respectively. Each interconnector

pi, jq P A, pi, j P Nq has a cost cij that illustrates the unit transferring cost along the interconnector pi, jq.

Each interconnector pi, jq is also associated with a variable xij of flow on the interconnector, a lower bound

Lij on the flow which is the ATCji and an upper bound Uij of the flow which is the ATCij in our case.

As mentioned before, in the case of cross-border trading, when the SOB module calculates the required

quantity to be transferred between source and sink delivery areas, the CMM is responsible to find a routing

plan which results in a capacity allocation to interconnectors. Let’s assume that i P N is a delivery area with

a sell order (which is called a source node) and j P N is a delivery area with buy order (which is called a sink

node) and all other delivery areas are transshipment nodes. The routing plan is responsible to find an optimal

routing for quantity si to be transferred from delivery area i to delivery area j through a number of transfer nodes

(transshipment nodes). Thus, the minimum cost network flow problem can be stated as follows:
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Minimizex
¸

pm,nqPA

cmnxmn (1.2a)

subject to:
¸

k:pi,kqPA

xik �
¸

k:pk,iqPA

xki � si (1.2b)

¸
k:pj,kqPA

xjk �
¸

k:pk,jqPA

xkj � �sj (1.2c)

¸
k:pm,kqPA

xmk �
¸

k:pk,mqPA

xkm � 0 m � i, j P N (1.2d)

ATCnm ¤ xmn ¤ ATCmn pm,nq P A (1.2e)

In the above formulation constraints (1.2a)-(1.2d) are known as the flow conservation equations, while con-

straints of type (1.2e) are known as the flow capacity constraints.

1.1.4.7 Local view

Orders are submitted to the local trading system of each delivery area. Therefore, each local view is calculated

independently. For orders submitted in different delivery areas in the same market area, all local views are the

same because congestion is just enforced between market areas not delivery areas belong to the same market area.

Calculation of the local view in the local trading system, depicted in Figure 1.8, is based on the following

procedure:

1. New order entered in delivery area 1 (DA1) (But it is still not visible by implicit market participant 2 in the

same delivery area)

2. -A- The responsible local trading system A send the order to the SOB

-B- The available capacity is updated by CMM and sent back to SOB. Then SOB calculates the local view of

each DA and matches them if possible.

3. SOB sends the result of a new order entry to it’s relevant local trading system if matching occurs, otherwise

go to step 4

4. SOB sends back the local view of the new order to all local trading systems

5. All local trading systems publish the local view of the new order
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Figure 1.8. SOB. order book update (Verseille and Alaimo (2018))

 

Figure 1.9. SOB. local view update based on ATC
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1.1.4.8 An example of local view update

The CMM provides two ATCs for each border, one for each direction. Then for each pair of market areas the

SOB calculates the maximum volume (in MW) of buy and sell orders of each market area that can be displayed in

the other market area. Figure 1.9 gives an example on how to update local views based on ATCs. The ATC from

DA1 (belongs to market area 1 (MA1)) to DA2 (belongs to market area 2 (MA2)) is 25 and 29 in reverse direction.

The local view of orders in each delivery area for participants in the same delivery area is shown in the first table

of Figure 1.9. To be more clear, participants in DA1 submitted ask orders with price and quantity pairs (25,10)

and (24,50) and bid orders (17,40) and (16,7). These ask and bid orders are entirely visible for all participants in

DA1 while participants in DA2 see these mentioned orders differently. It is the same for orders in DA2.

Buy orders require the flow towards the buy order delivery area. Hence, the whole quantity 40 of bid order

(17,40) in DA1 cannot be shown in DA2 and just 29 out of 40 is displayed in the local view of DA2 and bid order

(16,7) in DA1 is not displayed in DA2 at all. This illustrates that just 29 out of 40+7 DA1 buy bids can be shown

in the DA2 local view and since (17,40) had a more attractive price it is prioritized. Sell orders require that the

flow comes out of the sell order delivery area. Thus, among the sell orders (22,50), (23,10) and (24,35) in DA2, the

most attractive one which is (22,50) is partially shown in DA1, with 29 out of 50.

In general, if the ATC value from MA1 to MA2 (sum of all possible routes) is a positive value X then:

� Buy orders belonging to all delivery areas of MA2 are displayed in the local view of all delivery areas of MA1

such that the maximum volume of all these external buy bids is X.

� Sell orders belong to all delivery areas of MA1 are displayed in the local view of all delivery areas of MA2

such that the maximum volume of all these external sell orders is X.

If the ATC value from MA2 to MA1 (sum of all possible routes) is a positive value Y then:

� All sell orders in all delivery areas of MA2 are visible in all DAs of MA1 such that the maximum volume of

all these external sell orders is Y.

� All buy orders in all DAs of MA1 is visible in all DAs of MA2 such that the maximum volume of all these

external buy orders is Y.

Finally, for cross-border trading after checking available capacity based on the mentioned approach, they will

be ranked according to the price-time-priority principle. Except AON orders which have to be shown with their

full submitted quantity, other orders can be displayed with a fraction of their submitted quantity.
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Market Power Under Nodal and Zonal

Congestion Management Techniques

Somayeh Rahimi Alangi� Endre Bjørndal� Mette Bjørndal�
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Norwegian School of Economics, Bergen, Norway

Abstract

Contrary to the common thought that nodal pricing provides more opportunities for a strategic player to exert

market power than the zonal model, we show that in the latter one because of the need for redispatch or counter-

trading, another extra opportunity for gaming the market is created. Therefore, if proper market power mitigation

approaches are not utilized in both day-ahead and redispatch markets, then zonal pricing may be more susceptible

to market power. Especially in a zonal model which is based on available transfer capacity (ATC), a strategic

player’s profit and social welfare can be very volatile. In general, the more network constraints are incorporated

in the day-ahead market (100% in nodal and almost zero in ATC), the more social welfare is attainable. Hence,

the nodal model is acquitted from the more market power denunciation. This result can be generalized to the case

where market power mitigation rules are just enacted on the day-ahead market. Then both the strategic player, as

well as society, get the highest benefit from the nodal model. However, the zonal pricing outperforms the nodal one

in the case of setting mitigation rules just on the redispatching or counter-trading stage and again nodal model is

the prime suspect.

Keywords: Market design, congestion management, available transfer capacity (ATC), flow-based market cou-

pling (FBMC), market power, flexibility cost of redispatch or counter-trading
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2.1 Introduction

In designing efficient electricity markets, dealing with congestion is always a controversial issue. For many

years, there was an objection to nodal pricing, that it has the more potential of exercising market power, and the

argument was that due to more price areas and less producers, and therefore less competition in each node than

zonal pricing, a strategic player finds more opportunities to exercise market power. Therefore, the first suggested

solution is to aggregate some nodes into larger zones and hence create more competition across a wider area by

limiting the power of the strategic player.

In this paper, we are examining this claim through an illustrative example. Specifically, we compare the

market power potential of nodal versus zonal pricing with Available Transfer Capacity (ATC) and Flow-Based

Market Coupling (FBMC), which are the dominant methods to allocate capacity to cross-border interconnections

in Europe.

Electricity exchange is subject to the constraints of the transmission network. Congestion occurs when the

transmission lines do not hold enough capacity to fulfill the market requirements. Therefore, congestion management

(CM) techniques are deployed to dispatch an optimal power resulting from the market such that network constraints

are not violated. Congestion management techniques can be categorized into five groups (Vries and Hakvoort

(2002)):

1. Explicit auctions

2. Implicit auctions

3. Market splitting

4. Redispatching

5. Counter-trading

Vries and Hakvoort (2002) drew a comprehensive economic comparison among these methods based on their

theoretical economic efficiency. They concluded that all these methods potentially lead to economic efficiency in the

short term. However, they may result in different distribution of costs, implementation costs, openness to strategic

behavior as well as the long-term incentives for generators and transmission system operators.

A state-of-the-art review of CM techniques is done by Pillay et al. (2015). They classify CM techniques into

avoiding or relieving congestion methods. Besides discussions on CM methods, various optimization techniques for

solving CM as well as their adaption in different countries are mentioned.

In general, various CM techniques can be distinguished by the level of integrating energy and transmission. On

the one side, there is an explicit auction, with a 100% separation of energy and transmission, in which the capacity

on the international interconnections (in Europe) has been auctioned in auctions separated from energy. Therefore,

the prices of these two commodities are not coordinated.

On the other side, nodal pricing, which is the perfect realization of an implicit auction, fully merges energy and

transmission, such that electricity prices cannot be decomposed into energy and transmission prices. Zonal pricing,

which is implemented in the whole of Europe, can be considered as an intermediate implicit auction. The first stage

of zonal pricing, which is the energy market, is operated by several power exchanges (PXs), each of them control

some pre-defined bidding areas or price zones. These price zones are linked by ”transfer capacities (TCs)”1between
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zones which are provided by transmission system operators (TSOs). Then in the second stage, depending on the

market design (which can be market splitting, redispatching or counter-trading), TSOs are responsible of securely

dispatching the obligations from their related energy market such that intra-zonal congestion never happens.

Though implementing the stages of zonal pricing seems straightforward, there still exists a lot of details about

the collaboration among PXs as well as TSOs. The collaboration among PXs was dealt with by implementing

market coupling in Europe. The initiative of price coupling of European PXs started in 2009. The aim of Price

Coupling of Regions (PCR) is to develop a single price coupling solution to increase liquidity, efficiency and social

welfare all through Europe EPEX-SPOT (2017). But there is still a lack of the same consensus among TSOs about

how to share information with each other as well as the algorithm to be utilized.

Oggioni and Smeers (2012), Oggioni et al. (2012), and Oggioni and Smeers (2013) analyzed different versions

of market coupling with respect to various degrees of coordination among TSOs. They assume that TSOs have to

do counter-trading in order to reach a viable intra-zonal network solution on their control area. Therefore, they

concluded that the high level of their collaboration and, more significantly, the right ATC adoption, could bring

about as efficient results as the benchmark nodal pricing case. Kunz (2013) pursued the same approach as Oggioni

and Smeers (2013) for the study region of Austria, Czech Republic, Germany, Poland and Slovakia. They wrapped

up with the conclusion that the higher the coordination and sharing of network information, the more efficient is

the market coupling.

Regardless of how zonal pricing is designed, the efficiency of it compared to nodal pricing has been debated in

several papers. For instance, in Bjørndal (2000), Bjørndal and Jørnsten (2001), Bjørndal et al. (2003), Bjørndal and

Jörnsten (2007), the authors argue that the problem of choosing the right number and definition of zones, makes

the zonal approach a thoroughly challenging congestion management method. And it can make a great impact on

the amount and distribution of surpluses among market participants and network operators.

On the other hand, zonal pricing has always been advocated by some policy makers, due to its less poten-

tial of exercising market power, with the reasoning that joining several nodes together culminate in having more

competitors in each zone. Therefore, the power of each firm can be suppressed compare to the nodal pricing

approach.

However, Hogan (1999) and more specifically Harvey and Hogan (2000) refute this idea by giving several

illustrative examples and show that zonal pricing makes poorer incentives for investment, and socializing the higher

costs to consumers, requires more administrative rules and more payments to generators for reducing production

in the case of intra-zonal congestion.

Nevertheless, so far nodal pricing has mainly been objected by European politicians. For instance, the Ger-

man government believes that nodal pricing could have destructive effects on market competition and liquidity

(Goldthau (2016)) by saying that: ”Smaller bidding areas tend to have an adverse effect on the market structure

and competition on the wholesale and retail markets, because the probability of profitable exhibition of market

power by incumbent market players increases.”

1Based on the definition in Van den Bergh et al. (2016), ”the Available Transfer Capacity (ATC) is calculated as the maximum com-
mercial exchange between two market areas, compatible with the physical transmission constraints and operational security standards.
In order to calculate the ATC, TSOs estimate the parallel flows that will result from the market outcome. The ATC calculation method
is based on heuristic rules and day-2 estimations of the market outcome (i.e., the so-called Base case). The ATC value is determined for
each cross-border link (interface) and can depend on the flow direction of the line due to the assumptions made in the ATC parameter
calculation.”
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In order to test this assertion mentioned by many European politicians about less market power of zonal pricing,

several papers were modeling redispatch or counter-trading to assess strategic behavior of generators. However,

detecting strategic behavior is very difficult to prove, especially with hydro power plants, since quantifying the

water value independent of energy value is practically impossible.

Holmberg et al. (2015), which is based on the notion of Nash equilibrium, compared three congestion manage-

ment techniques - nodal, zonal (uniform pricing) and discriminatory (pay-as-bid)- from a game-theoretical point

of view. With the assumption of perfect competition, inelastic demand and the full participation of all agents in

the real-time market, they came to the conclusion that the three mentioned market designs are equally socially

efficient. But in zonal pricing with redispatch, the payments from TSOs to producers is higher than nodal pricing

and pay-as-bid.

There could be several reasons that make analyzing strategic behavior a very challenging task. For example,

the geographical placement on the network could make an opportunity for some players to earn more profit.

Furthermore, the bidding strategy analysis of a generator that has several assets on different nodes or zones is

certainly different from a single one. The last but not the least is the marginal cost of a generator in its production

area. Hers et al. (2009) consider four different varieties of strategic behavior in a redispatch model; locating in

constrained-on or -off regions combined with price or volume bidding. Then, they test the results on the real Dutch

network by the COMPETES model. They conclude that by implementing redispatch, more firms will be allowed

to enter into the market in which none of them would come now because of the current situation of the market.

Dijk and Willems (2011) compare nodal pricing with counter-trading with respect to their long-term effects

on entry and investment decisions, by drawing the final inference that counter-trading is an inefficient congestion

management tool as well as an unproductive instrument to incentivize competition in the electricity market.

In our paper, we examine which of the three congestion management mechanisms, i.e. ’nodal pricing’, ’zonal

pricing with Available Transfer Capacity (ATC)’, and ’zonal pricing with Flow-Based Market Coupling (FBMC)’,

shows the most potential for exercising market power.

As mentioned before, until 2015 zonal pricing with ATC was mainly deployed in Europe. Afterwards, zonal

pricing with FBMC has been used for cross-border capacity allocation in the Central western European (CWE) day-

ahead markets Van den Bergh et al. (2016). Unlike the ATC approach, FBMC considers the physical transmission

constraints at the energy market clearing stage but with a different approach from the nodal pricing model.

This paper is different from previous papers in that it considers the market power under various congestion

management techniques with respect to the following main aspects:

1. The arbitrage possibility between the day-ahead and real-time markets is given to the strategic generator to

see if it is more profitable to behave strategically in both markets than in a one-stage nodal pricing benchmark

case.

2. Zonal pricing with FBMC has not been compared by preceding congestion management methods from a

market power point of view.

3. Whether and how different ATC quantities for cross-border lines affect the strategic behavior of generators.

Do they result in higher or lower surpluses than the nodal benchmark case?

4. Owing to the hardship of resetting plans close to the real-time delivery, especially for inflexible generators,
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the flexibility cost of production has been considered in the real-time market. It is similar to Morales et al.

(2014) and Bjorndal et al. (2016) approach in respect of flexibility costs. It means that generators are capable

of submitting different offers in day-ahead and real-time.

The rest of the paper is organized as follows. In Section 2.2, the mathematical models of nodal pricing, zonal

pricing with ATC and zonal pricing with FBMC are described. Market power modeling is also represented in the

same section. These models are tested on a numerical example explained in Section 2.3. The strategic behavior of

two different generators, which are located at different nodes of the network, is studied when they play strategically

just in one of the day-ahead or real-time markets or in both. Finally, conclusions are given in Section 2.4.

2.2 Model

2.2.1 Modeling assumptions

The main assumptions of the model are listed below:

1. The model represents the strategic decision of an individual strategic generator in different market designs-

nodal, zonal with ATC and zonal with FBMC. All the other generators and demands are price takers, therefore,

they offer their marginal cost and benefit to the market.

2. For simplicity, a single-period market has been considered but it can be extended to the multi-period case.

In studying market power, especially in hydro-dominated electrical systems, inter-temporal decisions could

make great differences in the profit of strategic player.

3. DC representation of the network that includes first and second Kirchhoff laws has been considered.

4. Following to EUPHEMIA algorithm (PCR (2013)), linear offer and bid curves are respectively considered for

generators and consumers.

5. Any kind of uncertainties are not taken into account.

6. Nodal pricing is just one stage model because the whole physical network is modeled in day-ahead market.

However, in zonal pricing, due to overlooking physical network in day-ahead, to avoid congestion, intra-zonal

network constraints are considered in real-time market.

2.2.2 Notation

We adopted almost the same mathematical formulation as Bjorndal et al. (2016). The model entails I partic-

ipants either generators with positive or consumers with negative values. For each i P I, there exists solutions xi

and Xi for day-ahead and real-time markets respectively.

C1
i represents the set of feasible solutions corresponding to participant i for day-ahead market, whereas C2

i

proportionates to the real-time market feasible solutions which is dependent on the decision xi from the day-

ahead market. Therefore, a feasible solution to both day-ahead and redispatch markets must satisfy the following

constraints:
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xi P C
1
i i P I (2.1)

Xi P C
2
i pxiq i P I (2.2)

Each generator and load i locates in a specific node n P N as well as a pre-determined zone z P Z. Nodes

of the network are connected by a set of physical transmission lines L. Corresponds to each line l, there is a flow

f � pflqlPL. If ν0 and ν1 show the starting and ending nodes of line l and fl ¡ 0, then it means that power is

flowing from ν0 to ν1.

For every adjacent zones which are connected by physical connections l, there exists an inter-zonal interface

e P E which conveys commercial flows between zones. Likewise the definition of fl, corresponds to each inter-zonal

interface e, there is a flow pfeqePE . If ω0 and ω1 show the starting and ending zones of interface e and fe ¡ 0, then

it means that commercial flow is flowing from ω0 to ω1.

U1 and U2 represents network constraints in the day-ahead stage of nodal and zonal models respectively. More

detailed explanation about network constraints are given in Sections 2.2.3, 2.2.4 and 2.2.5.

2.2.3 Nodal pricing

In nodal pricing method, market clearing prices are calculated for locations on the network called nodes.

The nodal price composed of the marginal cost of energy plus the marginal cost of transmission which composed

of loss and congestion costs. As mentioned before, these two elements can not be decomposed into two energy

and transmission prices due to the implicit approach behind their calculation. The majority of US markets trade

electricity on a nodal basis with very efficient market result experience (Neuhoff and Boyd (2011)). The market

operator clears the market by maximizing the social welfare subject to the physical network constraints in a lossless

DC approximation of the network flows. As mentioned in 2.2, consumers can be considered as generators with

negative values. Therefore, their benefit curve with negative values is likewise a cost curve. Hence, the objective

function can just be outlined by costs. By virtue of full network consideration in day-ahead market, just day-ahead

costs are included in the objective function of nodal model.

Each offer i P I is associated with a linear day-ahead marginal cost and benefit function ai � bixi with non-

negative parameters ai and bi. To keep conciseness, we assume that inverse demand curve take negative values

xi   0. Thus, the corresponding curve ai � bixi has a downward slope. Accordingly, the total day-ahead cost

of participant i, which is the area under marginal cost or benefit curve, is a quadratic cost or benefit function

cipxiq � aixi �
1
2bix

2
i .

To sum up, the mathematical formulation for nodal pricing is as follows:
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Minimizex,f
¸
iPI

cipxiq (2.3)

subject to: xi P C
1
i , i P I (2.4)

τnpfq �
¸
iPn

xi � 0, n P N (2.5)

τnpfq �
¸

l:ν1plq�n

fl �
¸

l:ν0plq�n

fl, n P N (2.6)

f P U1 (2.7)

τnpfq represents the net inflow of power in node n from the network. Moreover, U1 denotes all physical network

constraints related to a DC load flow model. Consequently, (2.7) is equivalent to the following constraints:

fl � Yl.pΘν1plq �Θν0plqq l P L (2.8)

� capl ¤ fl ¤ capl l P L (2.9)

Θ1 � 0 (2.10)

(2.8) shows that flow is dependent on line characteristic parameter Yl which is the susceptance of line l as well

as phase angel Θ of related starting and ending nodes. In constraint (2.9), capl shows the thermal capacity of line

l. Finally, By (2.10), the first node is considered as a reference node.

2.2.4 Zonal pricing with ATC

All European electricity markets except Scandinavia and Italy, were organized nationally such that each country

concentrates on self-sufficiency of its electricity supply. Therefore, zonal approach was suggested by ENTSO as an

electricity trading target model, to couple all these interconnected markets which are called bidding zones. So as to

accomplish a global social welfare goal throughout the whole continent, the interconnection capacity among bidding

zones should be considered in the trading process. But the physical transmission network creates limitations on

international trade. Thus, how the available capacity for trading is calculated could have profound impact on

market result and efficiency. Thus far, excluding central western European countries, the ATC mechanism is the

dominant method to allocate capacity to cross-border interconnections.

ATC is related to the simplified zonal view of the transmission system in the day-ahead market and means

that the Kirchhoff laws that describe the physical power flow are partially ignored in day-ahead market. The ATC

calculation method is discussed in several papers; for example see Rious et al. (2008). However, the calculation

of the ATC is vague and not published or informed by TSOs. To gain a maximal social welfare in the whole

Europe, Jensen et al. (2017) and Aravena and Papavasiliou (2017) mentioned that ATCs should not be determined

exogenously, rather should be optimized endogenously synchronized with day-ahead and real-time markets. The

ATC calculation discussion is beyond the scope of our paper, but something that distinguishes this paper from

former ones is how different ATC quantities for a specific inter-zonal interface e P E could encourage or discourage
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market power. These inter-zonal interfaces are different from physical connections l.

The day-ahead market is a pool composed of all fully coordinated power exchanges whom receives offers and bids

of their related zones as well as the interface ATCs from their corresponding TSOs. The mathematical formulation

for day-ahead market is as follows:

Minimizex,f
¸
iPI

cipxiq (2.11)

subject to: xi P C
1
i , i P I (2.12)

τzpfq �
¸
iPz

xi � 0, z P Z (2.13)

τzpfq �
¸

e:ω1peq�z

fe �
¸

e:ω0peq�z

fe, z P Z (2.14)

f P U2 (2.15)

τzpfq declares the net inflow of power in zone z from all inter-zonal interfaces e P E. Unlike nodal day-ahead

market, just commercial flows which do not reflect physical network constraints are modeled in zonal day-ahead

market. U2 only shows the inter-zonal trade capacities and is equivalent to the following constraints:

�ATCe ¤ fe ¤ ATCe e P E (2.16)

Due to disregarding real characteristics of electrical network in day-ahead market, it is very probable that day-

ahead solution does not satisfy the physical network constraints in the real-time stage. Therefore, a remedial action

is invoked by TSOs to release congestion after clearing of the energy market. Based on the design and settlement

methods of real-time market, several corrective actions have been explored and argued in many papers. For example,

van Blijswijk and de Vries (2012) evaluates which of the three corrective mechanisms ’system redispatch’, ’market

splitting’ and ’market redispatch’ is mostly congruent with Dutch electricity transmission grid. Whereas, Oggioni

and Smeers (2013) and Dijk and Willems (2011) focused on counter-trading owing to lack of the documentation of

the other methods.

The aim of redispatching is finding optimal deviations from day-ahead scheduling. Hence, two re-adjustment

actions should be taken to balance supply and demand in nodes connected to congested lines:

� Down-regulation: the generators in the constrained-off area (area with excess of energy) have to decrease their

production by buying-back the deviated quantities from day-ahead market or consumers have to increase their

consumption.

� Up-regulation: as opposed to down-regulation, the generators in the constrained-on area (area with deficit of

energy) have to increase their production or consumers decrease their consumption by selling the day-ahead

market contracted electricity they decided not to use.

But changing the plan of the system ( which was arranged in day-ahead ) in a time-interval close to the delivery

34



hour, requires flexible sources. This flexibility can originate from various sources like energy storage, demand-side

management, etc. Another essential source of flexibility is conventional generators’ ability to change their output to

follow varying load. The ability of changing production in a short interval depends on technological aspects such as

minimum up/down times, ramp rates, minimum generation levels and start-up costs (Palchak and Denholm (2014))

whereby some additional costs will be enforced to generators as well as the system.

Hentschel et al. (2016) evaluate the monetary value of conventional power plant flexibility options through

developing a valuation tool which relates a change in technical parameters to an economic effect and revenue.

Therefore, generators and consumers can have a different cost and benefit curve (offer/bid curve) in real-time

ascribed to flexibility costs. If in real-time the generators are asked to increase their production beyond the day-

ahead level, then flexibility cost means that the cost of generation is higher than the day-ahead marginal cost. If

they reduce production from the day-ahead level, then they have to repurchase this deviated quantity which is less

valuable than their day-ahead marginal cost. On the opposite side, if the consumers increase their consumption in

real-time, their bid will be lower than in day-ahead, because it is not as valuable as if it was planned in day-ahead

and if they reduce their consumption, they are eager to be compensated by asking higher than their day-ahead

willingness to pay.

The relation between day-ahead and real-time cost and benefit functions is shown in Figure 2.1. The left-

handside figure represents an offer (supply) curve for a generator, while the bid (demand) curve of a consumer is

illustrated on the right-handside. Moreover, the real-time flexibility costs in the case of deviation from day-ahead

market is shown in both figures.

Flexibility costs results in different cost and benefit function parameters in redispatch stage. If i P I is

a generator, then parameters aui and bui are used for up-regulation and adi and bdi for down-regulation where

adi ¤ ai ¤ aui and min
 
bui , b

d
i u ¥ bi. For the demand-side, flexibility parameters look similar.

Gen.

Price

bi

ai

xi

ai + bixi

Xi

Xi
d

bi
d

ai − ai
d

Xi

Xi
u

bi
u

ai
u − ai

(a) Supply function for a specific generator

Con.

Price

bi

ai

− xi

ai + bixi

− Xi

Xi
u

bi
u

ai
u − ai

− Xi

Xi
d

bi
d

ai − ai
d

(b) Demand function for a specific consumer

Figure 2.1. Supply and demand functions for a specific generator and consumer offers/bids to the day-ahead
market plus the flexibility costs incurred in real-time
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With respect to Figure 2.1, redispatch model is as follows:

MinimizeXu
i ,X

d
i ,F

¸
iPI

cipXiq � rcipxi, Xiq (2.17)

subject to: Xi P C
2
i pxiq, i P I (2.18)

τnpF q �
¸
iPn

xi �
¸
iPn

Xu
i �

¸
iPn

Xd
i � 0, n P N (2.19)

τnpF q �
¸

l:ν1plq�n

fl �
¸

l:ν0plq�n

fl, n P N (2.20)

F P U1 (2.21)

In (2.17), rcipxi, Xiq illustrates the additional cost caused by flexibility in the redispatch market. The flexibility

cost is dependent on the day-ahead quantity xi as well as the revised quantity Xi after running the redispatch and

is constructed as follows:

rcipxi, Xiq � paui � aiqX
u
i � 0.5pbui � biqpX

u
i q

2 � pai � adi qX
d
i � 0.5pbdi � biqpX

d
i q

2 (2.22)

Where Xu
i � maxtXi � xi, 0u and Xd

i � maxtxi � Xi, 0u . Further examples and discussions are provided in

Bjorndal et al. (2016).

Definition of τnpF q and U1 are the same as nodal model mentioned in Section 2.2.3. However, F illustrates

the physical flow in redispatch model. It should be noticed that in balancing constraint (2.19), xi is fixed from

day-ahead market result. Hence, just readjustments Xu
i and Xd

i will be optimized such that all physical network

flows are satisfied.

2.2.5 Zonal pricing with FBMC

Several years experience of running European electricity market with the conventional ATC mechanism re-

flects the necessity of incorporating the physical properties of the power network into the market/clearing stage.

So, including network properties into the market is the basic idea behind flow-based market coupling (FBMC),

distinguishing it from ATC model.

Similar to the ATC model, FBMC entails three main steps: 1- pre-market coupling which provides required

parameters by respected TSOs, 2- market coupling which is clearing day-ahead market, 3- post-market coupling

by counter-trading. The detailed explanation of each step is as follows: At the pre-market coupling step, which is

called the preparatory phase and starts D-2 before delivery time, TSOs are responsible of publishing all required

parameters of FBMC:

� Generation shift keys (GSK) and zonal power transfer distribution (PTDF) factors: GSKs transform the nodal

PTDFs into zonal PTDFs. The nodal PTDFs describe how one unit injection into a given node flows on a

given line in the network. While the FBMC requires that PTDFs describe the relation between a zone and a

line, means the net injections into a zone determines the flow on a particular line. Therefore, the node-to-line
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PTDFs should be aggregated into the equivalent zone-to-line PTDFs. However, the result of the aggregation

is very dependent on how the change in a zone’s net injections is divided on the nodes within that zone.

The key note here is that prior to the market clearing, this is not known. Hence, specific methods should be

developed to estimate how the change in a zone’s net injection will influence the different nodes within the

zone. Accordingly, several GSK strategies have been developed yet. Dierstein (2017) classified GSK strategies

in three different approaches:

– Flat-partitioning: allocates the same GSK factor to each node within the same zone. In this case,

GSKn �
1
N , in which N is the number of nodes in the same zone as n located.

– Residual generation capacity: This method depends on installed generation capacity in each node and is

derived by the ratio of nodal residual generation capacity over the same related zonal factor: GSKn �
pmax
n �pmin

n°
nPZ

ppmax
n �pmin

n q

– Base-case generation: This GSK is calculated by the ratio of node generation in base-case over the same

related zonal factor: GSKn �
GBC

n°
nPZ

GBC
n

In this paper, Flat-partitioning and base-case GSK approaches were utilized. Before running the flow-based

model, the nodal pricing model is run as the base case.

More GSK strategies (eight) to implement in the Nordic power market are introduced and analyzed in Jegleim

(2015). But the main question is which of these GSK strategies is the optimal one? In the optimal GSK

strategy, the difference between estimated line flow (in DA market) and actual line flow (in RT market) is

the least. However, so far, there is not any GSK strategy that proved to be the optimal one. Hence, GSK

strategy can be a major source of imprecision in the flow-based pre-market step. Jegleim (2015) also discusses

about finding good GSK strategies.

� Critical Branches (CBs) and Remaining Available Margin (RAM): In the network simplification process of

FBMC, all cross-border lines and just those intra-zonal lines which are significantly affected by cross-border

trades are included which are called Critical Branches (CBs).

Then the Remaining Available Margin (RAM)is calculated by TSOs for each CB. This parameter shows the

free margin of each CB that can be used as transmission capacity in DA market. Jegleim (2015) and Statnett

(2016) discussed comprehensively about how to calculate this free margin.

In the second step which is day-ahead market, likewise zonal-ATC model, after receiving required parameters

from TSOs, the pool composed of fully-coordinated power exchanges runs the following mathematical model:

Minimizex,f
¸
iPI

cipxiq (2.23)

subject to: xi P C
1
i , i P I (2.24)

τzpfq �
¸

iPω�1pzq

xi � 0, z P Z (2.25)

ψlpfq �
¸
z

ZPTDF zl � τzpfq, l P CB (2.26)

f P U3 (2.27)

The same as τzpfq definition in Section 2.2.4, it shows the net inflow of power in zone z from all lines belong
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to CBs. ZPTDF zl is also the zonal PTDF parameter given by responsible TSO. ψlpfq is flow over critical branch

l. U3 illustrates the CBs capacity which are constrained by RAMS as follows:

ψlpfq ¤ RAM l P CB (2.28)

In general, the RAMs are positive unless a CB is known to be congested before allocation. Moreover, since the

RAM of a CB is only defined in one direction, then one CB must be defined for each direction.

In this paper because of a small network we are testing, all lines are considered as CBs and RAMs are simply

assumed to be equal to capl.

Finally, in the last step which is happening in the real-time, counter-trading or redispatching must be run. Even

though the FBMC had tried to model physical network, since GSK calculation is based on the prediction of the

state of the electricity system at the delivery time, the flows over lines calculated at day-ahead market may not be

equal to the actual line flows or even some GSKs may not result in feasible flows in RT market. Therefore, counter-

trading is necessary to find optimal deviations from day-ahead results. The assumptions about the flexibility cost

of counter-trading as well as the mathematical model are exactly the same as counter-trading part of Section 2.2.4.

Hence, we avoid to duplicate this part.

2.2.6 Market power modeling

After the deregulation of electricity industry, generation companies submit their offers/bids to the market

operator instead of revealing their real costs. Since the aim of these bidding strategies is to maximize their profit

then the potential for market power exercise will be created. Market power can be defined as the ability to profitably

lifting prices above marginal cost, which results in inefficiencies mainly due to suboptimal plant dispatch.

Several reasons for the existence of market power are identified (Rahman (2011)) such as:

� Transmission constraints and market fragmentation

� High degree of concentration

� Inelastic demand

� Peak demand conditions and instantaneous balancing

� Strong national incumbents

� Joint capital control of generation and transmission capacities

� Gaps in market arrangements

However, the reason of market power can be very specific to the examined market since each market has its

own loopholes that can be exploited by market participants to exercise market power. In this paper the main focus

is investigating the effect of market design on market power. To understand the extent of existed market power,

measuring tools are needed. They can be categorized into two main classic and dynamic methods.

The first category is just measuring market concentration and the well-known metrics are the Four-firm Con-

centration Ratio (I4), Herfindahl Hirshman Index (HHI) and Pivotal Supplier Index (PSI). But as we mentioned

earlier there would be other reasons than just market concentration. Hence, these methods are not powerful metrics

to measure the existence of market power.
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The second category can be divided into two ex-post analysis and equilibria modeling. In the former approach,

the difference between the actual market price and marginal cost of production shows the amount of market

power while in the latter one the examined market is simulated to find the equilibria, then the difference between

equilibrium prices and the marginal cost of production illustrates the amount of market power.

In this paper, the ex-post analysis approach has been adopted to measure market power. However, we tailored

the measuring metrics as follows:

Si � xi.λz:iPz � pXup
i �Xdn

i q.λn:iPn � pcipXiq � rcipxi, Xiqq (2.29)

SS � �p
¸
iPI

cipXiq � rcipxi, Xiqq (2.30)

Si and SS respectively represent the surplus of participant i and the overall social surplus. After running both

markets the shadow price of equation (2.13) shows the day-ahead market clearing price λz for each zone z and

similarly λn extracted from equation (2.19) represents the redispatch market clearing price. If i is a generator, then

the first and second terms in equation (2.29) are respectively the income from day-ahead and redispatch markets

while the last parenthesis calculates the overall cost of production in both markets. With respect to the assumption

of negative values xi for consumers, the first two terms in equation (2.29) represents the consumer payments and

the last term is its benefit from both markets. Hence, in overall, for both kind of participants surplus is a suitable

term.

With the same analogy, social surplus is equal to the consumers’ benefits (bids) minus generators’ costs (offers).

These two indexes are used to compare the market power of different players. The more the social surplus is, the

more efficient is the market design.

2.3 Results and discussion

In this section we make use of a small three-node system to illustrate and compare three congestion management

approaches from market power point of view.

2.3.1 Illustrative example

The three different congestion management models are compared using the three-node system depicted in

Figure 2.2. This system is composed of eight conventional generators (G1,G2,...,G8), three demands (D1,...,D3) and

three lines (L12,L13,L23). All three demands are assumed to be elastic. Data related to the whole system is shown

in Table 2.1.
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Figure 2.2. Three-bus power system

Table 2.1. Data-Three bus system

Day-ahead market Network
Node Supply Demand Line Capacity

1
aG1

=0 , bG1
=0.01

aD1=3000
1-2 210aG2

=0 , bG2
=0.05

bD1=0.3
aG3

=0 , bG3
=0.06

2
aG4

=0 , bG4
=0.05 aD2

=3000
1-3 1210

aG5
=0 , bG5

=0.05 bD2
=1.2

3
aG6=0 , bG6=0.02

aD3
=3000

2-3 1000aG7
=0 , bG7

=0.2
bD3=0.24

aG8
=0 , bG8

=0.15

Real-time market
Up/Dn Actor Coefficient

up-regulation generator γupGi
� bGi

consumer γupDj
� bDj

dn-regulation generator γdnGi
� bGi

consumer γdnDj
� bDj

bGi represents the slope of Gi’s marginal cost function and aDj and bDj are respectively the intercept and slope

of Dj ’s marginal benefit function.

As you can see in supply column, G1 is the cheapest generator in n1 as well as the whole system and G6 is the

cheapest in Z2 and the second cheapest in the whole system while D3 is the most expensive demand in the network.

All lines have the same reactance equal to one.

The last column in RT market illustrates that for up- and dn-regulation, costs and benefits are connected to

day-ahead related ones by multipliers γupGi
, γdnGi

, γupDj
, γdnDj

where a value of 1 indicates that the redispatch costs and

benefits are equal to the day-ahead ones, while higher values indicate extra costs of redispatch. In all cases of this

paper, it is assumed that γupGi
=γdnGi

=2 and γupDj
=γdnDj

=1.5. It means that both marginal cost and benefit functions

in RT market entail steeper slope than DA market which shows the higher costs and benefits of redispatching.

It is assumed that all generators and demands in the illustrative example are flexible enough to participate in

RT market.

As we mentioned before, congested transmission network can result in market power and some generators

can take advantage of their geographic location and transmission capacity constraints to exercise market power.

Therefore, to test the effect of this item on market power, the results will be examined by choosing distinct strategic

players on different nodes.
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We assume that all generators except one and all consumers are price-taker participants, which means that

they all submit their true costs and benefits as represented in Table 2.1. Hence, just one strategic generator can be

price-maker - sets manipulated energy prices which are far from its marginal cost. G6 in Z2 (n3) is assumed to be

the strategic player and the results for each pricing mechanism will be demonstrated in the following subsections.

2.3.2 Strategic bidding of G6 when plays strategically in both day-ahead and real-

time markets

In this section we assume that G6, owing to its size, location and flexibility is able to submit strategic bids

that will increase its profit. In the following sections, the effect of market structure on its market power will be

investigated.

2.3.2.1 Strategic bidding of G6 in the Nodal model

Given the bids of the other participants are consistent with their true costs and benefits, G6 submits a strategic

bid to DA market in order to maximize its surplus. The G6’s true cost coefficient is 0.02 which results in the lowest

surplus for it, while the social surplus is at the highest level. By varying this bid, G6 can reach to the highest

surplus of 14.42 � 105 for DA offer equals to 0.08 (58% rises), where the corresponding social surplus is 35.033 � 106

(3% reduction). From the social surplus point of view, offering true cost is the most efficient option. G6’s surplus

and social surplus of the system in case that G6 is the strategic player are depicted in Figure 2.3. The decreasing

social surplus curve demonstrates the detrimental effects of market power in nodal pricing model.

(a) G6 surplus (b) Social surplus

Figure 2.3. Nodal pricing results

2.3.2.2 Strategic bidding of G6 in the zonal-ATC model

Regardless of the fact that how TSOs are picking out ATCs, it is interesting to see how strategic players can

benefit from irrelevant ATCs. Therefore, the results will be inspected for two end points 0 and 10000 (infinite).
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2.3.2.2.1 ATC=0

Means that DA market is running for two seperate (detached) markets and balancing individual supply and

demand in each zone Z1 and Z2. Z1 which contains the cheapest generator G1, clears with much lower zonal price

71 compared to 235 in Z2 which contains the most expensive demand D3. Hence, generators in Z1 are eager to

export to Z2 to increase the price in their related zone.

In RT market, due to the existence of lines L12 and L13, they find this opportunity to sell to consumers in Z2.

Hence, as you can see in Figure 2.4, all generators in n1 do up-regulation. Since in DA market, L23 was neglected

and D3 is the most expensive consumption, generators in n2 produce as much as they can but in RT market, due

to the limited capacity of L23, they have to do dn-regulation. In opposite, although G7 and G8 in n3 are the most

expensive ones, they have to do up-regulation in order to satisfy very high demand of D3 from DA which is 11520.

Thus, this expensive up-regulation in n3 results in very high RT clearing price 545 versus very low price -71 in n2.

But what can G6 do as an strategic player? Based on Figure 2.5 and with respect to the fact that G6 can

submit different offers for up- and dn-regulation than DA, its optimal strategy is (DA,up,dn)=(0.14,0.14,whatever).

Since G6 is the second cheapest generator in the system and is located in the same node as D3 (most expensive

demand), it seems that it is always profitable for it to do up-regulation. Thus, dn-regulation offers are not the

matter of importance in this case. In Figure 2.5(b), up and DA coordinates are replaced by each other in order to

show that for the lowest DA offer 0.02, the surplus of G6 is the lowest while the social surplus is the highest, which

shows the negative correlation between its surplus and social surplus irrespective of up- and dn-regulation offers.

1n  

 DA Up Dn 

1G  7143 1006 0 

2G  1428 201 0 

3G  1190 168 0 

1D  9761 44.7 0 

                                  210RTf      

 

 

 

 

2n  

  DA Up Dn 

4G  4701 0 3069 

5G  4701 0 3069 

2D  2304 0 170 

3n  

 DA Up Dn 

6G 1679 2218 0 

7G 1175 776 0 

8G 1567 1034 0 

3D 11520 862 0 

1210RTf 

1000RTf 

Figure 2.4. DA and RT quantities when ATC=0

42



(a) G6 surplus (b) Social surplus

Figure 2.5. Zonal results with ATC=0

2.3.2.2.2 ATC=10000

Concerning the line capacities, ATC equal to 10000 can be considered as infinite transfer capacity between two

zones in DA. Therefore, DA market is equivalent to the uniform pricing model and equal prices of the two zones

confirm this assumption (Table 2.2). Thus, in DA market all generators located in n1 and n2 sell as much as they

can to D3.

But in RT, they have to come up against physical network constraints. Hence, all of them have to dn-regulate

in favor of generators in n3. By playing strategically, G6’s best offer is (DA,up,dn)=(0.17,0.17,whatever). Identical

to ATC=0 and Figure 2.5, for the lowest DA offer equals to 0.02, G6’s surplus is at minimum level while social

surplus is maximum.

Table 2.2. Zonal and nodal prices for ATC=10000

λDAZ1
λDAZ2

λRTn1
λRTn2

λRTn3

123.4 123.4 40.4 38.3 648.5

2.3.2.3 Strategic bidding of G6 in the zonal-FBMC model

2.3.2.3.1 Flow-based market coupling with weighted-GSK

Based on the definition of weighted-GSK in Section 2.2.5, GSK is calculated based on the weight of the net injec-

tion of each node over sum of the net injections of all nodes in the corresponding zone. These net injections are based

on nodal results. Nodal and zonal PTDFs corresponding to the optimal offer (DA,up,dn)=(0.15,0.15,whatever) are

demonstrated in Tables 2.3 and 2.4.
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Table 2.3. Nodal PTDF

Line n1 n2 n3

1� 2 0.33 -0.33 0
1� 3 0.66 0.33 0
2� 3 0.33 0.66 0

Table 2.4. Zonal PTDF

Line Z1 Z2

1-2 0.33 0.185
1-3 0.66 -0.185
2-3 0.33 -0.371

Similar to the zonal-ATC model, when redispatch was solved by nodal PTDFs, which shows the real network

constraints, by up-regulating until 2385, G6 can maximize its profit. Therefore, DA as well as up-regulation offers

are important for it.

Different zonal PTDF calculation approaches mentioned here can result in very unexpected prices and quanti-

ties.

2.3.2.4 Discussion on market power potential of G6

The maximum attainable surplus and social surplus from all investigated models in this paper when G6 plays

strategically is shown in Figure 2.6.

Based on the participants behavior analyzed in Sections 2.3.2.1, 2.3.2.2 and 2.3.2.3, by increasing ATC from

0 to 10000, G6’s surplus has a great increase from 1,402,703 to 1,851,429 (almost 25%). The main reason is that

G1 which is the cheapest generator is located in Z1. Moreover, D3, the most expensive demand is located in the

same node as G6 is located. Therefore, increased ATC lets G1 to produce as much as it can in day-ahead market as

well as generators in n2 (G4 and G5) to produce without considering physical network constraints. Hence, all these

conditions let the second cheapest strategic player G6, to profitably utilize the non-feasibility of flows resulted from

day-ahead market by playing with its day-ahead and real-time offers. Thus, the best offering strategy for G6 when

ATC is rising, is to shift some part of its production from day-ahead to real-time. Even though, by increasing ATC,

the G6’s surplus will rise up to 25%, the maximum variation of social surplus is just 0.8% which is not considerable.

By comparing G6’s surplus of nodal versus zonal-ATC model, the highest surplus it can get from nodal model is

14.42 � 105 while by increasing ATC, its surplus can reach to 18.5 � 105, which shows the sensitivity of the market

power to ATC quantities. However, for very low ATCs, its market power is lower than nodal model.

Alike to the zonal-ATC model, FBMC with weighted GSK has the more potential of market power but not as

high as zonal-ATC.

Figure 2.6 illustrates a huge difference between nodal social surplus versus the other ones. It seems that FBMC

with weighted GSK leads to a more efficient market design in comparison to the other zonal models. However, if a

correct ATC quantity has been chosen by TSOs, Then zonal-ATC can be as efficient as FBMC with weighted GSK.
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Even though the FBMC with flat-partitioning GSK leads to the least surplus for G6, but still the social surplus

is also the lowest in comparison to the other methods, which can be justified as an inefficient market design.

(a) Maximum attainable surplus for G6 (b) Maximum attainable Social surplus

Figure 2.6. Maximum surplus from all models

2.3.3 Strategic bidding of G6 when plays strategically just in day-ahead market

The order of the maximum attainable surplus for G6 from all models when it just plays strategically in DA

market is as follows: Nodal¡FBMC-flat¡FBMC-weighted¡Zonal-ATC. It is obvious that since in the nodal model

it considers all network constraints at the time of decision making and plays strategically with full knowledge about

it, G6 can earn the highest surplus.

In general, the more network information is considered at the time of strategic decision making (which is

DA market in this case), the more potential exists for strategic player to exercise market power (Figure 2.7(a)).

Therefore, nodal model leads to the lowest social surplus. In zonal-ATC model, no matter what ATC is, since it

does not reflect real network constraints in DA stage, it does not result in huge profit for G6. Finally, since in

FBMC models, they are in between of nodal and zonal-ATC with respect to considering network constraints, they

are placing in the middle of ranking.

(a) Maximum attainable surplus for G6 (b) Maximum attainable Social surplus

Figure 2.7. Maximum surplus from all models when G6 plays strategically just in DA market
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(a) Maximum attainable surplus for G6 (b) Maximum attainable Social surplus

Figure 2.8. Maximum surplus from all models when G6 plays strategically just in RT market

2.3.4 Strategic bidding of G6 when plays strategically just in real-time market

The figures and numbers show that having possibility to just exercise market power in real-time leads to much

lower profits for G6 in comparison to the cases where it plays strategically just in day-ahead or both markets. In

contrast, social surplus is the highest, especially with nodal model. In zonal-ATC model, choosing very high ATC

culminates in very low social surplus, because it signifies a very different solution of day-ahead than real-time,

therefore G6 finds more opportunity to play with its offers in real-time.

2.4 Conclusion

Several reasons have been mentioned for market power existance such as market structure, market rules,

geographical concentration, congested network and so on Song (2003).

Market structure can be an important cause of exercising market power, for example which pricing machanism

is implied (pay-as-bid or market-clearing-price), how future or forward contracts are designed, demand participation

in market or not, etc.

In this paper we investigated the common objection -usually is mentioned by European politicians- to the nodal

pricing which inherently entails more potential of market power than zonal pricing. But since in zonal pricing, either

with ATC or FBMC, redispatch is necessary to achieve a feasible flow, the market power possibility should be probed

in both markets. Therefore, for zonal market structure, three following cases of gaming are allowed to the strategic

player:

� Strategic behaviour in both day-ahead and redispatch: in this case, strategic player takes an optimal

decision by knowing that market is just running with simplified network or cross-border constraints at day-

ahead stage, then it finds another new opportunity in redispatch market to fix its first stage decision by

new offering based on real-time flexibility cost of redispatch. Therefore, in comparison to one stage gaming

possibility of nodal model, the latter pricing approach surpasses the former one. In general, we can conclude
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that the more network constraints are incorporated in day-ahead market, the less opportunity has the strategic

player to change its decision in redispatch stage. Therefore, The nodal and FBMC are less susceptible to

market power than ATC model. However, in the ATC model, if right ATCs are adopted, it can be as efficient

as FBMC with weighted GSK. Otherwise, particularly for very high ATCs (result in uniform pricing) or very

low ones (result in detached markets), it entails the lowest social surpluses.

� Strategic behavior in day-ahead and non-strategic in redispatch: in this case, if the redispatch

market does not allow the strategic behavior, then the strategic player can play very blindly in day-ahead

when nothing about network is considered and does not have another opportunity to fix the decision taken in

the previous stage. Therefore, by this assumption, both ATC and FBMC outperform nodal model.

� Non-strategic behavior in day-ahead and strategic in redispatch: since in this case strategic behavior

is not allowed in day-ahead stage and redispatch is just based on deviations from day-ahead, strategic player

finds very little space to maneuver. Therefore, this case entails the highest social surpluses in all nodal, ATC

and FBMC models.

Hence, it is important to do extensive investigation about market power mitigation approaches especially in

zonal models which entail two stages of incorporating network. Singh (1999) and Hogan and Newton (2001) discuss

about some mitigating market power approaches which is mostly suitable for one-stage nodal model. Thus, further

market power mitigation studies for zonal models can be a very interesting topic for future research.
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Abstract

The growth in intermittent renewable power in Europe has increased the need to trade closer to real-time. In

recent years, intraday markets have been integrated across Europe, contributing to a more efficient market. On

the other hand, European day-ahead and intraday markets are still based on zonal pricing, where the physical

characteristics of transmission networks are only partly taken into account, and congestion problems may remain

until close to real-time. In this paper, we suggest an intraday market design based on the coordinated multilateral

trade (CMT) approach, using power transfer distribution factors and other network information provided by the

transmission system operators, to generate profitable, but feasible, and possibly multilateral trades based on nodal

bids. Profitable trades can be found by independent brokers or by having the power exchange running frequent

batch auctions at discrete-time intervals. Each trade is accepted by the TSO if no violation occurs in the network,

or is curtailed. If the network flow is feasible at the start of the intraday market, the procedure converges to the

optimal economic dispatch. In any case, this suggestion for intraday trading, taking into account simple information

about network constraints, in a procedure consistent with the functioning of the European intraday market, can

help bridge the gap between the zonal day-ahead markets and the real-time constraints of the power system.

Keywords: Coordinated Multilateral Trades (CMT), Congestion management, Integrated Intraday market,

Renewable integration
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3.1 Introduction

The growth of intermittent generation capacity in today’s electricity markets has increased the importance of

efficient intraday markets, seeing that it becomes more challenging for market participants to be in balance between

the day-ahead and real-time balancing markets. As investigated by many authors, an intraday market, if properly

designed, can be an effective market mechanism not only for facilitating the large-scale integration of wind power

generation but also for increasing wind power generators’ competitiveness (Weber (2010), Mauritzen (2015), and

Jafari et al. (2014)). Hence, there will be an increasing interest in trading in the intraday markets. It is beneficial

both for market participants and for the power system that the network is in balance close to the delivery time, in

order to reduce the need for reserves and associated costs. In this regard, the European Commission established a

target model to integrate all intraday markets based on continuous trading, and XBID (cross-border intraday) was

launched to create a joint integrated intraday cross-zonal market. As stated in XBID documents, the main goals

of integration are to promote effective competition and pricing, to increase liquidity and to enable a more efficient

utilization of generation resources across Europe.

Currently, two different exchange-based forms of intraday markets have been designed in Europe: auction-based

(discrete auctions) and continuous trading intraday markets. In continuous trading, the power exchange provides

a ’limit order book’-based platform wherein market participants can submit bid (for buy) and ask (for sell) orders.

Whenever they find it profitable in a period between intraday market opening until minutes before delivery time,

a trade occurs when the bid price is higher than or equal to the ask price. Hence, each trade has its own specific

price, and this property substantially differentiates continuous trading from discrete auctions (with unique market

clearing prices) (NordPool (2016b)).

The advantages and disadvantages of discrete auction versus continuous trading intraday markets have been

debated in many papers. As continuous trading allows trading 24 hours/7 days a week, market participants may

find an immediate opportunity to trade their imbalances. Thus, as soon as new information is received (either their

own situation, like updated wind power forecasts, or signals from others that can be reflected in a bid-ask spread),

it can be used immediately, and this may be especially attractive for intermittent generators (Henriot (2012b)).

Conversely, Hagemann (2013b) points out that in a discrete auction intraday market, market participants have

to wait until the next auction is cleared, and cannot do immediate self-balancing. Hence, continuous trading is

superior to discrete auctions from an ease of trade point of view.

By simulating the behaviour of a zero-intelligent trader, Weber and Schröder (2011) assess the efficiency of

continuous trading versus discrete auctions. They conclude that since continuous trading adhere to the first-come-

first-serve principle, it entails a lower allocative efficiency, meaning that depending on the order arrivals, some trades

with negative welfare contribution may occur while others with positive welfare contribution may never happen.

This will not be the case for discrete auction markets, where the objective function is to maximize social welfare.

Scharff and Amelin (2016) empirically analysed the trading behaviour on the Elbas intraday market. Their

study shows that factors like high share of wind power in Denmark, restricted available transmission capacity from

Norway to continental Europe for the intraday market, and high balancing prices in Finland result in varying trading

behaviour in different price zones. They also illustrate that half of the Elbas intraday trades are settled 3 hours

before delivery time, most likely by wind power producers with short forecast horizon. Finally, it was concluded

that since most of the intraday trades are motivated by intermittent power producers rather than by conventional
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power plant outages, continuous trading seems to be a more suitable design for European intraday markets.

The question of which intraday market design, continuous trading or discrete auction, is more suitable for

an integrated European intraday market, is further addressed by Neuhoff et al. (2016b). They empirically assess

the effect of an additional intraday auction, introduced by EPEX in December 2014. This uniform price auction

is settled at the beginning of the continuous intraday session at 3 pm, for the next 96 quarters of the following

day. Their observation is that adding an auction to the current continuous market increased liquidity and market

depth, reduced price volatility, and removed the speed race (i.e. the race to be the first to be processed, which is an

important issue in continuous trading). However, too infrequent auctions may lead to postponed adjustments, and

hence, the right frequency of intraday auctions is raised as an important design question. Moreover, they conclude

that with auctions, intraday transmission capacity can be allocated more efficiently, and the value of the scarce

capacity can be signalled, while this is not the case for continuous trading. In the end, to reach all the above

mentioned benefits, they suggest to substitute continuous trading for frequent batch auctions.

The frequent batch auction idea and its advantages over the continuous limit order book in financial exchanges,

was first discussed by Budish et al. (2014) and later extended by Budish et al. (2015). Based on their definition,

frequent batch auctions are identical to the continuous limit order book with two exceptions: 1. time is considered

as discrete, not continuous, and 2. instead of serial processing of orders, based on their time-price priority, orders

are processed in batch form using a uniform-price auction. By modifying the market in this way, the speed race is

eliminated, and instead of competing on speed, price is rivaled.

In line with Neuhoff et al. (2016b), we argue in this paper that the bilateral trading structure of the continuous

European intraday market does not allow efficient congestion management. Together with the simplified network

models of the day-ahead and intraday markets, this create inefficiencies, which result in higher imbalance costs

compared to the case where all transmission network constraints are considered in one or more markets prior to

real-time. In this paper, we suggest to use the coordinated multilateral trade (CMT) approach, proposed by Wu

and Varaiya (1999), to the current European intraday market in order to fix both the aforementioned sources of

inefficiency. The CMT approach allows multilateral trades (instead of just bilateral trades) which are necessary

to relieve congestion. Moreover, by replacing the information transferred between transmission system operators

(TSOs) and power exchanges from available transmission capacities of cross border interconnectors (which are

imaginary lines between zones) to power transfer distribution factors (ptdfs) of congested lines (which are physical

lines between nodes), the intraday market can reach to the optimal economic dispatch. In this paper, we focus on

congestion issues, and not other sources of imbalances or flexibility costs, so we assume that supply and demand

functions remain fixed throughout the day-ahead and intraday markets, and no uncertainty is modeled.

The rest of the paper is organized as follows. In Section 3.2, we review different congestion management

approaches which are equivalent to the optimal economic dispatch and optimal nodal pricing model. This literature

review is needed to understand the relationship between the current European design, the CMT approach, and

optimal economic dispatch. Section 3.3 gives a detailed explanation of the XBID components and describes the

research question and the relevant assumptions. Section 3.4 reviews the CMT approach and shows its relation to

the day-ahead and intraday market by mathematical formulations. Section 3.5 illustrates the CMT approach in

a 6-node example. Several cases are discussed, where the capacities allocated in the day-ahead market vary, and

where intraday trading starts from a feasible or infeasible day-ahead solution. Finally, Section 3.6 concludes the

paper and future research is discussed.
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3.2 Literature review

In the nodal pricing approach introduced by Schweppe et al. (1988), the nodal prices are the shadow prices of

the power balance equations of the optimal economic power flow problem. The successful implementation of nodal

pricing in North America, Australia and New Zealand has proven the efficiency of this powerful transmission pricing

tool, without encountering significant technical problems. It has also been considered by the European Commission

as one of the plausible approaches for integrating European electricity markets (Brunekreeft et al. (2005)).

In the 1990’s however, there was a great debate about the efficiency of the nodal pricing approach. One of the

most important objections, raised by Wu and Varaiya (1999), was the intervention of transmission system operators

(TSOs) on economic or market decisions. In order to achieve a solution to the optimal economic dispatch problem,

which on the one hand guarantees the security and reliability of the power system, and on the other hand promotes

economic efficiency, strategic information about cost and demand functions (private information) of generators and

consumers must be revealed to the TSO, who should just be responsible of technical support of the power system.

Hence, the information structure and decision making authority are both centralized in the nodal pricing model.

Therefore, many attempts have been made to decouple these two distinct dimensions of the power system, by

delegating economic efficiency responsibilities to power exchanges and technical support of the power system to the

TSO. Nevertheless, they can never converge to a system optimal solution if a proper coordination is not established

between them. Accordingly, the coordination models can be interpreted as various decomposition procedures for

the optimal economic dispatch problem, wherein the dispatchers solve different subproblems, and subject to the

subproblem structure, different information is exchanged back and forth with the TSO. Overall, these decomposition

models can be classified into two groups:

1. Price-directed

2. Resource-directed

The method suggested by Chao and Peck (1996) is a price-directed scheme for explicit congestion pricing. In

this method, scarce transmission resources are explicitly priced, and prices are communicated together with power

transfer distribution factors (ptdfs), such that traders can acquire the necessary transmission capacity rights in

order to do a transaction. In optimum, Chao-Peck prices are equivalent to optimal nodal prices.

Like the Chao-Peck price-directed method, the capacity charge approach suggested by Bjørndal et al. (2010)

can be categorized as a price-driven decomposition of the optimal economic dispatch problem. By relaxing the

line capacity constraints through Lagrangian relaxation, the constraints are implicitly managed by means of nodal

capacity charges, which result in shifts in the nodal supply and demand curves. In other words, the social optimum

solution is achieved by an iterative process between the TSO, who is announcing nodal capacity charges, and the

power exchange, who is solving an unconstrained optimal dispatch problem by clearing the market with respect to

the shifted supply and demand curves.

In the coordinated multilateral trade model presented by Wu and Varaiya (1999), only technical information

related to the congested lines, signalling scarce resource availability (resource in this case means capacity of trans-

mission lines) is announced by the TSO. Hence, the decision making authority related to economic and technical

issues of the power system is broken up. Moreover, in the CMT model power exchanges can also be replaced by

more decentralized entities, called brokers. After receiving supply and demand bids from interested generators
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and consumers, along with relevant signals from the TSO, the broker can find profitable multilateral trades, that

move towards a feasible direction with respect to the announced technical limits. Thus, coordination is established

through an iterative process, where power transfer distribution factors (ptdfs) of congested lines resulting from the

last trades are announced by the TSO, and by utilizing the new information, brokers find new profitable trades.

This process lasts until no further profitable trades can be found. Wu and Varaiya (1999) proved that the proposed

CMT model will achieve the same economic efficiency and the same level of reliability as the nodal pricing model,

meaning that social welfare is maximized with respect to the network constraints, provided that generators maxi-

mize profit and consumers maximize utility. Furthermore, instead of a broker, groups of generators and consumers

with private terms and conditions of trade (without revealing their cost and benefit functions) can suggest balanced

trades to the TSO. Consequently, in general no price can be extracted in the CMT model and it is not necessary

that trades happen at the same time.

The CMT idea introduced in the 1990’s, has been studied by Qin et al. (2017) for designing an innovative flexible

market for smart grids. It is stated that the great flexibility of the CMT model, along with low communication

and control burdens on the TSO, makes it an attractive approach for coordinating procedures in the distribution

system. Moreover, by generalizing the CMT model from a deterministic settlement market setting (day-ahead)

into a stochastic two-settlement market (day-ahead and real-time), they confirm that it is possible to achieve

the same solution (maximizing expected social welfare) as a stochastic optimal dispatch model. Additionally, the

dispatch and prices extracted from their model support competitive equilibrium under uncertainty (i.e. constitute

an Arrow-Debreu equilibrium).

Since we suggest to utilize the CMT approach for a more efficient way of managing congestion in the intraday

market, further details, related terminology and relevant mathematical models of the CMT model will be given in

Section 3.4.4.

3.3 Problem description and assumptions

The sequence of day-ahead, intraday and balancing markets are cleared for each delivery hour of day d. In the

European market design, the first two markets are cleared by power exchanges, only partly addressing the physical

transmission network, while the last is typically organized by the TSOs, settling energy imbalances, while respecting

day-ahead and intraday schedules, and considering the full transmission network. Therefore, the decoupling of the

optimal economic dispatch problem by delegating the market efficiency responsibility to the power exchanges and

security/reliability to the TSOs has been done before. Hence, the main idea of the CMT approach, which is the

decoupling of decision making authorities, is already a reality in the European electricity market, but the information

shared is different from the CMT model, although it is connected to transfer capacities. In the following, we will

look more closely on the detailed design of the European intraday market.

In the XBID project, all orders of each power exchange will be shared in a shared order book (SOB) module,

such that all market participants of other power exchanges located in other bidding zones can see them, provided

that enough cross-border capacity, called Available Transfer Capacity (ATC), is available. The ATCs are provided

by the relevant TSOs in the capacity management module (CMM). CMM provides two ATCs for each cross-border

line, one for each direction. Orders submitted to different bidding zones can be matched provided there is enough

capacity available. If two orders are matched, the SOB and CMM will be updated immediately. Trades are based
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on the first-come first-served principle, such that the highest bid price and the lowest ask price get served first.

Whenever a matching happens, the SOB calculates the required quantity to be transferred between the source and

destination zone. Then the CMM is responsible to find a routing plan which results in capacity allocations and

thus updated ATCs.

The routing model applies a minimum cost flow model to select routes, i.e. routes with minimum cost that

satisfy the flow constraints over cross-border lines. These cross-border lines, however, are edges of a graph which do

not reflect accurately the physical transmission network. For instance, the model does not consider the externalities

created by loop flows, which is a main characteristic of electricity networks. Consequently, like in the day-ahead

market, it is very likely that the trades occurring in the intraday market lead to infeasible flows over physical

transmission lines. Even if the flow-based market coupling model was used in the intraday market, it does not

take into account the full nodal description of supply and demand, and will not achieve the same solution as the

benchmark case of optimal nodal prices.

With the decision of the European Commission to integrate intraday markets with continuous trading, and

with capacity and routing information provided by the TSOs, we consider the XBID market as an interesting

opportunity for the CMT approach. The iterative nature of the CMT approach fits well with the intraday market,

whether it is organized by continuous trading or by batch auctions. Moreover, the information needed from the

TSOs in the CMT model is similar to the information already provided to the intraday market, although more

details about the location of bids and ptdfs for detailed grid models are needed. With the CMT model applied to

the intraday market, the responsibilities of power exchanges and TSOs are not mixed up, and by using ptdfs of

detailed physical transmission lines in a market cleared prior to the balancing market, rather than the simplified

network model of the day-ahead market, we should be able to reduce the costs of congestion management in the

real-time balancing market.

In the following we develop the model, focusing on congestion management, and thus we apply some simplifying

assumptions:

� In the day-ahead market, the power exchanges have access to zonal level information, which means that they

know supply and demand functions for each zone, as well as aggregate transfer capacities (ATCs) between

zones.

� In the suggested CMT intraday market, power exchanges receive supply and demand bids on nodal level,

as well as technical (ptdf) information related to individual congested lines (this is contrary to the current

intraday market design, where information is on zonal level).

� A single TSO (or a unit of cooperating TSOs) announces the ptdfs of congested lines in the whole region of

governance, checks the feasibility of trades, and solves the curtailment problem.

3.4 Mathematical models

3.4.1 Notation

We adopt the same mathematical formulation as Bjorndal et al. (2016), where I denotes the set of market

participants, either generators or consumers. For each i P I, the quantity xi will be either production (if xi ¡ 0)
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or consumption (if xi   0). For the multistage trading process in Section 3.4.4, we will add the superscript k to

denote the current stage, where k � 0 denotes the day-ahead market and k ¥ 1 denotes some stage of the intraday

market, and xki is the production or consumption quantity corresponding to market participant i in stage k.

The cost function of generator i, where xi ¡ 0, can be of any type (quadratic, step-wise or piece-wise linear)

and is denoted cipxiq. For consumers, where xi   0, the benefit function is denoted cipxiq. Thus, cipxiq can be

interpreted as a cost function for all market participants. With multistage trading processes, as in Section 3.4.4,

the cost or benefit functions could depend on the current stage k, but we will not consider such cases in this paper,

since our focus is on congestion management only.

The production/consumption plans of the market participants are restricted by individual capacity constraints

as well as by previous decisions. For the day-ahead market stage, the capacity constraints are represented as

x0
i P C

0
i i P I, (3.1)

where C0
i is the feasible set for market participant i in stage 0. In the intraday market, i.e., where k ¥ 1, the

feasible set Cki will also depend on previous decisions taken by participant i, i.e., the sequence x0
i , ..., x

k�1
i from

previous stages. Therefore, a feasible solution in stage k must satisfy

xki P C
k
i px

0
i , x

1
i , ..., x

k�1
i q i P I. (3.2)

For the benchmark case in Section 3.4.2, where the market is cleared in a single stage, we will omit the superscripts

and just write Ci.

Each market participant i is located in a specific node n P N , i.e., i P In. Nodes of the network are connected

by a set of physical transmission lines L. For each line l P L, the flow is denoted fl, and the corresponding thermal

limit is denoted fmaxl . We will denote the starting and ending node of line l as ν0plq P N and ν1plq P N , respectively.

I.e., fl ¡ 0 indicates a power flow from ν0plq to ν1plq, while fl   0 indicates flow in the opposite direction. Under a

linear DC approximation (Schweppe et al. (1988)), flows can be related to nodal injections/withdrawals by constant

power transfer distribution factors, where the factor ptdfl,n represents the flow over line l P L if 1 MW of power is

injected at node n P N and withdrawn at the reference node.

Each market participant i is located in a pre-determined zone z P Z, i.e., i P Iz. For every pair of connected

zones there is an interconnector e P E and a flow fe. Similar to the notation for lines, we let ω0peq P Z and ω1peq P Z

be the starting and ending zones of interconnector e, respectively. Hence, fe ¡ 0 means that the commercial flow

goes from ω0peq to ω1peq, whereas fe   0 means that the flow goes in the opposite direction. We will assume that

the zonal day-ahead market is cleared with lower (ATCmine ) and upper (ATCmaxe ) bounds on the commercial flow

over interconnection e P E.1

3.4.2 Nodal benchmark model

Model (3.3) describes a day-ahead market with nodal pricing. The objective (3.3a) minimizes total net cost,

which is equivalent to maximizing total welfare. For each market participant i P I, (3.3b) represents the respective

1Unlike transmission line constraints, where the thermal capacity limit fmax
l determines both the upper and lower bound for fl, we

do not necessarily have ATCmin
e � �ATCmax

e , since system operators, when setting the ATCs, will try to ensure feasibility for the
entire system.
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production/consumption constraints. For every node n P N we define τn as injection from the node to the grid,

and (3.3c) links net injection to the sum of production and consumption in the node. The flow over each line l P L

is linked to the nodal net injections in (3.3d), and the thermal flow limits are enforced by (3.3e).

Minimize
x,f,τ

¸
iPI

cipxiq (3.3a)

subject to xi P Ci i P I (3.3b)

τn �
¸
iPIn

xi pλnq n P N (3.3c)

fl �
¸
nPN

ptdfl,n � τn l P L (3.3d)

� fmaxl ¤ fl ¤ fmaxl l P L (3.3e)

Since we do not consider uncertainty in this paper, and since (3.3) includes a complete description of the network

constraints, as given by the linear DC approximation, it will give us the first-best solution, i.e., a natural benchmark

for our analyses, including optimal nodal prices, λn.

3.4.3 Zonal day-ahead market

The current European electricity market setup is a sequential system consisting of the day-ahead, intraday, and

balancing markets. The markets are cleared with deterministic models, meaning that uncertainty about intraday

and real-time events are not taken into consideration in the day-ahead stage, at least not explicitly. The equations

in (3.4) describes our mathematical formulation of the day-ahead market clearing.

Minimize
x,f,τ

¸
iPI

cipx
0
i q (3.4a)

subject to x0
i P C

0
i i P I (3.4b)

τz �
¸
iPIz

x0
i pλzq z P Z (3.4c)

τz �
¸

e:ω0peq�z

fe �
¸

e:ω1peq�z

fe, z P Z (3.4d)

ATCmine ¤ fe ¤ ATCmaxe e P E (3.4e)

As mentioned in Section 3.4.1, x0
i is the vector of production/consumption at the day-ahead market. The

objective (3.4a) is the same as in the nodal benchmark model (3.3). The constraint (3.4b) reflects any kind of

constraints that market participant i is confronted with at the day-ahead market. The constraint (3.4c) defines

the net injection τz from zone z to the grid, and the shadow price, λz, represents the day-ahead clearing price

of the zone. Constraint (3.4d) links the zonal net injection to the flow over the relevant interconnectors. Finally,

constraint (3.4e) enforces the inter-zonal trading capacities.
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3.4.4 Coordinated multilateral trading concepts

The novel idea introduced by Wu and Varaiya (1999) and then developed by Qin et al. (2017), is that a free-

market style of meet-and-trade, instead of a centralized infrastructure with high level of coordination, is able to

provide an opportunity for all generators and consumers to seek profit on their own, implying that they can conduct

the economic function themselves, deciding about price, trading terms and conditions, as well as trading quantity.

Hence, the direct effect of this mechanism is that price information is private.

However, the idea of meet-and-trade without any coordination with the TSO could result in flows that violate

the transmission capacity constraints. Consequently, Wu and Varaiya suggested an idea where the TSO and free

traders coordinate with as little information sharing as possible, such that a feasible solution is attained at every

stage. Therefore, they even neglected the power exchange role and just let market participants coordinate with the

TSO, either directly or with the help of a broker. Hence, trades between two or more market players is the main

element of such a market design.

Even if the definition of multilateral, feasible, feasible direction and profitable trades, as well as other related

terminology, have been fully explained in Wu and Varaiya (1999) and expanded to models with uncertainty by Qin

et al. (2017), we will give a short review, customized to our purposes. The building blocks of continuous trading,

as in current intraday markets, are bilateral trades. However, as Wu and Varaiya (1999) proved, it is not possible

to relieve congestion in a network by bilateral trades only. Hence, multilateral trades may be necessary to ensure

convergence to the optimal nodal solution.

Definition 1. Multilateral trade. A trade involving more than one party, such that, in a lossless system,

the sum of the traded quantities is equal to zero. Mathematically, a multilateral trade involving the participants

I 1 � I, is a vector ∆x � p∆xiq, where ∆xi is the traded quantity for participant i P I, such that
°
iPI1 ∆xi � 0 and

for i R I 1, ∆xi � 0.

The current plan x is the sum of all previous trades. The TSO can calculate the resulting network flow as

fl �
¸
nPN

ptdfl,n �
¸
iPIn

xi l P L, (3.5)

and the flow will be feasible if

� fmaxl ¤ fl ¤ fmaxl l P L. (3.6)

Given that x is the current plan, and that it is feasible, i.e., satisfies (3.5) and (3.6), a new trade ∆x may cause one

or more of the inequalities in (3.6) to be violated. If that is the case, then the TSO might have to curtail the trade.

Definition 2. Uniform curtailment. In order to make sure that the new plan is feasible, the TSO will only

accept a portion γ P r0, 1s of the trade ∆x, such that x� γ∆x is feasible. γ � 1 means that the whole trade ∆x is

accepted without curtailment.

A feasible direction trade is a trade that does not increase the net power flow over lines that are already

congested.

Definition 3. Feasible direction trade. Let Lc denote the set of congested lines. If x is feasible, and if the
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resulting flow f satisfies

fl � fmaxl l P Lc, (3.7)

fl   fmaxl l R Lc, (3.8)

then ∆x is a feasible direction trade at x if

¸
nPN

ptdfl,n �
¸
iPIn

∆xi ¤ 0 l P Lc. (3.9)

Definition 4. Profitable multilateral trade. Assume that x is feasible. A trade ∆x is profitable at x if it

reduces the total cost (increases social welfare).

Definition 5. Broker. The third party entity that arranges the trades.

As we mentioned before, after curtailing the infeasible flows resulting from the broker’s solution, the TSO

announces the congested lines (lines at maximum flow) and their related ptdfs. Hence, the broker receives new

signals for going in the right direction. The broker’s decision making problem is very similar to the economic dispatch

model. However, instead of modeling the full transmission network, a broker tries to move toward feasibility with

regards to the signals obtained from the TSO. In general, a broker can modify the previously allocated schedules

by finding profitable deviations from the current schedule. These deviations could be positive or negative. Positive

deviations, i.e. ∆x ¡ 0, may be due to:

� Increase in power production from flexible generators, meaning that the generators want to sell an extra

amount of energy in the current stage of the intraday market.

� Decrease in power consumption from flexible loads, i.e. consumers resell power that is bought previously.

� Extra production from intermittent renewable power generators, for instance because updated forecasts show

an increase in available power, which can be sold in the current stage of the intraday market.

Likewise, negative deviations, i.e. ∆x   0, can be due to:

� Decrease in power production from flexible generators, meaning that the generators will buy back power.

� Increase in power consumption.

� Production reductions from intermittent renewable generators, for instance because of new forecasts showing

less availability of power.

Considering the broker problem, it is obvious that if more parties are involved, the higher the chance is to

find a more profitable solution. In this respect, the best case is if all generators and consumers are involved in the

broker’s problem, which then will be identical to a fully coordinated auction operated by the power exchange. The

meet-and-trade approach suggested by Wu and Varaiya (1999) and Qin et al. (2017) demonstrates the possibility

of reaching an efficient market outcome in a decentralized setting, under strong assumptions of zero search cost and

perfect information. They don’t imply that a decentralized market is superior to a centralized in practice, as there

may be significant search costs for finding the right trading partners, unless there is some information platform

that collects participants’ cost/benefit information and shares it with suitable parties. A good market structure

could be some middle ground between a fully centralized market and a fully decentralized one, as centralization
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requires significant communication cost while decentralization leads to higher search cost. Another benefit of the

decentralized approach is that the centralized solution can be contested.

3.4.5 Intraday market with coordinated multilateral trading

The intraday market serves several purposes, as reviewed by Rahimi et al. (2018). One purpose is to handle

unexpected events, like unplanned power plant outages, forecast errors from intermittent renewable energy sources,

load forecast errors, etc. Also, as mentioned in Section 3.4.3, since the day-ahead market (3.4) is modeled as a

partly network-constrained auction, most probably the day-ahead solution does not satisfy the physical network

constraints (3.5) and (3.6), and the intraday market may help relieving the remaining congestion. In this paper, our

focus is on congestion management, and we will not consider deviations due to uncertainty or changes in forecasts

in the illustrations that follow.

With additional detailed locational information about bid and ask offers, as well as the technical information

about ptdfs of congested lines provided to the power exchanges, the limit order book of the European power

exchanges may work exactly as a facilitating information platform for traders. Market participants can find trading

partners to a feasible direction trade without paying the high search costs of the meet-and-trade approach, and

without necessarily having to reveal private information such as cost functions to the power exchange. Thus, the

limit order book may function as an infrastructure for allowing continuous decentralized multilateral trades by

brokers. It may however also serve as an infrastructure for running batch auctions, such that for every batch

auction, a subset of participants take part and are cleared. The clearing result can be interpreted as a multilateral

trade among this subset of participants. As an extreme, the power exchange itself can take on the role as broker.

If we were to model decentralized trades or batch auctions, we would have to model some kind of random

arrival of buyers and sellers. If we were to model forecasting errors of renewable generators, or how information

is revealed over time, this would be a natural approach. Since we want to focus on the congestion management

aspects, and assume that supply and demand functions are fixed as in day-ahead, we simplify the exposition and

assume that the exchange takes on the broker role, running auctions with all participants involved. Thus, the power

exchange and TSO problems are attained by decomposing the optimal economic dispatch problem such that the

power exchange problem is considered to be the master problem, while the TSO problem is the subproblem, and

the feasible direction trade constraints are linking cuts.

In the following, we will use the CMT concepts, introduced in the previous section, to construct two alternative

intraday market procedures, as shown in Figure 3.1. Both procedures start from the day-ahead solution, which may

be infeasible. The main difference between procedures A and B is how they treat the initial day-ahead solution:

A. In this approach we follow exactly the same procedure as the CMT approach, but we curtail the day-ahead

solution to get an initial feasible trade before starting the intraday market. The advantage of this approach

is that we will reach the optimal nodal solution at the end of the intraday market iterations, as proved by

Wu and Varaiya (1999). It is however, an open question whether and how the day-ahead market participants,

that are affected by the curtailment, should be compensated.

B. Start the intraday market with a day-ahead solution that may be infeasible. The difference with respect to

procedure A is, as we will show in Section 3.5, that we do not necessarily reach the optimal nodal solution,

but we could reach a solution that is more profitable and more feasible than the starting solution.
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Figure 3.1. CMT process description under alternative A (left) and B (right).

We will refer to the plan in iteration k as xk, where k � 0 represents the day-ahead solution. The initial

curtailment in Procedure A is done by the TSO, who will solve (3.10) in order to maximize the curtailment factor

γ, i.e., accept as much as possible of the initial solution x0, such that the curtailed solution γx0 satisfies the network

constraints (3.10b)-(3.10d).

Maximizeγ,f,τ γ (3.10a)

subject to: τn �
¸
iPn

γx0
i , n P N (3.10b)

fl �
¸
nPN

ptdfl,n � τn l P L (3.10c)

� fmaxl ¤ fl ¤ fmaxl l P L (3.10d)

0 ¤ γ ¤ 1 (3.10e)

After the initial curtailment in Procedure A, we make the assignment x1 Ð γx0. For Procedure B, where no
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initial curtailment is done, we assign x1 Ð x0.

In every iteration k, the TSO will announce the ptdfs of the congested lines, i.e., the lines belonging to the set

Lkc � tl P L : |fl| � fmaxl u. (3.11)

Based on the definition from Wu and Varaiya (1999), a broker can facilitate the trades between generators and

consumers by finding profitable trades in the feasible direction via the optimization problem (3.12), where Ik � I

is the set of generators and consumers participating in the trade.

Maximize∆xk

¸
iPIk

cipx
k
i q � cipx

k
i �∆xki q (3.12a)

subject to:
¸
iPIk

∆xki � 0 (3.12b)¸
nPN

ptdfl,n �
¸

iPInXIk

∆xki ¤ 0 l P Lkc (3.12c)

xki �∆xki P C
k
i

�
x0
i , ..., x

k�1
i

�
i P I (3.12d)

The objective (3.12a) of the broker problem is to find ∆xk such that the cost reduction by moving from xk to

xk �∆xk is maximized, subject to the power balance constraint (3.12b) and the feasible direction trade constraint

(3.12c) for congested lines. A profitable trade, according to Definition 1, is an optimal solution where the value of

(3.12a) is positive.

Profitable trades found by the broker may lead to infeasible flows, so the TSO may need to curtail them by

solving (3.13), similar to the initial curtailment problem (3.10) in Procedure A.

Maximizeγ,f,τ γ (3.13a)

subject to: τn �
¸
iPn

xki � γ∆xki , n P N (3.13b)

fl �
¸
nPN

ptdfl,n � τn l P L (3.13c)

� fmaxl ¤ fl ¤ fmaxl l P L (3.13d)

0 ¤ γ ¤ 1 (3.13e)

After curtailment, we initialize the next iteration with xk�1 Ð xk � γ∆xk, and repeat the process.

3.5 Numerical example and results

In this section, a small deterministic 6-bus system is used to clarify how our suggested CMT-based intraday

market can be implemented. With a deterministic example, it is easier to explore how the trading process is managed

by the CMT model. The 6-bus example is depicted in Figure 3.2. The system consists of 2 zones z P tZ1, Z2u

(which can be interpreted as 2 countries), 6 nodes n P tn1, ..., n6u, 3 conventional generators g P tG1, G2, G3u placed

at nodes 1, 2 and 5, respectively. Moreover, there are 3 elastic loads, d P tD1, D2, D3u, located at nodes 3, 4, and
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6, and finally 8 lines l P tL1, ..., L8u. The capacity of the lines is also shown in Figure 3.2. The susceptance of all

lines and the resulting ptdf matrix is illustrated in Table 3.1.
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Figure 3.2. 6-bus example

Table 3.1. Line parameters.

PTDF
Lines Susceptance n1 n2 n3 n4 n5 n6

1-2 1 0.088 -0.530 -0.105 0.030 -0.020 0
1-3 1.5 0.279 -0.011 -0.332 0.094 -0.064 0
1-4 1.6 0.634 0.540 0.437 -0.124 0.084 0
2-3 0.9 0.088 0.470 -0.105 0.030 -0.020 0
3-5 1.1 0.366 0.460 0.563 0.124 -0.084 0
4-5 1.3 0.160 0.095 0.023 0.329 -0.223 0
4-6 0.95 0.474 0.446 0.414 0.547 0.307 0
5-6 1.4 0.526 0.554 0.586 0.453 0.693 0

The related market participants’ data is as follows:

� G1 is a nuclear power plant with capacity of 450 MW, and a constant marginal cost of 12 e/MWh.

� G2 is a gas power plant with 350 MW capacity and a constant marginal cost of 20 e/MWh.

� G3 is a coal power plant with hard coal fuel, the capacity of this plant is 400 MW and its marginal cost of

production equals 17 e/MWh.

� D1 is a load with medium willingness to pay of 23 e/MWh and maximum consumption of 450 MW.

� D2 is a load with low willingness to pay of 21 e/MWh and consumption capacity of 400 MW.

� D3 is a load with high willingness to pay of 30 e/MWh and maximum consumption of 350 MW.

There is one interconnector e between zones z1 and z2. Based on the ATC of this interconnector and the

different approaches mentioned in Section 3.4.5, several cases will be discussed in the subsequent sections.
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3.5.1 Benchmark: Optimal nodal solution

In Figure 3.3 we display the optimal economic dispatch, with optimal generation, consumption, line flows, and

nodal prices. This constitutes the benchmark solution. Line capacities are given by numbers in black, while the

resulting line flows are given by numbers in red. We have marked line flows that are at (and later also above) their

capacity limit by putting a green oval around the numbers.
Benchmark case : Nodal solution with new PTDF matrix 

Objective value=8666.487 
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Figure 3.3. Optimal nodal solution with social surplus = 8666.5.

3.5.2 Starting point: Day-ahead solutions

We will test Methods A and B with two different starting points, depending on how the ATC capacities are

set by the TSO.

If the TSO sets ATC � 8 we get the solution shown in Figure 3.4. The physical flows resulting from the

day-ahead schedule are given by numbers in red, and we see that the flow capacities of several lines are violated.
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Figure 3.4. Day-ahead clearing result with ATC � 8. Social surplus = 10050.

On the other hand, if the TSO sets ATC � 0 we get the solution shown in Figure 3.5. Again, the solution is

infeasible, since the flow over line 1-3 is larger than its capacity.
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Figure 3.5. Day-ahead clearing result with ATC � 0. Social surplus = 9700.

3.5.3 Method A: Curtail day-ahead before intraday starts

3.5.3.1 ATC � 8

According to Method A, the DA schedule shown in Figure 3.4 is curtailed, based on (3.10), resulting in the

solution in Figure 3.6.

Case 2 :  ATC=Inf, DA result is curtailed, new PTDF matrix 
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Figure 3.6. Curtailed starting solution (γ � 0.54).

Now, profitable trades are found with (3.12), resulting in the revised schedule in Figure 3.7.
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Figure 3.7. Iteration 1 - profitable trade. Social surplus = 4380.

63



In order to achieve feasibility, the TSO curtails the schedule by solving (3.13), and we get the schedule in

Figure 3.8.
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Figure 3.8. Iteration 1 - TSO curtailment (γ � 0.106).

This process continues until, after 4 iterations, no further profitable trades can be found, and we end up with

the schedule in Figure 3.14. We note that the final solution is also equal to the optimal nodal solution in Figure

3.3.
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Figure 3.9. Iteration 2 - profitable trade. Social surplus = 3386.
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Figure 3.10. Iteration 2 - TSO curtailment (γ � 0.393).
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3th iteration of ID 

Broker: objective value=1627.985 
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Figure 3.11. Iteration 3 - profitable trade. Social surplus = 1628.
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Figure 3.12. Iteration 3 - TSO curtailment (γ � 0.831).
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Figure 3.13. Iteration 4 - profitable trade. Social surplus = 92.
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4th iteration of ID 

Broker: objective value= 91.796 
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Figure 3.14. Iteration 4 - TSO curtailment not necessary (γ � 1).

3.5.3.2 ATC � 0

We apply (3.10) to the day-ahead solution shown in Figure 3.5, resulting in the curtailed starting point in

Figure 3.15. Figures 3.16-3.21 show the results of 3 iterations, after which no more profitable trades can be found.

Again, the final solution in Figure 3.21 is equal to the optimal nodal solution in Figure 3.3.
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Figure 3.15. Curtailed starting solution (γ � 0.511).1th iteration of ID 
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Figure 3.16. Iteration 1 - profitable trade. Social surplus = 4318.
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Figure 3.18. Iteration 2 - profitable trade. Social surplus = 926.
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Figure 3.19. Iteration 2 - TSO curtailment (γ � 0.724).
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Figure 3.20. Iteration 3 - profitable trade. Social surplus = 72.
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Figure 3.21. Iteration 3 - TSO curtailment not necessary (γ � 1).

3.5.4 Method B: Start intraday from (possibly infeasible) day-ahead solution

3.5.4.1 ATC � 8

We start Method B from the day-ahead solution shown in Figure 3.4. When we apply (3.12) to this solution,

we cannot find any profitable trades. Hence, for this example, Method B is not able to detect any trades that can

relieve the congestion.

3.5.4.2 ATC � 0

Starting with the uncurtailed day-ahead solution shown in Figure 3.5, we apply (3.12), resulting in the solution

shown in Figure 3.22. Curtailment by (3.13) then gives the solution in Figure 3.23.
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Figure 3.22. Iteration 1 - profitable trade. Social surplus = 350.
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Figure 3.23. Iteration 1 - TSO curtailment (γ � 0.31).

In this case, no further profitable trades can be found, so the procedure stops after just one iteration. We

notice that the final solution is not feasible, since the capacity of line 1-3 is still violated. However, it is closer to

being feasible than it was in the day-ahead solution, since the flow over line 1-3 has been reduced, and no other

constraints are violated. Interestingly, it turns out that the final solution in Figure 3.23 is identical to the optimal

economic dispatch that we obtain if we relax the capacity constraint of the violated line 1-3, and set it equal to the

flow resulting from the day-ahead solution. This solution is shown in Figure 3.24.
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Figure 3.24. Optimal economic dispatch with relaxed capacity constraint on line 1-3.
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3.5.5 Summary of example

If the day-ahead solution can be curtailed, as with Method A, we can reach the optimal nodal solution. It

does not matter which ATC capacity the day-ahead solution is based on, except that the convergence time will be

affected. In the example, we have used the uniform curtailment method of the CMT approach. However, in practice,

other methods to obtain a feasible starting solution before the intraday market opens could also be applied, such

as redispatch or counter trading.

If the day-ahead solution cannot be curtailed, as with Method B, the CMT-based intraday market will not

worsen any physically overloaded links, as long as the load factors/ptdfs of these constraints are communicated to

the market place. On the contrary, The CMT approach can help to get closer to a feasible solution, if profitable

trades can be found in a feasible direction. The final solution will depend on the ATC capacities used in the

day-ahead market, and we can have cases where no profitable trades can be found. The final solution will in

general not be equal to the optimal nodal solution, but corresponds to the optimal solution of a relaxed optimal

economic dispatch problem, where the capacity of links that are violated in the day-ahead solution is set equal to

the day-ahead flows.

3.6 Conclusions

Electricity markets across the world differ substantially when it comes to dealing with transmission constraints

and the complexities created by the loop flow characteristics of electricity. This is reflected in the nodal/zonal

debate, where for instance the North American and European power markets have chosen different solutions. The

coordinated multilateral trade (CMT) model is equivalent to the nodal pricing model when it comes to efficiency,

but differs when it comes to the coordination mechanism (technical information about power transfer distribution

factors of congested lines) and information needs and responsibilities for market operators and market participants.

With the present developments in the European intraday markets, with a joint limit order book, and information

about transfer capacities provided by the TSOs, we argue that the CMT model could be used in the European

intraday market, in order to incorporate more detailed information about location of bids and their influence on

congested lines in the system. The benefit would be that intraday trades could improve, and at least not worsen,

capacity constraints in the physical electricity networks. The CMT model can be used in a decentralized setting,

with brokers organizing trades continuously, but it can also be used if frequent batch auctions were to be introduced

in the market.

In this paper, we have outlined the CMT model in the setting of the European intraday market, and we

have discussed the information needs if the CMT model is to be an efficient procedure for managing transmission

constraints in the integrated European intraday markets. The European power exchanges run the day-ahead markets

based on the Euphemia algorithm, which needs zonal level data, while the requirements of the CMT approach is

access to nodal level data. This means that if the power exchanges have access to nodal level supply and demand

functions for the intraday market, then the coordination between power exchanges and TSOs can be done just by

transferring technical information. We have illustrated the iterative CMT procedure on a small 6-node example,

illustrating that the number of iterations and the final result depends on the capacities given to the day-ahead

market (assuming the ATC model) and whether the starting point of the intraday market is the solution to the

day-ahead market or a curtailed (and therefore feasible) solution. Even if we start the intraday market from an
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infeasible day-ahead solution, the intraday trading can improve the constraints by finding profitable trades that

don’t aggravate overloads.

Since we have focused on the congestion management aspects, we have assumed that supply and demand

functions are the same in day-ahead as in the different intraday market stages. Implicitly this means that the only

purpose of the intraday market is to reduce imbalance costs due to the network simplifications in the day-ahead

market. Even in this simplified setting, further research is required to understand whether the number of iterations

in the CMT based intraday market is tractable for realistic networks, and how it depends on settings in the day-

ahead market. Another avenue for further research is to assess the CMT model in relation to other important

purposes of the intraday markets, like handling of unexpected events, forecasting errors in intermittent generation,

etc.
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Abstract

With the Europe 2020 strategy, that targeted 20% of gross final energy consumption from renewable sources by 2020,

the security of power systems has been confronted with new challenges due to the stochastic nature of renewable

generation. Consequently, the EU Commission has set the electricity market design reforms high on the agenda.

Because of this, it has been decided to complement the already established power markets with pan-European

intraday auctions. On the one hand, these auctions allow to price cross-zonal capacity, and on the other hand,

by providing new trading opportunities closer to the delivery hour, the risk for the intermittent generators to be

imbalanced in the real-time diminishes. The optimal timing of these auctions is affected by two contradictory

factors; by getting closer to the delivery hour there will be lower uncertainty due to the more accurate forecasts,

and higher flexibility costs of the system due to the activation of more expensive flexibility providers. In this

paper, standard deviation (STD) is used as a measure of uncertainty. By experimenting with several scenario trees

where the standard deviation (STD) is declining from day-ahead to real-time, we find that in a sequential market

setting, STD reduction itself is not enough to say that the latest intraday option is the best (by fixing the other

variables). STD is mainly reflected in re-adjustment quantities and therefore, the multiplicative effect of flexibility

cost and re-adjustment quantities determine the optimal intraday place not the trade-off between flexibility cost

and STD reduction. Furthermore, an optimal intraday auction placement vigorously depends on the technological

combination in the considered market. For instance, in hydro-dominated systems adding an intraday auction does

not have any salient effect while in systems with large share of thermal plants with high flexibility costs, adding an

intraday auction could be hugely cost-effective.

Keywords: Renewable integration, Sequential markets, Intraday auctions, Multi-stage scenario tree generation,

Conditional expectations, clustering (bucketing) approach
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4.1 Introduction

The decision of the European Commission to integrate European intraday markets by a common continuous

trading approach, has unveiled new challenges regarding the pricing of cross-zonal capacity. The guideline on

capacity allocation and congestion management (CACM) requires methods for pricing the capacity that market

participants can use on cross-border lines (Commission Regulation (EU), (2015)), while continuous trading is not

in line with this guideline (NVE THEMA Consulting Group (2019)). In continuous trading, available capacity

is allocated based on a first-come-first-serve principle, and if only parts of the cross-border capacity is assigned

to the first cleared trade, the capacity is not scarce. If, after subsequent trades, the capacity becomes scarce, it

is not possible for capacity owners to place a value on this scarcity, because it has already been assigned at no

cost. Hence, allocating capacity to the continuous trading intraday market may not only result in revenue loss for

capacity owners, but may also provide insufficient signals and incentives for efficient assignment and development

of cross-zonal capacity. Therefore, in spite of the fact that CACM requires pricing of cross-zonal capacity to be

part of the market design, thus far the continuous intraday market does not include this feature.

Consequently, the Agency for the Cooperation of Energy Regulators (ACER) has decided to complement the

already established continuous trading intraday market with three pan-European implicit auctions to price cross-

zonal capacity (ACER, (2019)). The main reason for this decision is that with auctions, all offers and bids are

gathered and cleared simultaneously. If capacity constraints are represented in the market clearing, cross-zonal

capacity scarcity (if there is one) is reflected in the values of the cleared trades. The payment to the capacity owner

is the difference between consumers’ and generators’ payments, and this payment may create a financial incentive for

capacity owners to either release capacity for intraday trade or to invest in actions that enhance intraday cross-zonal

capacity.

Given that there will be intraday auctions, the following important questions arise:

� How many intraday auctions should there be per day? Should there be a small number of large auctions, or

very fast and frequent auctions? Generally speaking, maximum efficiency is attainable in large auctions, where

many bids and offers are optimized simultaneously. Hence, we can argue in favor of having a few sequential

and large intraday auctions. In contrast to continuous trading, however, this design would postpone some of

the potential trades until the next auction, and this deferral might either deprive the less flexible providers

from participating in the intraday market at their latest possible time, or prevent intermittent generators from

immediate self-balancing, when updated information is available (Henriot (2012a) and Hagemann (2013a)).

Even though fast and frequent auctions may allow instant response to new information, they may uninten-

tionally clear sub-optimal trades, because a better trade could have been cleared later, if we had waited for

more bids and offers. However, if uncleared submitted bids and offers can be transferred to the next auction,

such that potentially valuable trades are not wasted, the efficiency of this design may improve.

� What is the optimal timing of the added auctions? Should they run before, after, in parallel, or even without

a continuous trading intraday market? Two important factors play a role in deciding about the timing of an

auction, i.e. the share of uncertain production and the flexibility of the system to respond to this uncertainty.

Henceforth, in the following we focus on the timing of an intraday auction and the two essential factors that

affect this decision.

With more intermittent generators being integrated into the power system, accurate forecasting systems become
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increasingly valuable, since large forecasting errors can lead to major economic inefficiencies due to non-optimal

schedules. NREL (2012) analyzes the wind forecast error distributions in several electrical systems, at two different

time scales, i.e. day-ahead and hour-ahead, which are both important when planning unit commitment and dispatch.

It is shown that shorter term forecasts, that are utilized in intraday markets, have smaller forecasting errors than

day-ahead forecasts, and therefore by introducing intraday markets, only the smaller short term forecast errors

must be balanced by flexibility providers in real time. Fabbri et al. (2005), Graeber et al. (2010) and Monteiro

et al. (2009) also show that when getting closer to the delivery time, the wind power forecast errors, and therefore

uncertainty, is declining.

Contrary to the reduced uncertainty, when approaching the delivery time, the flexibility of the power system

decreases, and therefore the costs of adjusting plans increase. Figure 4.1 compares the operating cost and operational

flexibility for different power plant technologies (adapted from Kleit et al. (2006)). As the figure shows, on the one

side, hydroelectric generators can ramp up/down in only a few minutes, and with very low cost, while on the other

side, nuclear power plants are not able to change their schedules for many days. NETL (2012) also shows how

short-term deviations from initial plans can enforce extra cost on conventional power plants. Hentschel et al. (2016)

develop a flexibility evaluation tool for conventional power plants, which translates a change in technical parameters

to an economic effect and revenue. By having access to such tools, generators, as well as flexible consumers, are

able to show their flexibility capability in various markets, by means of different cost and benefit functions. All the

mentioned references emphasize that the further we move away from the day-ahead market, towards the delivery

time, the higher costs are required for altering our initial position. However, this cost function is not increasing

continuously. Over some periods, waiting may have little or even no impact on flexibility costs, while over other

periods, many sources of flexibility may become unavailable.

Hence, the decline in uncertainty and incline in flexibility cost over time demonstrate a trade-off between

postponing dispatch until the uncertainty from generation of stochastic producers is reduced, and hastening dispatch

to avoid rising flexibility costs associated with changes in production and consumption on short notice. This trade-

off, which is displayed in Figure 4.2, demonstrates that early market clearing results in scheduling of cheap base

load power plants under high uncertainty, while later market clearing has little uncertainty but higher generation

costs.

In this paper, we address the question of when, during the time between a day-ahead and a real-time market, it

is best to add an intraday auction, given the trade-off between uncertainty and flexibility cost. Hence, we consider

a sequential three-settlement electricity market, composed of a day-ahead, an intraday, and a real-time market.

Three potential points in time (i.e. hours) are investigated for the intraday market. For the sake of simplicity, the

following assumptions have been made:

� It is assumed that the day-ahead market is cleared at time 24:00 of day d � 1 for delivery hour 24:00 of day

d, i.e. we consider load and generation volumes for a single hour 24 hours ahead. Then deviations from the

day-ahead production and consumption schedules are cleared at one of the potential hours for the intraday

market, i.e. hours 6:00, 12:00 or 18:00 of day d, taking into account the information available at the time

of the intraday market. Finally, the energy imbalances are settled by a real-time market for delivery time

24:00, some minutes before hour 24:00, when all uncertainty regarding generation from stochastic sources is

resolved.

� Our model is similar to the conventional dispatch model in Morales et al. (2014) and the myopic model in

Bjorndal et al. (2018). However, contrary to their conventional two-stage models (consisting of day-ahead
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Figure 4.1. Comparison of operating cost and operational flexibility for different power plant technologies (most
renewables are excluded since their operational flexibility is partly dependent on prevailing weather conditions such
as irradiance and wind speed/direction)

Figure 4.2. Trade-off between uncertainty and flexibility cost

and real-time), we analyze the conventional three-stage model, when production is uncertain and flexibility

is costly. In conventional dispatch models the uncertainty is captured by a deterministic approach, where

the day-ahead and intraday schedules of stochastic producers are constrained to their expected generation.

In contrast to the stochastic dispatch models, where the effect of decisions in later markets can be reflected

on the former markets by recourse, in conventional models the day-ahead decision is independent of intraday

and real-time decisions, and similarly, intraday decisions are made irrespective of real-time decisions. Hence,

conventional models are usually computationally tractable at the cost of suboptimal solutions.

� Even though pricing of cross-zonal capacity is an important reason for adding intraday auctions, network

constraints are neglected in this paper. Our main aim here is to analyze the impact of adding an extra

auction on the total cost of the system, and network constraints could easily be incorporated.

The rest of the paper is structured as follows. Section 4.2 briefly reviews the literature about intraday auctions

and timing issues in the power market. In Section 4.3, the mathematical models of sequential markets are described,

and these models will be tested on a numerical example explained in Section 4.4. In Section 4.5, two approaches for

scenario generation are explained. Section 4.6 presents the results for the numerical example on different scenario
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trees, and finally, conclusions are given in Section 4.7.

4.2 Literature review

Neuhoff et al. (2016a) point to the advantages of adding multiple intraday auctions to the existing markets,

considering eight criteria such as improving market liquidity, facilitating contracting for flexibility, allowing effective

participation of players of all scales and technologies, ensuring technical feasibility, compatibility with current

continuous trading, ensuring consistency between intraday and balancing, allowing for pricing and efficient usage

of cross-zonal capacities, and finally, reducing unannounced loop flows. Due to the mentioned benefits, intraday

auctions make up an important step to enhance efficiency and to reduce the operational cost of the European power

system. In parallel, they empirically assess how adding auctions to the continuous intraday trading can improve

the performance of the market. In Neuhoff et al. (2016c) the effect of adding the 3 pm local auction (for quarters

in Germany in December 2014 at the European Power Exchange (EPEX SPOT)) to the current continuous trading

is investigated. They find that the additional auction enhances liquidity, gives rise to a higher market depth and

to reduced price volatility.

Similar to Neuhoff et al. (2016a), NVE THEMA Consulting Group (2019) analyzes how the various intraday

market designs, including one or more auctions alongside or instead of continuous intraday trading, affect market

efficiency by investigating eight mechanisms such as simultaneous clearing of multiple bids, revenues for cross-zonal

capacity, providing focal points for trade, pay-as-clear pricing, timing of trade, bid structures, transaction and

staffing costs and hedging quality. With respect to all these characteristics, they conclude that the introduction of

intraday auctions entails the potential to support efficiency. They are, however, more vague about the number of

auctions and the way they are organized alongside continuous trading.

In addition to the papers that emphasize the role of intraday auctions, other papers focus on the timing

of power markets, considering the large scale integration of renewables. For instance, Borggrefe and Neuhoff

(2011) state that in spite of the substantial improvement in wind forecasting methods, the day-ahead forecast is

still not able to capture the increasing uncertainty due to the surging intermittent generation in the European

power system. Therefore, by reducing the lead-time for wind forecasts through introducing intraday markets, it is

possible to improve wind forecasts within the hours between the day-ahead and real-time. However, the new design

(including intraday) has to satisfy six criteria, such as facilitating system-wide intraday adjustments, allowing co-

optimization of energy and reserve services, allowing inter-temporal optimization of energy and reserve, benefiting

from international integration of power systems, integrating demand side into intraday and real-time, and lastly,

effective monitoring of market power.

Schroder and Weber (2011) is the only reference we have found that focuses mainly on the optimal power

market timing for wind energy with respect to the trade-off between wind uncertainty and flexibility cost. The

three different timing options -changing the gate closure horizon, changing the trading period length, and shifting

the trading period- are conceptually analyzed for the day-ahead market. In their model, at first the hourly forecast

error that needs to be corrected is quantified, then they are multiplied by flexibility costs of the 5 different scenarios

(on flexibility costs) and finally the savings for wind power generation are calculated with respect to the three

timing options. To the best of our knowledge, no previous paper has quantitatively and analytically examined the

optimal timing of an intraday auction in the presence of wind uncertainty and flexibility costs. For a specific delivery
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hour, the day-ahead economic dispatch problem with expected wind power at delivery hour is optimized. Then

for an intraday auction at three places optimal re-adjustments are done to correct expected wind deviations from

day-ahead market. Likewise, the final optimal reschedule is done in real-time to cope with the real wind deviations

from intraday. Consistent to this structure, several 5-stage scenario trees on expected (at day-ahead and intraday

stage) and real (at real-time stage) wind power are tested to find the optimal intraday timing. Our scenario tree

generation approach is specifically practical for sequential markets that are clearing with the expected wind power,

not the wind power itself. Hence, this is also another contribution of this paper.

4.3 Mathematical model

4.3.1 Notation

The model has a set I of participants, either generators or consumers. For each i P I, the variables xDAi , xIDi,ωID

and xRTi,ωRT represent generation or consumption quantities for the day-ahead, intraday, and real-time markets,

respectively. Positive values represent generation, while negative values represent consumption.

FS1
i represents the set of feasible solutions corresponding to participant i for the day-ahead market. For the

intraday market, the feasible set FS2
i pω

ID, xDAi q depends on the intraday scenario ωID P ΩID as well as decision xDAi

from the day-ahead market. Finally, for the real-time market, the feasible set FS3
i pω

RT , xDAi , xIDi,ωID q depends on

the realized scenario ωRT P ΩRT and decisions xDAi and xIDi from the day-ahead and intraday markets, respectively.

A feasible solution (xDAi , xIDi and xRTi ) for all three stages must satisfy the following constraints:

xDAi P FS1
i i P I (4.1)

xIDi,ωID P FS2
i pω

ID, xDAi q i P I, ωID P ΩID (4.2)

xRTi,ωRT P FS3
i pω

RT , xDAi , xIDi q i P I, ωRT P ΩRT (4.3)

Each market participant i is located in a specific node n P N , and we let In denote the set of generators /

consumers located in node n. Nodes of the network are connected by a set of physical transmission lines. Since

in this paper we are focusing on the impact of having three sequential markets, the congestion management issues

will be neglected.
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4.3.2 Day-ahead market (first stage)

The day-ahead market clearing model identifies the optimal schedule xDAi that minimizes day-ahead generation

cost of the system as follows:

Minimizex,τ
¸
iPI

CDAi pxDAi q (4.4a)

subject to: τn �
¸
iPIn

xDAi � 0 n P N (4.4b)¸
nPN

τn � 0 (4.4c)

xDAi P FS1
i i P I (4.4d)

For each market participant i, there is a linear day-ahead marginal cost or benefit function ai � bix
DA
i with

non-negative parameters ai and bi. For a consumer, as mentioned in Section 4.3.1, we have xDAi   0, and the

corresponding curve ai � bixi will therefore have a downward slope. The total day-ahead cost/benefit curve, which

can be derived from the marginal cost/benefit curve, is a quadratic function

CDAi
�
xDAi

�
� aix

DA
i �

1

2
bix

DA2

i .

The number τn is the net inflow of power in node n from the network. Therefore, constraints (4.4b) enforce

the day-ahead balancing conditions at each node, stating that the power generation plus the net power flow equals

the demand at each node. The equality (4.4c) states that the total generation must be equal to the total demand

in the whole network, i.e. we consider a lossless system. Constraints (4.4d) represents feasibility constraints for

generators and consumers, e.g., capacity limits, non-negativity constraints on generation and negativity constraints

on consumption variables. In particular, we assume that the day-ahead quantity for the stochastic generators GST

is constrained by

0 ¤ xDAi ¤ pxDAi i P GST , (4.5)

e.g., it must be a non-negative quantity less than or equal to the forecasted (expected) generation pxDAi . Since the

marginal cost of a stochastic generator i P GST is usually lower than for the conventional generators, and given

that there are not any other binding constraints, the stochastic generator will often be dispatched at its forecasted

capacity, i.e., xDAi � pxDAi .

4.3.3 Intraday market (second stage)

Once the day-ahead schedule xDAi has been obtained from (4.4), an intraday auction allows market participants

to adjust their physical positions closer to the real-time with respect to their updated forecast at intraday time. All

intraday parameters and decision variables are augmented with the scenario subscript ωID. For generator i P GST ,

let pxIDi,ωID denote the forecasted generation at delivery time, as seen at intraday time in scenario ωID. Over- or

underestimation at former stage(s) (day-ahead market) may result in different actions at intraday:
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� Overestimation (pxDAi ¡ pxIDi,ωID ): The stochastic generator may have to buy back power that it has sold in the

day-ahead market, i.e., xDAi � xIDi,ωID ¡ 0.

� Underestimation (pxDAi   pxIDi,ωID ): The stochastic generator may be able to sell extra power in the intraday

market, i.e., xDAi � xIDi,ωID   0.

If the scheduled generation by stochastic generators GST is increased, i.e.,
°

iPGST

pxIDi,ωID � xDAi q ¡ 0, then this

may be compensated by other agents in the following ways:

� The power produced by flexible generators can be reduced. In market terms, this means that the generators

that are flexible in the intraday market, i P GIDflex, buy back a certain amount xID
buy

i,ωID of energy in the intraday

market.

� The power consumed by consumers that are elastic in the intraday market, i P DID
elastic, can be increased. In

other words, elastic demands can buy a certain amount xID
buy

i,ωID of energy in the intraday market.

Likewise, if the scheduled generation by stochastic generators is reduced, i.e.,
°

iPGST

pxIDi,ωID � xDAi q   0, then

this may be compensated by other agents in the following ways:

� Increase the power production of flexible generators, i P GIDflex, this implies that flexible generators sell an

additional amount xID
sell

i,ωID of energy in the intraday market.

� Reduce the power consumed by elastic demands, i P DID
elastic , which is equivalent to say that flexible demands

can sell a certain amount xID
sell

i,ωID of energy in the intraday market.

For each intraday scenario ωID a revised schedule xIDωID for the delivery hour is found by solving the following

optimization problem:

MinimizexID,τ

¸
iPI

�
CDAi pxIDi,ωID q � CIDi pxID

buy

i,ωID , xID
sell

i,ωID q
	

(4.6a)

subject to: τn �
¸
iPIn

xIDi,ωID � 0 n P N (4.6b)¸
nPN

τn � 0 (4.6c)

xIDi,ωID P FS2
i pω

ID, xDAi q i P I (4.6d)

xIDi,ωID � xDAi � xID
sell

i,ωID � xID
buy

i,ωID i P GIDflex YDID
elastic (4.6e)

xID
sell

i,ωID ¥ 0, xID
buy

i,ωID ¥ 0 i P GIDflex YDID
elastic (4.6f)

Similar to the day-ahead market clearing model in (4.4), the constraints (4.6b) and (4.6c) enforce the intra-

day balancing conditions at each node and the energy balance for the entire network, respectively. Constraint

(4.6d), similar to (4.4d), represents feasibility constraints for generators and consumers, e.g., non-negativity (for

xIDi,ωID , i P G
ID
flex) / negativity constraints (for xIDi,ωID , i P D

ID
elastic) and capacity constraints. Note that the feasible

set FS2
i pω

ID, xDAi q depends on the current intraday scenario ωID as well as the day-head schedule xDAi . In partic-

ular, as in (4.5), we assume that the revised schedule after the intraday market is constrained by a capacity equal

to the forecasted (expected) generation:

0 ¤ xIDi,ωID ¤ pxIDi,ωID i P GST (4.7)
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Constraints (4.6e)-(4.6f) defines the buy and sell quantities in the intraday market, i.e., the changes relative to

the day-ahead schedule.

The objective function (4.6a) represents the total cost of dispatching participants in both day-ahead and

intraday markets, provided that the intraday schedule initiated from the day-ahead schedule. The first term

CDAi pxIDi,ωID q is the total cost (sum of both markets) for generator/consumer i evaluated at the day-ahead cost

parameters, while the additional flexibility cost caused by rescheduling (buy/sell) in the intraday market is given

by (4.8),

CIDi pxID
buy

i,ωID , xID
sell

i,ωID q � paID
sell

i � aDAi q xID
sell

i,ωID �
1

2
pbID

sell

i � bDAi qpxID
sell

i,ωID q
2

�paDAi � aID
buy

i q xID
buy

i,ωID �
1

2
pbID

buy

i � bDAi qpxID
buy

i,ωID q
2

(4.8)

Gen

price

bDA

bID
sell

xIDsell

aIDsell
� aDA

aDA

xDA xID

Day-ahead

Intraday

(a) Sell in intraday market for generator i

Gen

price

bDA

bID
buy

xIDbuy

aDA
� aIDbuy

aDA

xDAxID

Day-ahead

Intraday

(b) Buy in intraday market for generator i

Con
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bDA

bID
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xIDsell

aIDsell
� aDA

aDA

�xDA
�xID

Day-ahead

Intraday

(c) Sell in intraday market for consumer i

Con
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bDA

bID
buy

xIDbuy

aDA
� aIDbuy
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�xDA
�xID
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Intraday

(d) Buy in intraday market for consumer i

Figure 1. Supply and demand curves in intraday market

1

Figure 4.3. Supply and demand curves in intraday market
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The extra flexibility costs are reflected by cost and benefit function parameters that differ from those in the day-

ahead formulation (4.4). For any flexible participant i, there are parameters aID
sell

i and bID
sell

i for the intraday sell

curve and aID
buy

i and bID
buy

i for the intraday buy curve, where aID
buy

i ¤ ai ¤ aID
sell

i and bi ¤ mintbID
buy

i , bID
sell

i u.

The objective function (4.6a) is illustrated by the grey and green areas in Figure 4.3. Areas with vertical grey lines

represent the value of CDAi pxIDi,ωID q, while the parallelograms and triangles with diagonal green lines represent the

flexibility cost CIDi pxID
buy

i,ωID , xID
sell

i,ωID q.

4.3.4 Real-time market (the third stage)

The production and consumption quantities scheduled in markets prior to the balancing market can substan-

tially deviate from the actual production and consumption at the real time. This is specifically evident in markets

with a high share of stochastic production. Thus, the real-time market closes the balance gap between the other

prior markets and real-time energy delivery. Therefore, this is the last market opportunity to balance production

and consumption.

Let the optimal day-ahead schedule xDAi and optimal intraday adjustment xIDi,ωID (that involves xselli,ωID or

xbuy
i,ωID ) be obtained from optimization problems (4.4) and (4.6). Hence, decisions at this stage depend on the

potential stochastic production pxRTi,ωRT as well as the first stage decision xDAi and the second stage decision xIDi,ωID .

Therefore, the potential energy imbalance for a stochastic generator i is given by pxRTi,ωRT � xIDi,ωID , and the total

imbalance in the system equals
°

iPGST

ppxRTi,ωRT �x
ID
i,ωID q. Like in the intraday market, this imbalance could be positive,

which illustrates surplus of generation, or negative, implying a shortage of generation. A generation surplus can be

handled by:

� Reducing the power generated by flexible generators i P GRTflex by down-regulation or buying back a certain

amount xdni,ωRT energy in the balancing market.

� Increasing the power consumption of elastic demands i P DRT
elastic by down-regulation or buying a certain

amount xdni,ωRT of energy in the balancing market.

� Spilling a part xspill
i,ωRT , i P GST of the stochastic production (However, stochastic generation is usually spilled

due to network congestion but since in this paper network constraints have not been considered, we do not

model spillage as well).

Similarly, a shortage of power can be handled by:

� Increasing the power generated by flexible generators i P GRTflex by up-regulation or selling a certain amount

xup
i,ωRT of energy in the balancing market.

� Decreasing the power consumption of elastic demands i P DRT
elastic by up-regulation or selling a certain amount

xup
i,ωRT of energy in the balancing market.

� Shed a part xshedi,ωRT , i P D
RT
inelastic of the inelastic demand with a very high value of lost load (VOLL).

As indicated previously in Section 4.3.3, all real-time decision variables xupi , xdni (i P GRTflex or i P DRT
elastic)

and xshedi (i P DRT
inelastic) must be subscripted by ωRT to indicate the realization pxRTi,ωRT of stochastic production.

Consequently, in the real-time market, for every scenario ωRT P ΩRT , the following optimization problem is solved

to minimize the cost of correcting energy imbalances, provided that the real-time decision initiated from the optimal

intraday market decision xID :
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Minimize
xRT ,xup,xdn

xshed,xspill,τ

¸
iPI

pCDAi pxRTi,ωRT q � CIDi pxselli,ωID , x
buy
i,ωID , x

up
i,ωRT , x

dn
i,ωRT q�

CRTi pxup
i,ωRT , x

dn
i,ωRT qq �

¸
iPDRT

inelast

V OLLi � x
shed
i,ωRT (4.9a)

subject to: τn �
¸
iPn

xRTi,ωRT � 0 n P N (4.9b)¸
nPN

τn � 0 (4.9c)

xRTi,ωRT P FS3
i pω

RT , xDAi , xIDi q i P I (4.9d)

xRTi,ωRT � xDAi � xselli,ωID � xbuy
i,ωID � xup

i,ωRT � xdni,ωRT i P GRTflex YDRT
elastic (4.9e)

xup
i,ωID , x

dn
i,ωID ¥ 0 i P GRTflex YDRT

elastic (4.9f)

xRTi,ωRT ¤ pxRTi,ωRT i P GST (4.9g)

xRTi,ωRT � xDAi � xshedi,ωRT i P DRT
inelast (4.9h)

xshedi,ωID ¥ 0 i P DID
inelast XDRT

inelast (4.9i)

Similar to the day-ahead and intraday market clearing model in (4.4) and (4.6), the constraints (4.9b) and (4.9c)

enforce the intraday balancing conditions at each node and the energy balance for the entire network, respectively.

Constraint (4.9d), similar to (4.4d) and (4.6d), represents feasibility constraints for generators and consumers, e.g.,

non-negativity (for xRTi,ωRT , i P G
RT
flex) / negativity constraints (for xRTi,ωRT , i P D

RT
elastic) and capacity constraints.

Note that the feasible set FS3
i pω

RT , xDAi , xIDi q depends on the current real-time scenario ωRT as well as the day-head

and intraday schedules xDAi and xIDi .

Constraints (4.9e)-(4.9f) define the up and down regulation quantities in the real-time market, i.e., the changes

relative to the day-ahead schedule xDAi and intraday schedule xbuyi or xselli . Constraints (4.9g) show that the final

schedule of stochastic generator i at the end of the real-time market cannot be more than its real generation.

For those consumers that are inelastic in both day-ahead and intraday markets, in case that day-ahead allocated

demand cannot be satisfied, part of the load can be shed by constraints (4.9h)-(4.9i) but with very high value of

lost load cost, VOLL (the reason xshedi,ωRT is added to xDAi , instead of being subtracted, is that xDAi is assumed to

be negative for consumers).

Flexible generators and elastic demands are assumed to be less available and more costly in the real-time market

than in the day-ahead and intraday markets. For any market participant i which is flexible in real-time (i P GRTflex

or i P DRT
elastic) there are parameters aRT

up

i and bRT
up

i for up-regulation and aRT
dn

i and bRT
dn

i for down-regulation

in the real-time market, such that aRT
up

i ¥ aID
sell

i ¥ aDAi ¥ aID
buy

i ¥ aRT
dn

i , bDAi ¤ bID
buy

i ¤ mintbRT
up

i , bRT
dn

i u,

and bDAi ¤ bID
sell

i ¤ mintbRT
up

i , bRT
dn

i u.

The objective (4.9a) of the real-time market clearing is to minimize the cost of correcting imbalances with

respect to the previous markets dispatches. We can explain the objective function as the sum of three terms,

given by (4.10), (4.11), and (4.12). The first term CDAi pxRTi,ωRT q is the total cost of generation and consumption

for the final dispatch xRTi,ωRT evaluated at the day-ahead cost parameters. The extra flexibility cost from intraday

and real-time rescheduling, evaluated at intraday parameters, is given by CIDi pxselli,ωID , x
buy
i,ωID , x

up
i,ωRT , x

dn
i,ωRT q, while
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CRTi pxup
i,ωRT , x

dn
i,ωRT q is the additional cost of real-time redispatch evaluated at the real-time cost parameters.

As previously mentioned, in this paper which is in line with the current European sequential market design,

when we are at the intraday and real-time stages, we know the value of xDAi . Hence, in all equations (4.6)-(4.13),

xDAi is a known value, and not a variable. By the same logic, xselli,ωID and xbuy
i,ωID are known values at the real-time

stage equations (4.9)-(4.13). Therefore, in order to formulate (4.11) and (4.12), instead of using binary variables,

we are able to use the indicator function γp�q for xselli,ωID and xbuy
i,ωID , where γpuq � 1 for u � 0 and γpuq � 0 for

u � 0.

CDAi pxRTi,ωRT q � aDAi

�
xDAi � xID

sell

i,ωID � xID
buy

i,ωID � xRT
up

i,ωRT � xRT
dn

i,ωRT

	
(4.10a)

�
1

2
bDAi

�
xDAi � xID

sell

i,ωID � xID
buy

i,ωID � xRT
up

i,ωRT � xRT
dn

i,ωRT

	2

(4.10b)

CIDi

�
xselli,ωID , x

buy
i,ωID , x

up
i,ωRT , x

dn
i,ωRT

	
��

aID
sell

i γpxselli,ωID q � aID
buy

i γpxbuy
i,ωID q � aDAi

	�
xID

sell

i,ωID � xID
buy

i,ωID � xRT
up

i,ωRT � xRT
dn

i,ωRT

	
(4.11a)

�
1

2

�
bID

sell

i γpxselli,ωID q � bID
buy

i γpxbuy
i,ωID q � bDAi

	�
xID

sell

i,ωID � xID
buy

i,ωID � xRT
up

i,ωRT � xRT
dn

i,ωRT

	2

(4.11b)

CRTi

�
xup
i,ωRT , x

dn
i,ωRT

	
�

�
aRT

up

i � aID
sell

i γpxselli,ωID q � aID
buy

i γpxbuy
i,ωID q

	
xRT

up

i,ωRT (4.12a)

�
�
aID

sell

i γpxselli,ωID q � aID
buy

i γpxbuy
i,ωID q � aRT

dn

i

	
xRT

dn

i,ωRT (4.12b)

�
1

2

�
bRT

up

i � bID
sell

i γpxselli,ωID q � bID
buy

i γpxbuy
i,ωID q

	�
xRT

up

i,ωRT

	2

(4.12c)

�
1

2

�
bRT

dn

i � bID
sell

i γpxselli,ωID q � bID
buy

i γpxbuy
i,ωID q

	�
xRT

dn

i,ωRT

	2

(4.12d)
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Figure 1. Sell in intraday and up-regulate in real-time

1

(a) Sell in intraday and up-regulate in real-time.
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Figure 1. Buy back in intraday and dn-regulation in real-time

1

(b) Buy in intraday and down-regulate in real-time.

Figure 4.4. Two simple cases for the cost function (4.9a).

In order to explain the functions (4.10), (4.11), and (4.12), for the case of a flexible generator, we use the

diagrams in Figures 4.4 and 4.5. Figure 4.4a illustrates the case where the generator sells additional power in
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the intraday market and up-regulates even further in the real-time market. The final real-time volume is then

xRT � xDA�xID
sell

�xRT
up

. The cost of this volume evaluated at day-ahead parameter values is represented by the

grey vertically hatched area, which consists of the area of a rectangle (4.10a) plus the area of a triangle (4.10b), with

xID
buy

� xRT
dn

� 0. The extra flexibility cost of intraday and real-time redispatch is given by the dotted green area,

i.e., the sum of the area of the parallelogram (4.11a) plus the area of a triangle (4.11b). Since xID
buy

� xRT
dn

� 0,

(4.11a) is equal to paID
sell

i �aDAi qpxID
sell

i,ωID �xRT
up

i,ωRT q and (4.11b) is equal to 1
2 pb

IDsell

i �bDAi qpxID
sell

i,ωID �xRT
up

i,ωRT q
2. Finally,

the pink horizontally hatched area represents the extra cost of real-time redispatch at real-time cost parameters,

and is again given by the sum of the area of a parallelogram (4.12a) and the area of a triangle (4.12c). Note that,

since xID
buy

� xRT
dn

� 0, (4.12a) equals paRT
up

i � aID
sell

i qxRT
up

i,ωRT , (4.12c) equals 1
2 pb

RTup

i � bID
sell

i qpxRT
up

i,ωRT q
2, and

both (4.12b) and (4.12d) evaluate to zero.

Figure 4.4b illustrates the case where a generator buys back power in the intraday market and down-regulates

even further in the real-time market. The final real-time volume is xRT � xDA � xID
buy

� xRT
dn

, and xID
sell

�

xRT
up

� 0. The cost of the real-time volume evaluated at day-ahead parameter values is represented by the grey

vertically hatched area, which again consists of the area of a rectangle (4.10a) plus the area of a triangle (4.10b).

The extra flexibility cost of intraday and real-time redispatch is given by the dotted green area, i.e., the sum of the

area of the parallelogram (4.11a) plus the area of a triangle (4.11b). Finally, the pink horizontally hatched area

represents the extra cost of real-time redispatch at real-time cost parameters, and is again given by the sum of

the area of a parallelogram (4.12b) and the area of a triangle (4.12d). Note that, since xID
buy

� xRT
dn

� 0, both

(4.12a) and (4.12c) have values equal to zero.

The more complex cases, where the changes made in the intraday market and the real-time market go in

opposite directions, are illustrated in Figure 4.5. The case where xID
sell

� xRT
dn

� 0 and xID
buy

¡ xRT
up

is

illustrated in Figures 4.5a and 4.5b. The final real-time quantity is xRT � xDA � xID
buy

� xRT
up

, and Figure 4.5a

illustrates the cost adjustments that results from the intraday and real-time generation quantity adjustments. The

gray vertically-hatched area is the cost of the intraday schedule evaluated at day-ahead cost parameters, and the

green dotted area is the extra flexibility cost that results from the intraday adjustment and the assumption that not

all day-ahead costs are reversible. Then, the generation quantity is upregulated in the real-time market, and this

adjustment results in an extra cost given by the horizontally-hatched pink area. The final cost for this case can also

be shown as in Figure 4.5b, which is directly related to (4.10), (4.11) and (4.12). The gray vertically hatched area

is the cost of the final schedule, evaluated at day-ahead cost parameters, and given by the area of a parallellogram

(4.10a) and a triangle (4.10b). The green dotted area, with a value equal to the sum of (4.11a) and (4.11b),

represents the value of the net adjustment made intraday and real-time, evaluated at intraday cost parameters.

Note that the value of (4.11a), given by paID
buy

i � aDAi qp�xID
buy

i,ωID � xRT
up

i,ωRT q, is positive, since aID
buy

i   aDAi and

xID
buy

i,ωID ¡ xRT
up

i,ωRT . Hence, since (4.11b) is non-negative, the total value of (4.11) is positive. Finally, the pink

horizontally-hatched area shows the extra flexibility cost resulting from the real-time up-regulation, and given by

the sum of (4.12a) and (4.12c). Since xRT
dn

� 0, the remaining two terms in (4.12) will evaluate to zero.

The case where xID
sell

� xRT
dn

� 0 and xID
buy

  xRT
up

is illustrated in Figures 4.5c and 4.5d. Again, the

final real-time quantity is xRT � xDA�xID
buy

�xRT
up

, and Figure 4.5c illustrates the cost adjustments that results

from the intraday and real-time generation quantity adjustments. As in the previous case, the figure shows the cost

of the intraday schedule evaluated at day-ahead cost parameters (vertically-hatched gray area), the extra flexibility

cost that results from the intraday adjustment (green dotted area), and the extra cost resulting from the real-time

up-regulation (horizontally-hatched pink area). Figure 4.5d illustrates how the total cost for this case is related to

(4.10), (4.11) and (4.12). Again, the gray vertically hatched area is the cost of the final schedule, evaluated at day-
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ahead cost parameters, and given by (4.10), and the pink horizontally-hatched area represents the extra flexibility

cost resulting from the real-time up-regulation, given by the sum of (4.12a) and (4.12c). The green checkered area

represents the value of the net adjustment resulting from the intraday and real-time market clearing, evaluated at

intraday cost parameters. In this case, the value of (4.11a), given by paID
buy

i �aDAi qp�xID
buy

i,ωID �xRT
up

i,ωRT q, is negative,

since aID
buy

i   aDAi and xID
buy

i,ωID   xRT
up

i,ωRT . The total value of (4.11) may be positive or negative, depending on

the relative magnitudes of the negative term (4.11a) and the non-negative term (4.11b). In the example shown in

Figure 4.5d, the net value, as indicated by the green checkered area, is negative. Note that the green checkered

area is included both in (4.10) and (4.12), so the negative adjustment given by (4.11) avoids double-counting.

Finally, Figures 4.5e and 4.5f illustrate the case where xID
buy

� xRT
up

� 0 and xRT � xDA � xID
sell

� xRT
dn

.

Again, the vertically-hatched areas represent the value of (4.10), i.e., the cost of the real-time dispatch at day-

ahead cost parameters. The green dotted area in Figure 4.5e and the green checkered area in Figure 4.5f represent

the value of (4.11), i.e., the cost adjustment due to the net generation quantity adjustments in the intraday and

real-time markets, evaluated at intraday cost parameters. The value of (4.11a) is paID
sell

i � aDAi qpxID
sell

i,ωID � xRT
dn

i,ωRT q,

where aID
sell

i ¡ aDAi . This value is positive in Figure 4.5e and negative in Figure 4.5f. The deduction in the latter

case serves to avoid double-counting of the green checkered area. Finally, the horizontally-hatched areas in both

figures represent the extra flexibility cost caused by the down-regulation in the real-time market.

By summing (4.10), (4.11) and (4.12) and doing some simplifications, the general formula for (4.9a) can be

written as (4.13) below. We prove the equality given by (4.13) in Appendix A.

CDAi pxRTi,ωRT q � CIDi

�
xselli,ωID , x

buy
i,ωID , x

up
i,ωRT , x

dn
i,ωRT

	
� CRTi

�
xup
i,ωRT , x

dn
i,ωRT

	
� aDAi xDAi � aID

sell

i xID
sell

i,ωID � aID
buy

i xID
buy

i,ωID � aRT
up

i xRT
up

i,ωRT � aRT
dn

i xRT
dn

i,ωRT

�
1

2
bDAi pxDAi � xID

sell

i,ωID � xID
buy

i,ωID � xRT
up

i,ωRT � xRT
dn

i,ωRT q
2

�
1

2

�
pbID

sell

i � bDAi q xID
sell2

i,ωID � pbID
buy

i � bDAi q xID
buy2

i,ωID (4.13)

� pbRT
up

i � bDAi q xRT
up2

i,ωRT � pbRT
dn

i � bDAi q xRT
dn2

i,ωRT

�
� pbID

sell

i � bDAi q xID
sell

i,ωID pxRT
up

i,ωRT � xRT
dn

i,ωRT q

� pbID
buy

i � bDAi q xID
buy

i,ωID pxRT
up

i,ωRT � xRT
dn

i,ωRT q
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(a) Buy and up-regulate, with xIDbuy

¡ xRTup

. Step-wise
illustration of ID and RT adjustments.
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(c) Buy and up-regulate, with xIDbuy

  xRTup

. Step-wise
illustration of ID and RT adjustments.
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Figure 4.5. Complex cases for the cost function (4.9a).
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4.4 Numerical example

In order to illustrate how we can analyze the optimal timing of an intraday auction, we use a simple example

with an uncongested network, with two nodes and a single line, as illustrated in Figure 4.6. This small system

consists of two loads, d1 and d2, one wind power plant, WP , and two conventional generators, g1 and g2. Loads

are assumed to be inelastic and equal to 5000 and 7000 MW , respectively, however it is possible to shed load at

a cost of 1000 ${MWh. We assume that the marginal cost of wind power is zero and that the capacity is 5700

MW . Since conventional generators are assumed to have positive marginal cost, the wind power generator will

always be dispatched up to the quantity that is bid into a market. Wind generation at node 1 is the only source of

uncertainty, and we assume that this uncertainty can be characterized by a finite set of scenarios. These scenarios

then represent all possible wind power realizations. Scenario generation approaches are described in more detail in

Section 4.3. Since the actual wind power availability in real time is uncertain when the day-ahead and intraday

market offers are submitted, we need an assumption about how the wind power generator bids into these markets.

In our analyses we assume that the wind power generator bids to adjust its production plan to the expected wind

power available in real time at all market stages. Moreover, we assume that the wind power generator can adjust

its production without any extra cost, thus it may sell/buy in intraday and up/down regulate in real time at zero

cost, but it must respect the expected power constraints at the time of the intraday auction, and the realized power

constraints given by the scenarios in real time. Hence, the wind generator is partly flexible.

The conventional generator, g1, is relatively cheap, but is inflexible, and will therefore just participate in the

day-ahead market and not in the intraday and real-time markets. On the other hand, generator g2 is flexible to

participate in all these markets but is more expensive and mostly used for flexibility purposes. The day-ahead,

intraday and real-time cost parameters of the conventional generators are displayed in Table 4.1.

 

Bus 1 
Bus 2

d1  g1  WP 

g2 d2 

Figure 4.6. Two-bus power system

Table 4.1. Conventional power plant data

node xmax CDA CID1 CID2 CID3 CRT

g1 1 5000 10 - - - -

g2 2 9000 40
40+aID

sell
1

40-aID
buy
1

40+aID
sell
2

40-aID
buy
2

40+aID
sell
3

40-aID
buy
3

40+aRT
up

40-aRT
dn

CDA is the offer price for energy sales in the day-ahead market. In the example, we assume that g1 and g2

submit their constant marginal costs to the day-ahead market. Moreover, g2 is the only flexible source that can

be rescheduled to balance uncertain wind production, and this flexibility imposes additional costs compared to

being dispatched in the day-ahead market. In order to simplify, we assume constant increments/decrements in the

marginal cost over time for g2, reflecting flexibility costs. Thus, the slopes of the respective cost curves are all set
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to zero. Hence, b
IDsell

k
g2 � b

IDbuy
k

g2 � bRT
up

g2 � bRT
dn

g2 � 0, k � 1, 2, 3, where the index k represents intraday auctions

at three different points in time. Thus, flexibility costs in intraday and real time are incorporated by increasing or

decreasing the intercept of these market cost curves relative to the intercept for the day-ahead market, i.e.

a
IDsell

1
g2 � aDAg2 �∆a

IDsell
1

g2 , ∆a
IDsell

1
g2 ¥ 0

a
IDsell

2
g2 � aDAg2 �∆a

IDsell
2

g2 , ∆a
IDsell

2
g2 ¥ ∆a

IDsell
1

g2

a
IDsell

3
g2 � aDAg2 �∆a

IDsell
3

g2 , ∆a
IDsell

3
g2 ¥ ∆a

IDsell
2

g2

aRT
up

g2 � aDAg2 �∆aRT
up

g2 , ∆aRT
up

g2 ¥ ∆a
IDsell

3
g2

a
IDbuy

1
g2 � aDAg2 �∆a

IDbuy
1

g2 , ∆a
IDbuy

1
g2 ¥ 0

a
IDbuy

2
g2 � aDAg2 �∆a

IDbuy
2

g2 , ∆a
IDbuy

2
g2 ¥ ∆a

IDbuy
1

g2

a
IDbuy

3
g2 � aDAg2 �∆a

IDbuy
3

g2 , ∆a
IDbuy

3
g2 ¥ ∆a

IDbuy
2

g2

aRT
dn

g2 � aDAg2 �∆aRT
dn

g2 , ∆aRT
dn

g2 ¥ ∆a
IDbuy

3
g2

The increasing/decreasing trend in ∆a is reflecting the increasing flexibility costs when getting closer to delivery

time. In Section 4.6, we experiment with different flexibility costs, i.e. values for ∆a, to see how it affects the best

timing of an intraday auction.

4.5 Representing uncertainty and information in scenario trees

Uncertainty in wind power generation is best characterized by continuous stochastic variables, however, in

order to keep the problem tractable, we represent this uncertainty, as well as how information is revealed over

time, by using scenario trees. The scenarios, given by the information along the paths of the scenario trees, are

subsequently used together with the market clearing models in Section 4.3, to assess the effect on social welfare by

placing an intraday auction at different points in time. Uncertainty in wind power generation is often quantified

by a probability distribution for wind power resources or for forecast errors. We may, however, also consider a

conditional probability distribution for wind power generation at a given future point in time, given the information

up until the present point in time. This may be especially fruitful in the context of this paper, since we are

studying a sequential market, where new information about the wind power generation at a specific future delivery

time becomes available as we move closer to real time. This means that we may first condition the probability

distribution on the information available at the time of the day-ahead auction, and then, as the information is

updated over time, so is the conditional probability distribution. In real time, wind resources are given, and there

is no uncertainty left.

In the following, we examine two ways to generate scenario trees. First, we construct some simple illustrative

scenario trees, with characteristics mimicking those of the conditional probability distributions obtained by Pritchard

(2011), who is using quantile-type models to construct short term probabilistic forecasts, the simplest models having

present power as the only input. Secondly, we use data from the Nordic power market to find scenarios of short-term

wind power production, based on the method described in Pinson et al. (2009). The simulated data is transformed

to a scenario tree.
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4.5.1 Scenarios inspired by Pritchard (2011)

Pritchard (2011) studies the conditional distribution of wind power available at a specific time in the future,

given information available at the present. In the simplest model, termed a ”probabilistic-persistence” quantile

forecast, the only information used as input to the model is the present wind power. Analyzing data from New

Zealand wind farms in this setting, Pritchard (2011) finds that the shapes of the conditional distributions of future

available power depends on whether the present wind is high or low. If, for instance, present power is low (high),

then the probability distribution is skewed towards positive (negative) changes in available power, while if the

present power is at a medium level, the probability distribution is more bell shaped, i.e. the probability of having

positive and negative changes of the same magnitudes are about the same, and the probability of a small or zero

change is highest, i.e persistence.

Pritchard (2011) estimates quantiles of the conditional distributions by means of quantile regression. An

interesting observation is that there is considerably less variation in half-hour forecasts compared to 2-hour forecasts,

and this is illustrated by the quantiles being closer together in the half-hour forecasts than in the 2-hour forecasts.

This is exactly the basis for the trade-off that we are interested in in this paper, namely that when placing an intraday

auction between day-ahead and real time, we must make a trade-off between reducing the effects of uncertainty

by running the auction close to real time, and reducing flexibility costs by running the auction close to day-ahead,

when quantity adjustments are cheaper and/or more generators and loads can contribute.

For the numerical examples in Section 4.6, we use two stylized scenario trees, depicted in Figures 4.7 and 4.8,

that exhibit some of the characteristics of the conditional probability distributions estimated by Pritchard (2011).

The starting node of the scenario tree shows the actual wind power available at the day-ahead stage (i.e. time

0:00). We assume that it is about half the capacity of the wind power generator in our numerical example, i.e. 2900

MW. From this point, we assume two possible (and equally probable) changes in available power for hour 6:00.

For simplicity, we assume all changes to be +/- 500 MW throughout the tree. Thus, the conditional probability

distribution of changes in power, 18 hours ahead in time, is assumed to be uniform, with only two possible outcomes,

+/- 500 MW. The available power in hour 6:00 is shown in stage 2 in the tree in Figure 4.7a. These values can

be interpreted as the actual power in hour 6:00 when we move forward along the paths in the tree from the nodes

in stage 2. Again, we assume that power will increase or decrease by 500 MW until hour 12:00, hence 4 scenarios

are generated for stage 3, two from each starting node at stage 2. By repeating this procedure for every 6 hour, 16

wind scenarios will be generated for the delivery hour at 24:00. Each scenario, corresponding to a path in the tree,

shows the power available for delivery in hour 24:00, but also how the available power develops over time, at each

6-hour stage.

By moving forward in the tree, and getting closer to the delivery time, more information is revealed about

which scenario is going to be realized. For instance, at the time of clearing the day-ahead market, we do not have

any information about which of the 16 scenarios will be more likely at hour 24:00. However, if an intraday market

is cleared after 6 hours, the power information at hour 6:00 determines whether the upper or the lower scenario

has been realized. If the upper scenario is realized at hour 6:00, at hour 24:00 only the eight upper leaf nodes

can be realized, thus the eight lower leaf nodes can be excluded from investigation. At each node in the tree we

calculate the standard deviation of the available power at each leaf node that is connected to the node in question.

These numbers are given in red, and we notice that the standard deviations are reduced when we come closer to

the delivery time.
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(b) Expected tree for (a)

Figure 4.7. Symmetric scenario tree with corresponding conditional expectations

The procedure for generating the scenarios in Figure 4.7 is based on an assumption that we have accessible

conditional probability distributions for available wind power 6 hours ahead, given the actual power now. In general,

available wind power at a future point in time depends on other factors as well, including meteorological variables

such as wind speed, wind direction, air pressure, seasonal and diurnal indicators etc. (Pritchard (2011)). In a more

realistic setting, these factors could be considered when generating scenarios. Since we are only considering adding

one intraday auction, another way to generate scenario trees would be to combine 24-hour, 18-hour, 12-hour and

6-hour horizon forecast data, depending on where the intraday auction is placed (i.e. ID1, ID2, or ID3). In a

more realistic setting, we should add an additional stage in the beginning of the scenario tree, in order to consider

different wind power possibilities at the day-ahead stage, however, for simplicity we consider only one day-ahead

alternative.

Since we have assumed that the wind power producer bids the expected power at the delivery time, conditional

on the most updated information, to each sequential market, it is useful to note the expected available wind power

in real time at each node in the scenario tree. While the tree on the left hand side in Figure 4.7 is generated to

produce leaf nodes that reflect possible wind power realizations in real time, the tree on the right hand side shows

conditional expectations of available wind power in real time, i.e. the number in each node, at each stage, shows

the expected power in the leaf nodes that are connected to this node.

As mentioned previously, we have used equal increments and decrements of 500 MW at all stages in the tree

in Figure 4.7. One drawback of this is that we have several nodes with the same power quantity at each stage in

the tree. For instance, 4 out of the 16 scenarios have 1900 MW wind power in real time. In order to avoid this

situation, we will also test the asymmetric tree in Figure 4.8.
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(b) Expected tree for (a)

Figure 4.8. Asymmetric scenario tree with corresponding conditional expectations

4.5.2 Scenarios based on the method by Pinson et al. (2009)

4.5.2.1 Data

We assume that the wind power capacity of the numerical example equals to the cumulative wind capacity

of Denmark at the end of 2018, 5700 MW (WindEurope (2019)). Since no public data for different wind power

forecast horizons is available (it means that for each delivery hour, we just have access to the 24-hour ahead forecast

not anything in between), 24 hour-ahead forecast data from Nord pool is utilized. This data set is composed of the

hourly real and forecast of the wind power production at Denmark for year 2018. Forecast is a D � T � 365 � 24

matrix called F � rfdts, means that for every hour t of each day d of year 2018, a 24-hour ahead forecast fdt is

available. Since real wind power production for all hours of 2018 is also available, error matrix E365�24 � redts is

extractable. The hourly forecast for the next 24 hours announces at hour 00:00 which coincides with the time of our

day-ahead market. The average hourly production in areas DK1 and DK2 in 2018 was 1571 MWh, with almost

3.2 times higher peak production, 5051 MWh.

Nord pool does not provide any other forecast horizons or update of the forecast between the day-ahead and

delivery time. Indeed, by having access to the more frequent forecast horizons, more accurate scenario trees can be

generated; in our case 24, 18, 12 and 6 hour horizons are required.

Figure 4.9 shows that the forecast error does not follow the normal distribution, especially the tails. However,

as will be explained in Section 4.5.2.2, it can be transformed to a normally distributed stochastic process.
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(a) Forecast error histogram versus fitted normal distribution (b) Normal probability plot for forecast error

Figure 4.9. Forecast error distribution analysis

4.5.2.2 Statistical scenarios of wind power production

Most of the current wind power forecast methods provide end-users with point forecasts which is a single

summary statistics for random variable xi,t�k, i P GST , which shows the potential wind power production at time

t � k, where k is the forecast horizon. Even though these forecasts are sometimes enough for decision makers,

they do not say anything about the uncertainty of the underlying stochastic process. In order to do that, interval

forecasts or, even better, density forecasts can be used. Recently, a great effort has been made to develop such

forecasts, called probabilistic forecasts. Since such forecasts are generated on a per horizon basis, they disregard

the interdependence structure of forecast errors among different forecast horizons. This interdependence structure

is particularly important for time-dependent and multi-stage decision making problems, such as the multi-market

problem we are considering in this paper. Hence, to generate scenarios of wind power production that shows the

development of wind power over all hours of look-ahead time, we have used the method devised by Pinson et al.

(2009). In the following, we explain how we have implemented this method to simulate the power forecast scenarios

given the forecast matrix F . Power forecast scenarios are generated by the following steps:

1. For each hour t � 1, ..., 24 (each column of F ), estimate the cumulative distribution function (CDF) by the

empirical distribution function

{CDF tpfq � Number of fdt ¤ f

D
. (4.14)

2. Compute

Ut � {CDF tpfdtq, t � 1, ..., 24 (4.15)

Since CDFtpfdtq is uniformly distributed, Up0, 1q, we get an approximate Up0, 1q-variable by Ut.
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3. Next, compute a standard normal distribution variable Zt, Np0, 1q, by

Zt � Φ�1pUtq, t � 1, ..., 24 (4.16)

where Φ is the CDF for the standard normal distribution.

4. The dependence structure between the forecasts of different hours collected in the vector Z � rZts is captured

in the constant 24 � 24 variance-covariance matrix V pZq � Σ . The diagonal elements of Σ are all equal to

one and consequently, the off-diagonal elements are correlations.

5. Now, a multivariate normal vector, Ẑ � rẐts, t � 1, ..., 24, with mean vector 024 and variance-covariance

matrix Σ24�24 is generated. Through the next steps, by a reverse procedure we have passed so far, s forecast

scenario paths will be generated.

6. We simulate Ẑ � rẐts, t � 1, ..., 24 from the 24-dimensional normal distribution.

7. Ẑt are transformed back to a Up0, 1q-variable by

Ût � ΦpẐtq, t � 1, ..., 24 (4.17)

8. A scenario path for the power forecast, drawn from the estimated distribution, with the interdependence

between hours accounted for, is obtained by

f̂t � {CDF�1

t pÛtq, t � 1, ..., 24 (4.18)

It should be noted that CDF is a step function and its inverse is not unique. However, we have many data

points so using, e.g., the r’th smallest value as an approximation for {CDF�1

t p1{rq, does not differ much from

using the, say, pr � 1q’th.

9. Finally, s scenario paths for the power forecast are generated by iterating steps 6,7 and 8.

Figure 4.10 is an example of wind power point forecast (from Nord pool data and shows the wind power forecast

for 365th day of year 2018) and 30 relevant scenario paths generated from the method mentioned in Pinson et al.

(2009). These scenarios reflect the forecast uncertainty as well as the interdependence structure of forecast errors

and describe how much wind production will be at each hour of the next 24 hours.
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Figure 4.10. Wind power scenarios associated with point forecasts

As can be seen in Figure 4.10, scenarios follow the same trend as point forecasts. However, by moving away from

hour 0:00, when the point forecasts were published for the next 24 hours, uncertainty of prediction increases. By

simulating 1000 scenarios, the correlation between hours 1:00 to 23:00 with hour 24:00 (delivery hour) is measured.

As Figure 4.11 demonstrates, the forecast for hours 1:00 to 13:00 have very low correlation with hour 24:00. Hence,

the wind production at these hours does not contain valuable information about production at delivery hour. In

other words, placing an intraday auction at these hours will not solve the problem with a high level of uncertainty

even though the flexibility costs are lower.

The potential places for an intraday market must reflect different uncertainty levels. For example, hours 3:00,

5:00, 7:00 and 9:00 do not differ from an uncertainty perspective. Hence, there is no worth in comparing these

alternatives. Therefore, 3 potential places 3:00, 18:00 and 21:00 are chosen based on their high, medium and low

level of uncertainty, respectively with correlation coefficients 0.22, 0.42 and 0.58.

Figure 4.11. Correlation between hours 1 to 23 with hour 24
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4.5.2.3 Building scenario tree by a clustering (bucketing) approach

In Section 4.5.2.2 several scenario paths were obtained by sampling from a continuous probability distribution

but still additional steps are required to build a scenario tree with desirable characteristics. One of the appropriate

approaches is cluster (bucket) analysis mentioned in Birge and Mulvey (1996), Canestrelli and Giove (1999) and

Dupačová et al. (2000).

The 1000 scenario paths extracted from the previous section - represents that there are 1000 wind power

possibilities for each hour 1:00 to 24:00- are collected in a matrix M1000�24. However, we shall only consider the

possible hours for the intraday market at hours 3:00, 18:00 and 21:00 and the delivery hour 24:00 (the hour that

day-ahead, intraday and real-time are optimized for). Hence, columns 3, 18, 21 and 24 of matrix M are saved in

matrix M 1
1000�4 � rMp3q,Mp18q,Mp21q,Mp24qs

The outcome of this clustering approach is a 5-stage scenario tree which resembles scenario trees in Figures

4.7b and 4.8b. Each bucket is equivalent to a node in the mentioned trees. Algorithm.1 explains the bucketing

approach in details.

µ of each bucket is the expected wind power (pxDAi or pxIDi ) which is directly utilized in the day-ahead or intraday

market models. σ of the bucket is the standard deviation that shows the amount of uncertainty. These sigma’s

are mostly decreasing from the parent to child buckets but not necessarily for all. The std of the day-ahead bucket

equals to 339 and the std of the ID1 buckets are equal to 325, 317, 343, 335, and 331. For ID3 stage, the minimum

and maximum stds are respectively 82 and 390 which means that at least there is one bucket which has a std higher

than day-ahead bucket. To sum up, with the available data set, we ended up with a scenario tree with decreasing

stds for most buckets but compared to trees in Figures 4.7b and 4.8b which show a huge std reduction, the stds in

this tree display a smaller reduction. However, the other important point that should be noticed here is that the

24-hour ahead forecast data is much more accurate than the other trees, because the std of the day-ahead node in

data-driven tree is 339 which is much smaller than the std of the equivalent node in other trees (796, 1000 and 831,

respectively for Pritchard’s, asymmetric and symmetric trees).

4.6 Numerical results

In this section some computational results are presented. Sections 4.6.1 and 4.6.2 present the results and

analyses related to the asymmetric and symmetric scenario trees shown in Figure 4.8b and Figure 4.7b, respectively,

while the results for the data driven scenario tree, generated in Section 4.5.2, are given in Section 4.6.3.

As indicated in Table 4.1, g2 is the only flexible generator in the system that can participate in several markets

with potentially different cost parameters. In order to analyse how various cost parameters in different sequential

markets impact the best intraday market placement, nine cost parameter settings for g2 are depicted in Figure 4.12.

Figure 4.12a shows that in case 1 participation in the day-ahead market costs 40 ${MWh for g2, and there is

no additional cost for the intraday (at different hours) and real-time markets. Therefore, all ∆aID
buy
k � ∆aID

sell
k �

∆aRT
up

� ∆aRT
dn

� 0, k � 1, 2, 3 and bDA � bID
buy
k � bID

sell
k � bRT

up

� bRT
dn

� 0, k � 1, 2, 3. These cost

parameters may reflect a hydropower plant, with an opportunity cost of water, i.e. water value, equal to 40

${MWh used for the the short-term generation planning, and where deviations from the schedules, even on very
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Algorithm 1: Bucketing algorithm

Input : M 1
1000�4sb : number of buckets

bstg : number of buckets at stage stg
s : number of scenario paths
sstg : number of scenarios in each bucket of stage stg
Cstg,j : jth bucket in stage stg, j � 1, ..., bstg
Bstg,ch,p : chth child bucket of parent bucket p in stage stg, ch � 1, ...,sb

Initial : s � 1000sb � 5

for stg � 1 to 4 do
bstg Ð sbstg�1 p5stg�1q
sstg Ð

s
sbstg�1

if stg=1 then
Cstg,1 ÐM 1

end
else

for p � 1 to bstg�1 do
(Bstg,ch,p,µpBstg,ch,pq,σpBstg,ch,pq)=BuildBucket(Cstg�1,p)
Cstg,ch�pp�1qsb Ð Bstg,ch,p

end

end

end

Function BuildBucketpCstg�1,pq: /* Generate sb child buckets for parent bucket p */
Sort Cstg�1,p based on column stg � 1
l=1
for ch � 1 to sb do

Cstg,ch Ð Cstg�1,prl : l � sstg � 1, 1 : 4s
lÐ l � sstg
µpCstg,chq � EXP pCstg,chr:, 4sq /* EXP():Average of scenarios in the bucket */

σpCstg,chq � STDpCstg,chr:, 4sq /* STD():Standard deviation of scenarios in the bucket

*/
end
return (Bstg,ch,p,µpBstg,ch,pq,σpBstg,ch,pq)
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short notice, are almost costless. In case 2, which is shown in Figure 4.12b, it is assumed that a change in g2 is

costly on very short notice, i.e. just before delivery time, but not costly in the intraday markets. Hence, the relevant

cost parameters are ∆aID
buy
k � ∆aID

sell
k � 0, k � 1, 2, 3, ∆aRT

up

� ∆aRT
dn

� 5 and bDA � bID
buy
k � bID

sell
k �

bRT
up

� bRT
dn

� 0, k � 1, 2, 3.

Similar interpretations can be made for the other cases. Thus, the cases differ with respect to how the generation

cost develops over time, from the day-ahead market until real-time. In order to focus on the effect of cost changes

and their timing, the five first cases have cost either equal to the day-ahead cost or 5 ${MWh higher/lower. In case

6, we consider linearly increasing/decreasing flexibility cost, while cases 7 and 8, respectively, model convex and

concave cost functions for sell and up-regulation and concave and convex cost functions for buy and down-regulation.

In contrast to all cases 1 to 8, where cost functions are symmetric, in case 9, g2 will buy back or down-regulate with

the same cost as in the day-ahead market, while it will sell or up-regulate with a linearly increasing cost function.

So, in case 9 the flexibility costs are asymmetric.

4.6.1 Numerical results for the asymmetric scenario tree in Figure 4.8

The detailed results for the asymmetric scenario tree in Figure 4.8, and with cost parameters equal to case 5,

is presented in Table B1 in the Appendix B. For each scenario, the following quantities are displayed for intraday

placements ID1, ID2, ID3, as well as No ID: sell/buy quantities (positive values for sell and negative values for

buy) and relevant cost (negative numbers are income) in intraday, up/down regulation quantities and associated

cost/income in real-time, the net change in cost due to intraday and real-time, and the total cost of generation and

re-adjustments in all markets, i.e. day-ahead, intraday and real-time. The last column displays the sum of absolute

values of quantity adjustments in intraday and real-time markets.

From Table B1 in Appendix B, we highlight the following observations:

1. From the quantity rows we notice that for all scenarios the total adjustment in intraday and real-time quantities

(when there is an intraday market) is equal to the adjustment in real-time quantity when 1No ID1 is considered.

For instance, in scenario 2 the total quantity adjustment in both intraday and real-time (ID1�RT � 550�550,

ID2 �RT � 1000� 100, ID3 �RT � 1350� 250) is equal to 1100 (RT �No ID � 1100). The reason is that

demand is inelastic and there is no need for load-shedding in this case.

2. Even if the total quantity adjustments are the same within each scenario, the adjustments in each sequential

step vary a lot, depending on where the intraday market is placed. This can be seen from the last column

in Table B1, showing the sum of absolute values of quantity adjustments for each scenario and each intraday

market placement. Since we assume that the wind power generator bids according to expected wind power at

delivery time in each market, and this conditional expectation changes through the scenario tree, there may

be both positive and negative sequential adjustments in a given scenario (see for instance scenario 4). In case

5, both are costly.

3. If the intraday and real-time quantities adjust in the same direction (i.e. sell in ID and up-regulate in RT

or buy in ID and down-regulate in RT) then the ’net change in cost’ and ’final cost’ are equivalent to the

corresponding costs for RT �No ID. However, if adjustments are in opposite directions (i.e. buy in ID and

up-regulate in RT or sell in ID and down-regulate in RT) then the ’net change in cost’ and ’final cost’ are

higher than the corresponding RT �No ID cost. For instance, in scenario 2:

ID1 : 550 � 45� 550 � 45 � 49500
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Figure 4.12. Assumptions on flexibility cost of g2
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ID2 : 1000 � 45� 100 � 45 � 49500

ID3 : 1350 � 45� p�250q � 35 � 52000

No ID : 1100 � 45 � 49500

The first point is valid for all considered cost parameter cases. The consequences of the second and third points

are contingent on the flexibility cost parameters, and may result in different final cost rankings of possible intraday

placements for the cases considered.

We rank the best intraday placements based on expected total cost of generation. The expected total cost

of generation for all 16 scenarios for all cost parameter cases 1 to 9 are summarized in Table 4.2. There is one

row for each intraday market placement, as well as not having an intraday market at all. The last row shows the

Expected Value with Perfect Information (EVPI), i.e. each scenario cleared in an optimal dispatch with day-ahead

cost parameters.

Table 4.2. Expected total cost for different cost parameters and intraday placements for the asymmetric scenario
tree

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
ID1 222000 224625 224625 224625 227375 225313 224900 226550 248500
ID2 222000 223750 223750 226500 226500 225125 224300 225950 247000
ID3 222000 223250 226625 226625 226625 225781 224263 226288 252250

No ID 222000 225375 225375 225375 225375 225375 225375 225375 249000
EVPI 222000 222000 222000 222000 222000 222000 222000 222000 222000

Case 1

In case 1, deviating from the day-ahead plan does not cost anything, and even though uncertainty is decreasing

from day-ahead to real-time (and therefore from ID1 to ID3), it doesn’t matter if or where the intraday market is

added, the cost are the same no matter, and equal to the EVPI. This case can illustrate a power system with fully

flexible resources, for instance one dominated by hydropower with large reservoirs. Hence, with costless flexibility,

adding intraday auctions does not have any impact on the final total cost of the system, and real-time markets

would be sufficient to obtain efficiency in generation.

Case 2, 3 and 4

In case 2, there is a sharp increase in cost when g2 quantities are adjusted in real time rather than intraday. In

cases 3 and 4, the cost increase occurs earlier. In these cases, we can clearly see the trade-off, where the uncertainty

factor tends to favour a later timing of the auction, while increasing flexibility cost favours an early one. In case

2, participation in any of the intraday markets does not incur extra cost, hence g2 waits until more information is

available and until the cost increase becomes too large, ID3 being the best placement with lowest expected total

cost. In cases 3 and 4, the best intraday timings are ID2 and ID1, respectively.

Case 5

In case 5, quantity adjustments are equally costly (compared to the day-ahead cost parameters) in all possible

intraday markets, as well as the real-time market. Thus, it is not surprising that we prefer to wait as long as possible

until all uncertainty is resolved, and the best decision is to have no intraday market and resolve necessary quantity

adjustments in the real-time market. In this respect, this case is similar to case 1, showing that if intraday flexibility
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costs are equal either to day-ahead or real-time costs, then it leads us to the ”no intraday market” decision.

Considering only the potential intraday market placements, since adjustment costs are constant, and since

uncertainty (measured by standard deviation) is reduced over time in the scenario tree, we would expect ID3 to

be the better choice for an intraday auction, if we were to have one. This is however, and somewhat surprisingly,

not the case. Part of the reason for this follows from our assumption that in each market stage, the wind power

producer adjusts its position to the updated conditional expected wind power available in real-time. To understand

why, we consider more carefully the expected total cost, which in our numerical example, with inelastic demand

and bi � 0, can be written as follows:

E
ωID,ωRT

�¸
i

�
aDAi xDAi � aselli xselli,ωID � abuyi xbuy

i,ωID � aupi x
up
i,ωRT � adni xdni,ωRT

	�
(4.19)

Since g2 is the only flexible resource in the system, that can participate in intraday and real-time markets, the

expression in 4.19 can be written as follows:

¸
i

aDAi xDAi � asellg2 E
ωID

pxsellg2,ωID q � abuyg2 E
ωID

pxbuy
g2,ωID q � aupg2 E

ωRT
pxup
g2,ωRT q � adng2 E

ωRT
pxdng2,ωRT q (4.20)

Table 4.3. Expected adjustment quantities in intraday and real time for the asymmetric scenario tree

Epxsellq Epxbuyq Epxupq Epxdnq
ID1 275 275 262.5 262.5
ID2 275 275 175 175
ID3 337.5 337.5 125 125

No ID � � 337.5 337.5

By neglecting the first term, which is connected to the day-ahead market and is common for all intraday

placements, and just evaluating the expected cost of adjustments in 4.20, using the adjustment values from Table

4.3, the following values are obtained:

ID1 : 45 � 275 � 35 � 275� 45 � 262.5 � 35 � 262.5 � 2750� 2625 � 5375

ID2 : 45 � 275 � 35 � 275� 45 � 175 � 35 � 175 � 2750� 1750 � 4500

ID3 : 45 � 337.5� 35 � 337.5� 45 � 125� 35 � 125 � 3375� 1250 � 4625

No ID : 45 � 337.5� 35 � 337.5 � 3375

The values shown in Table 4.2 for case 5 are the sums of the numbers calculated above and the day-ahead cost,

which is equal to 222000. Thus, we can see that the ranking of the intraday placements is the same as the ranking

of adjustment cost, from the lowest to the highest, i.e. No ID   ID2   ID3   ID1. This means that even if the

standard deviation is reduced from ID2 to ID3, when generation positions are consistently adjusted in the markets

to updated information about conditional expectations of wind availability, then the up- and down-adjustments

are larger and therefore more costly in ID3 than in ID2. This shows that the trade-off between uncertainty and

flexibility cost can be more complicated than expected, and moreover, depends on which strategy we assume for

how market agents trade in the intraday markets.

Case 6
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In this case there is a gradual (linear) increase in the flexibility costs, from day-ahead, through the different ID

placements, and until real time. The trade-off between uncertainty and flexibility cost shows that ID2 is the best

intraday timing in this case. As Table 4.3 illustrates, because energy balance is enforced in every market clearing,

expected sell and buy quantities are equal, and the same goes for expected up- and down-regulations. Hence, the

expression in 4.20 can always be written as:

pasellg2 � abuyg2 q E
ωID

px
sell{buy
g2,ωID q � paupg2 � adng2 q E

ωRT
px
up{dn
g2,ωRT q (4.21)

ID1 : 2.5 � 275� 10 � 262.5 � 2750� 2625 � 3312.5

ID2 : 5 � 275� 10 � 175 � 3125

ID3 : 7.5 � 337.5� 10 � 125 � 3781.25

No ID : 10 � 337.5 � 3375

Hence, the ranking of intraday placements from low to high cost, is as follows: ID2   ID1   No ID   ID3.

Case 7 and 8

In cases 7 and 8, the increases in flexibility cost vary over time, in the sense that in case 7, there is a large

cost increase late (”convex cost”), while in case 8, a jump in the flexibility cost comes early (”concave cost”). The

result is that the best timing of an intraday auction is early (ID2) in case 7 and late (i.e. No ID) in case 8.

Case 9

This case has asymmetric sell/buy and up/down flexibility costs. More specifically, there is no flexibility cost

for reducing net injections. In this case, the trade-off places the intraday market in 2, i.e. ID2.

4.6.2 Numerical results for the symmetric scenario tree in Figure 4.7

Table 4.4. Expected adjustment quantities in intraday and real time for the symmetric scenario tree

Epxsellq Epxbuyq Epxupq Epxdnq
ID1 250 250 375 375
ID2 250 250 250 250
ID3 375 375 250 250

No ID � � 375 375

Table 4.5. Expected total cost for different cases in the symmetric scenario tree

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
ID1 214000 217750 217750 217750 220250 218375 218000 219500 249000
ID2 214000 216500 216500 219000 219000 217750 217000 218500 244000
ID3 214000 216500 220250 220250 220250 219312 217625 219875 256500

No ID 214000 217750 217750 217750 217750 217750 217750 217750 244000
EVPI 214000 214000 214000 214000 214000 214000 214000 214000 214000

Case 2
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In this case all intraday placements have the same flexibility costs, while adjustments in real time are consid-

erably more costly. Again we would expect ID3 to be the better placement of an intraday auction, however ID2

also shows the same expected adjustment cost. This can be explained by using Equation 4.21 together with the

adjustment quantities in Table 4.4 to obtain expected adjustment costs as follows:

ID1 : 0 � 250 � 10 � 375 � 3750

ID2 : 0 � 250 � 10 � 250 � 2500

ID3 : 0 � 375� 10 � 250 � 2500

No ID : 10 � 375 � 3750

Since intraday sell and buy flexibility costs are equal, their difference is zero. Hence, intraday adjustment costs

do not matter, and only real time adjustments are important in this case. Since real time adjustments are equal

for ID2 and ID3, as well as for ID1 and No ID, ID2 and ID3 are equally good placements, and the same goes for

ID1 and No ID.

Other cases

As can be seen from Table 4.5, different cost parameters result in different best placements for an intraday

auction, and the same kind of reasoning as in Section 4.6.1 can be utilized here.

4.6.3 Numerical results for the data-driven scenario tree described in Section 4.5.2

Table 4.6. Expected adjustment quantities in intraday and real time for the data-driven scenario tree

Epxsellq Epxbuyq Epxupq Epxdnq
ID1 34 34 124 124
ID2 61 61 115 115
ID3 87 87 97 97

No ID � � 126 126

Table 4.7. Expected total cost for different cases in the data-driven scenario tree

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9
ID1 161494 162732 162732 162732 163072 162817 162766 162970 172080
ID2 161494 162645 162645 163258 163258 162952 162768 163135 173154
ID3 161494 162465 163336 163336 163336 163118 162726 163249 174486

No ID 161494 162758 162758 162758 162758 162758 162758 162758 171606
EVPI 161494 161494 161494 161494 161494 161494 161494 161494 161494

For this scenario tree the most interesting cases are 2, 5 and 6, and these cases will be described further in the

following. Cases 7, 8 and 9 are comparable to cases 2, 5 and 6, respectively.

Case 2

Even if the order of best intraday placements follow the pattern of reduced uncertainty, the following calculations

can help to explain the decreasing expected total cost from ID1 to ID3:

ID1 : 0 � 34� 10 � 124 � 1240
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ID2 : 0 � 61� 10 � 115 � 1150

ID3 : 0 � 87� 10 � 97 � 970

No ID : 10 � 126 � 1260

Since the sell and buy costs are equal for all intraday placements, the intraday quantities do not play any role

in deciding the best intraday placement. Only the decreasing trend of expected adjustment quantities in real time

matters, and ID3 is best.

Case 5

As for case 2, the uncertainty is reduced from ID1 to ID3, and flexibility costs are equal across all intraday

placements. However, in contrast to case 2, in this case, the expected total cost increases from ID1 to ID3, and

this can be explained by the following calculations:

ID1 : 10 � 34� 10 � 124 � 1580

ID2 : 10 � 61� 10 � 115 � 1760

ID3 : 10 � 87� 10 � 97 � 1840

No ID : 10 � 126 � 1260

I.e. the best intraday placement is reversed compared to case 5, due to the cost difference between intraday

buy and sell, and No ID is the best option.

Case 6

In this case, flexibility costs increase linearly over time, while uncertainty is reduced. One could expect that

this would favour the intermediate placement of an intraday market, i.e. ID2, however, this is not the case:

ID1 : 2.5 � 34� 10 � 124 � 1325

ID2 : 5 � 61� 10 � 115 � 1455

ID3 : 7.5 � 87� 10 � 97 � 1623

No ID : 10 � 126 � 1260

If an intraday market is to be added, ID1 is the least cost option.

4.7 Conclusion

The increasing share of uncertain generation mostly coming from wind and solar makes European commission

regulators to revise electricity market design and particularly pay more attention to intraday market. Regarding to

the challenges that continuous trading intraday market faces with respect to the congestion management, adding

one or more intraday auctions is on the agenda to facilitate trading in the short-term and create better transparency

by delivering one price (instead of many prices in continuous trading) and provide a quicker and easier way to submit

orders. If the decision is to add one auction between day-ahead and real-time when would be the best time to do

that?

In this paper, we demonstrate that timing of intraday auction is affected by two opposing factors: uncertainty

and flexibility cost. The earlier auctions confronted with the higher uncertainty but lower flexibility costs, while

the later ones tackle with higher flexibility costs but lower uncertainty. By testing several scenario trees with
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uncertainty reduction characteristic from day-ahead to real-time, a tight trade-off between these two factors has

been observed. Our findings reveal that even though standard deviation reduction is an important measure for

uncertainty its reduction is not enough to say that always the latest intraday is the best by assuming the other

variables as fixed. Therefore, the std reduction is mainly reflected in re-adjustment quantities, this means that the

more std is reducing from day-ahead to real-time, the more re-adjustments are required. This is the reason that in

some cases especially case 2 and 5, instead of observing ID3 as the lowest expected total cost, the other intraday

placements look less costly. Hence, it can be concluded that in the sequential market setting that expected wind

power is utilized for clearing stochastic generators, the multiplicative effect of flexibility cost and re-adjustment

quantities determine the best intraday place not just the trade off between flexibility cost and std reduction.

Experiments on diverse flexibility costs disclose very interesting results. For instance, in hydro-dominated

systems where flexibility cost is very low, adding an intraday auction cannot be cost-effective while intraday auction

can have a huge cost reduction for systems with very high flexibility costs, then the trade-off between uncertainty

and flexibility is more evident.

In the simulated symmetric and asymmetric scenario trees, std is high at the begining (compared to data-driven

scenario tree), illustrates an inaccurate 24-hour ahead forecast, while in the shorter-term forecasts 18, 12 and 6

hour ahead stds show a huge decrease, meaning that by getting closer to the delivery time, the forecasts getting

much more accurate. Results show that in scenario trees with huge changes of std from day-ahead to real-time,

which can be connected to the accuracy of forecasts, adding an intraday auction helps to relieve the total cost of the

system, while in trees with not so conspicuous reduction in std, like data-driven scenario tree, our findings report

that adding an intraday auction cannot relieve costs of the system.

However, in the future research the last finding require to be tested with more shorter-term forecasts. Because

just having access to 24-hour ahead data leads us to not have intraday auction for most flexibility cost cases.

Hence, having access to 24, 18, 12 and 6 hour ahead forecast data can reveal more trade-off between uncertainty

and flexibility cost. We have also neglected congestion management in this paper. Therefore, the next natural step

in future research is to see how the intraday placement will be affected by modeling congestion. Finally, it would be

more interesting to model hybrid intraday market, a combination of continuous trading and an auction to see how

the behavior of market participants will change and whether the main aim of auction, which is helping continuous

trading in managing congestion, is achieved or not.
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Appendix A. Proof of (4.13)

In order to prove the equality given by (4.13), four different combinations of intraday and real-time dispatch

must be considered for any generator i P GIDflex XGRTflex:

1. Sell xID
sell

i in intraday and up-regulate xRT
up

i in real-time.

2. Buy back xID
buy

i in intraday and down-regulate xRT
dn

i in real-time.

3. Buy back xID
buy

i in intraday and up-regulate xRT
up

i in real-time.

4. Sell xID
sell

i in intraday and down-regulate xRT
dn

i in real-time.

Similar cases can be defined for flexible consumers, but since the analysis is similar to the one presented for

generators, further discussions of consumer cases are avoided.

Case 1: Sell-Up

Since xID
buy

i � xRT
dn

i � 0, Equations (4.10), (4.11), and (4.12) can be written as:

aDAi pxDAi � xID
sell

i,ωID � xRT
up

i,ωRT q �
1

2
bDAi pxDAi � xID

sell

i,ωID � xRT
up

i,ωRT q
2 (A1)

paID
sell

i � aDAi qpxID
sell

i,ωID � xRT
up

i,ωRTup q �
1

2
pbID

sell

i � bDAi qpxID
sell

i,ωID � xRT
up

i,ωRT q
2 (A2)

paRT
up

i � aID
sell

i qpxRT
up

i,ωRT q �
1

2
pbRT

up

i � bID
sell

i qpxRT
up

i,ωRT q
2 (A3)

By summing these equations and cancelling equal terms as illustrated in Table A1, we get

aDAi xDAi � aID
sell

i xID
sell

i,ωID � aRT
up

i xRT
up

i,ωRT �
1

2
pbID

sell

i � bDAi q xID
sell2

i,ωID �
1

2
pbRT

up

i � bDAi q xRT
up2

i,ωRT

�pbID
sell

i � bDAi q xID
sell

i,ωID xRT
up

i,ωRT �
1

2
bDAi pxDAi � xID

sell

i,ωID � xRT
up

i,ωRT q
2, (A4)

which is equal to (4.13) for this case.

Table A1. Simplifying (A1), (A2), and (A3).

xDA xID
sell

xRT
up

xDA
2

xID
sell2

xRT
up2

2xDAxID
sell

2xDAxRT
up

2xID
sell

xRT
up

aDA ���aDA ���aDA 0 bID
sell

� bDA ���
bID

sell

� bDA 0 0 bID
sell

� bDA

0 aID
sell

��
��aDA ����

aID
sell

��
��aDA 0 0 bRT

up

����
bID

sell

0 0 0
0 0 aRT

up

�����
aID

sell

0 0 0 0 0 0
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Case 2: Buy-Down

Since xID
sell

i � xRT
up

i � 0, Equations (4.10), (4.11), and (4.12) can be written as:

aDAi pxDAi � xID
buy

i,ωID � xRT
dn

i,ωRT q �
1

2
bDAi pxDAi � xID

buy

i,ωID � xRT
dn

i,ωRT q
2 (A5)

paDAi � aID
buy

i qpxID
buy

i,ωID � xRT
dn

i,ωRTdn q �
1

2
pbID

buy

i � bDAi qpxID
buy

i,ωID � xRT
dn

i,ωRT q
2 (A6)

paID
buy

i � aRT
dn

i q xRT
dn

i,ωRT �
1

2
pbRT

dn

i � bID
buy

i q xRT
dn2

i,ωRT (A7)

By summing and cancelling out equal terms we get

aDAi xDAi � aID
buy

i xID
buy

i,ωID � aRT
dn

i xRT
dn

i,ωRT �
1

2
pbID

buy

i � bDAi q xID
buy2

i,ωID �
1

2
pbRT

dn

i � bDAi q xRT
dn2

i,ωRT

�pbID
buy

i � bDAi q xID
buy

i,ωID xRT
dn

i,ωRT �
1

2
bDAi pxDAi � xID

buy

i,ωID � xRT
dn

i,ωRT q
2 (A8)

which equals (4.13) for this case.

Case 3: Buy-Up

Since xID
sell

i � xRT
dn

i � 0, Equations (4.10), (4.11), and (4.12) can be written as:

aDAi pxDAi � xID
buy

i,ωID � xRT
up

i,ωRT q �
1

2
bDAi pxDAi � xID

buy

i,ωID � xRT
up

i,ωRT q
2 (A9)

paDAi � aID
buy

i qpxID
buy

i,ωID � xRT
up

i,ωRTup q �
1

2
pbID

buy

i � bDAi qpxID
buy

i,ωID � xRT
up

i,ωRT q
2 (A10)

paRT
up

i � aID
buy

i q xRT
up

i,ωRT �
1

2
pbRT

up

i � bID
buy

i q xRT
up2

i,ωRT (A11)

Summing and cancelling out equal terms gives us

aDAi xDAi � aID
buy

i xID
buy

i,ωID � aRT
up

i xRT
up

i,ωRT �
1

2
pbID

buy

i � bDAi q xID
buy2

i,ωID �
1

2
pbRT

up

i � bDAi q xRT
up2

i,ωRT

�pbID
buy

i � bDAi q xID
buy

i,ωID xRT
up

i,ωRT �
1

2
bDAi pxDAi � xID

buy

i,ωID � xRT
up

i,ωRT q
2, (A12)

which equals (4.13) for this case.

Case 4: Sell-Down

Since xID
buy

i � xRT
up

i � 0, Equations (4.10), (4.11), and (4.12) can be written as:

aDAi pxDAi � xID
sell

i,ωID � xRT
dn

i,ωRT q �
1

2
bDAi pxDAi � xID

sell

i,ωID � xRT
dn

i,ωRT q
2 (A13)

paID
sell

i � aDAi qpxID
sell

i,ωID � xRT
dn

i,ωRT q �
1

2
pbID

sell

i � bDAi qpxID
sell

i,ωID � xRT
dn

i,ωRT q
2 (A14)

paID
sell

i � aRT
dn

i q xRT
dn

i,ωRT �
1

2
pbRT

dn

i � bID
sell

i q xRT
dn2

i,ωRT (A15)
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Summing and cancelling out equal terms gives us

aDAi xDAi � aID
sell

i xID
sell

i,ωID � aRT
dn

i xRT
dn

i,ωRT �
1

2
pbID

sell

i � bDAi q xID
sell2

i,ωID �
1

2
pbRT

dn

i � bDAi q xRT
dn2

i,ωRT

�pbID
sell

i � bDAi q xID
sell

i,ωID xRT
dn

i,ωRT �
1

2
bDAi pxDAi � xID

sell

i,ωID � xRT
dn

i,ωRT q
2, (A16)

which equals (4.13) for this case.

Appendix B

108



Table B1. Detailed results for the asymmetric scenario tree with cost parameters of case 5

Scenario Description ID1 ID2 ID3 RT Net Cost Change Final Cost Absolute Quantity

1

ID1 quantity 550 1050 1600
ID1 cost 24750 47250 72000 294000
ID2 quantity 1000 600 1600
ID2 cost 45000 27000 72000 294000
ID3 quantity 1350 250 1600
ID3 cost 60750 11250 72000 294000
No ID quantity 1600
No ID cost 72000 72000 294000

2

ID1 quantity 550 550 1100
ID1 cost 24750 24750 49500 271500
ID2 quantity 1000 100 1100
ID2 cost 45000 4500 49500 271500
ID3 quantity 1350 -250 1600
ID3 cost 60750 -8750 52000 274000
No ID quantity 1100
No ID cost 49500 49500 271500

3

ID1 quantity 550 350 900
ID1 cost 24750 15750 40500 262500
ID2 quantity 1000 -100 1100
ID2 cost 45000 -3500 41500 263500
ID3 quantity 650 250 900
ID3 cost 29250 11250 40500 262500
No ID quantity 900
No ID cost 40500 40500 262500

4

ID1 quantity 550 -150 700
ID1 cost 24750 -5250 19500 241500
ID2 quantity 1000 -600 1600
ID2 cost 45000 -21000 24000 246000
ID3 quantity 650 -250 900
ID3 cost 29250 -8750 20500 242500
No ID quantity 400
No ID cost 18000 18000 240000

5

ID1 quantity 550 150 700
ID1 cost 24750 6750 31500 253500
ID2 quantity 100 600 700
ID2 cost 4500 27000 31500 253500
ID3 quantity 450 250 700
ID3 cost 20250 11250 31500 253500
No ID quantity 700
No ID cost 31500 31500 253500

6

ID1 quantity 550 -350 900
ID1 cost 24750 -12250 12500 234500
ID2 quantity 100 100 200
ID2 cost 4500 4500 9000 231000
ID3 quantity 450 -250 700
ID3 cost 20250 -8750 11500 233500
No ID quantity 200
No ID cost 9000 9000 231000
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Scenario Description ID1 ID2 ID3 RT Net Cost Change Final Cost Absolute Quantity

7

ID1 quantity 550 -550 1100
ID1 cost 24750 -19250 5500 227500
ID2 quantity 100 -100 200
ID2 cost 4500 -3500 1000 223000
ID3 quantity -250 250 500
ID3 cost -8750 11250 2500 224500
No ID quantity
No ID cost 222000

8

ID1 quantity 550 -1050 1600
ID1 cost 24750 -36750 -12000 210000
ID2 quantity 100 -600 700
ID2 cost 4500 -21000 -16500 205500
ID3 quantity -250 -250 500
ID3 cost -8750 -8750 -17500 204500
No ID quantity -500
No ID cost -17500 -17500 204500

9

ID1 quantity -550 1050 1600
ID1 cost -19250 47250 28000 250000
ID2 quantity -100 600 700
ID2 cost -3500 27000 23500 245500
ID3 quantity 250 250 500
ID3 cost 11250 11250 22500 244500
No ID quantity 500
No ID cost 22500 22500 244500

10

ID1 quantity -550 550 1100
ID1 cost -19250 24750 5500 227500
ID2 quantity -100 100 200
ID2 cost -3500 4500 1000 223000
ID3 quantity 250 -250 500
ID3 cost 11250 -8750 2500 224500
No ID quantity
No ID cost 222000

11

ID1 quantity -550 350 900
ID1 cost -19250 15750 -3500 218500
ID2 quantity -100 -100 200
ID2 cost -3500 -3500 -7000 215000
ID3 quantity -450 250 700
ID3 cost -15750 11250 -4500 217500
No ID quantity -200
No ID cost -7000 -7000 215000

12

ID1 quantity -550 -150 700
ID1 cost -19250 -5250 -24500 197500
ID2 quantity -100 -600 700
ID2 cost -3500 -21000 -24500 197500
ID3 quantity -450 -250 700
ID3 cost -15750 -8750 -24500 197500
No ID quantity -700
No ID cost -24500 -24500 197500
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Scenario Description ID1 ID2 ID3 RT Net Cost Change Final Cost Absolute Quantity

13

ID1 quantity -550 150 700
ID1 cost -19250 6750 -12500 209500
ID2 quantity -1000 600 1600
ID2 cost -35000 27000 -8000 214000
ID3 quantity -650 250 900
ID3 cost -22750 11250 -11500 210500
No ID quantity -400
No ID cost -14000 -14000 208000

14

ID1 quantity -550 -350 900
ID1 cost -19250 -12250 -31500 190500
ID2 quantity -1000 100 1100
ID2 cost -35000 4500 -30500 191500
ID3 quantity -650 -250 900
ID3 cost -22750 -8750 -31500 190500
No ID quantity -900
No ID cost -31500 -31500 190500

15

ID1 quantity -550 -550 1100
ID1 cost -19250 -19250 -38500 183500
ID2 quantity -1000 -100 1100
ID2 cost -35000 -3500 -38500 183500
ID3 quantity -1350 250 1600
ID3 cost -47250 11250 -36000 186000
No ID quantity -1100
No ID cost -38500 -38500 183500

16

ID1 quantity -550 -1050 1600
ID1 cost -19250 -36750 -56000 166000
ID2 quantity -1000 -600 1600
ID2 cost -35000 -21000 -56000 166000
ID3 quantity -1350 -250 1600
ID3 cost -47250 -8750 -56000 166000
No ID quantity -1600
No ID cost -56000 -56000 166000

Average of sum of absolute ID and RT quantities
ID1 1075
ID2 900
ID3 925

Sum of absolute ID and RT quantities
ID1 17200
ID2 14400
ID3 14800
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Abstract

The growing penetration of intermittent renewable energy sources has increased the importance of efficient intraday

electricity markets, seeing that they provide an environment where market participants could correct their day-

ahead decisions due to imbalances caused by intermittency or any other reasons. For more efficient utilization

of generation resources across the whole continent, the European commission has established a target model to

integrate all intraday markets based on continuous double auctions or limit order book. A fundamental model for

a limit order book simulation is represented in this paper. Very simplifying assumptions are made on price and

quantity decisions. Instead, more focus is on the limit order book modeling in which market participants (they can

be any type of intermittent and conventional generators, elastic consumers and even financial traders) randomly

(based on uniform distribution) submit market or limit orders with random quantities chosen from their residual

capacity or cleared capacity (depending on ask or bid order submission) and their day-ahead marginal cost as

the submitted price. The model is able to manage the order arrivals, their addition to the list (as limit order)

or matching them with the best available opposite order (market order), store the matched trades, update the

quantities of matched orders and finally accept part (or whole) of matched orders to maintain the feasibility of the

transmission network with respect to the nodal constraints of the network.

Keywords: Market Microstructure, Continuous trading by limit order book, Simulation, Renewable integration
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5.1 Introduction

Electricity markets are designed as double auctions wherein sellers and buyers are able to submit their offers.

Double auctions are classified into two types, i.e. auction and continuous clearing. For example, all European

day-ahead and some intraday markets are based on auction clearing in which trade determination and price setting

rely on power exchanges. Hence, the power exchange determines which offers are successful and finds the clearing

price of transactions. While in continuous double auctions (CDAs), trade determination and price setting is not

generally built upon an institution, meaning that market participants themselves decide which quantities are traded

at which price and the clearing process is delegated to market participants. Therefore, by providing an appropriate

tool, a power exchange can give information to market participants and allow them to engage in transactions with

each other. A limit order book can be such a tool. In a limit order book, market participants can submit a bid

(request to buy) or ask (request to sell) to the orderbook by specifying a quantity and a price.

Market participants basically can submit two types of orders:

� Limit order : reflects the maximum willingness to pay (bid) or the minimum willingness to accept (ask) for

each unit (megawatt hour) of the specified quantity. As Table 5.1 shows, bids and asks are sorted respectively

in descending and ascending orders. These sortings place the current ”best offers” at the top of the order

book. The highest bid price in Table 5.1 is less than the lowest ask price, which implies that the buyer’s

willingness to pay is not high enough for the seller to trade. The magnitude of the difference between the

prices at the top of the order book is called the bid-ask spread. A limit order can be matched either partly

or entirely. If the limit order is not fully matched, it will remain active in the market until it is matched or

cancelled. Some execution constraints on limit orders have been defined for continuous intraday electricity

markets, for instance Fill or Kill (FOK) and Immediate or Cancel (IOC). With an FOK constraint, the entire

volume of the order will either be matched immediately after submission or cancelled right away. With an IOC

constraint, as much as possible of the order will be matched immediately after submission and the remaining

quantity will be cancelled instantly.

� Market order : participants submit a market order when they buy or sell a certain quantity at the best

available sell or buy price. Once a market order has arrived, it is matched instantly with the best available

price in the order book and trade occurs.

Table 5.1. Limit order book example

Bid Ask
time price quantity time price quantity
10:18 50 15 10:10 52 20
10:22 47 25 10:29 54 15
10:07 46 20 10:05 55 25
10:16 43 25 10:13 58 22

Limit orders remain in the order book until they are matched with a market order or cancelled.

As mentioned before, only a few European intraday markets such as the Iberaian (Spain and Portugal) and the

Italian markets are discrete auctions. The Iberian market is divided into 7 auctions with different gate-closure and

trading hours coverage. Pricing is based on the marginal pricing rule (Chaves-Ávila and Fernandes (2015)). Except

for these two mentioned markets, almost all other European intraday markets are continuous double auctions.

Elbas which is run by Nordpool spot AS is a good example of this type, and covers the Nordic and Baltic countries,
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Germany and the UK. Although Elbas covers many countries, the trading volume is relatively low. For instance,

only 8.3 Twh was traded on Elbas in 2018, which was just 0.02% of the total volume traded in the Nordpool

day-ahead market (Elspot). One possible reason for this low volume is that the installed capacity of intermittent

renewables is not very high in the countries covered by Elbas. In 2017, the combined capacity of wind turbines and

photovoltaic installations in Denmark, Finland, Norway, Sweden, Estonia, Latvia and Lithuania amounted to 17.2

GW. For comparison, the capacity in Germany was nearly 97.4 GW (WindEurope (2017)).

The growth of the intermittent generation capacity has increased the importance of efficient intraday markets,

seeing that it becomes more challenging for market participants to be in balance after the closing of the day-ahead

market. Hence, there will be an increasing interest in trading in the intraday markets. It is a potential benefit for

both market participants and power systems that the network is in balance closer to the delivery time, in order

to reduce the need for reserves and associated costs. The European commission has established a target model to

integrate all intraday markets based on continuous trading. Therefore, the XBID project (cross-border intraday) was

launched to create a joint integrated intraday cross-zonal market. As mentioned in the XBID documents (NordPool

(2016a)) the main aims of integration are to promote effective competition and pricing, increase liquidity and enable

a more efficient utilization of generation resources across Europe.

This measure illustrates the importance of intraday markets in integrating renewables and therefore more in-

depth studies are required to analyze the best market design - auction, continuous or hybrid - and finds suitable

congestion management technique for the intraday market. Simulation is one of the key tools to imitate the

operation of continuous trading intraday market. Since none of the former electricity markets has been designed as

a continuous trading market, this topic is new for many power market experts. Even though the experiences gained

from the stock market, which uses the limit order book tool, can open new doors to electricity market experts, the

specific characteristics of power markets, like physical transmission network constraints, power plant and consumer

restrictions, etc. may limit the value of these experiences and call for specific adjustments.

The rest of the paper is organized as follows. A comprehensive intraday electricity market literature review

is given in Section 5.2. In Section 5.3 the main reasons for participating in intraday markets will be discussed.

The research assumptions, the mathematical formulation and simulation of limit orders, market orders, matching

of orders, updating quantities for matched agents, etc., are represented in Section 5.4. Section 5.5 introduces an

illustrative example and the results of the computational study. Corresponding insights and suggestions for future

research are explained in section 5.6. Finally, Section 5.7 concludes the paper.

5.2 literature Review

The literature about intraday markets can be categorized into three main groups:

� Intraday prices

� Trading strategy of different types of market participants in the intraday market

� Modeling of intraday markets

Empirical or analytical analysis of intraday prices has evolved very rapidly over recent years. While Soysal

et al. (2017), Sekamane (2018), Panagiotelis and Smith (2008), Gürtler and Paulsen (2018), Hagemann (2013b),

Ziel (2017) and Karanfil and Li (2015) suggest time-series regression-based methods and Monteiro et al. (2016)
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and Kolberg and Waage (2018) utilize several kind of neural networks and deep learning techniques for forecasting

intraday prices, some other papers like Pape et al. (2016) and Kiesel and Paraschiv (2017) utilize the econometric

approaches to extract the relation between day-ahead, intraday and sometimes balancing market prices.

In some other studies various optimization approaches have been utilized by different types of market partic-

ipants so as to find their optimal bidding and trading strategies to operate in sequential markets. Löhndorf et al.

(2013), Braun (2016), Braun and Hoffmann (2016), Engmark et al. (2018), Engmark et al. (2017) develop bidding

strategies for hydropower or pumped storage technologies to optimize their dispatch in two-stage day-ahead and

intraday markets, while Vardanyan and Hesamzadeh (2017) suggest optimal coordinated bidding of a risk-averse

profit-maximizing hydropower producer in three-settlement day-ahead, intraday, and real-time markets. To the

best of our knowledge, Boukas et al. (2018) is the only paper that utilizes markov decision processes and deep

learning to find the optimal bidding strategy of a storage operator in a continuous trading intraday market. Since

one of the main reasons of designing a continuous trading intraday market is to facilitate trades for wind and solar

producers, many interesting studies have been done to suggest the optimal trading strategies for these intermittent

technologies. While Du et al. (2018) and Usaola and Moreno (2009) focus on the co-optimization of a wind pro-

ducer’s trading strategies in both day-ahead and intraday markets, Skajaa et al. (2015) and Garnier and Madlener

(2015) propose an efficient trading strategy to balance the forecast errors of wind producers in a continuous trading

intraday market.

In most papers on electricity intraday market design, the continuous double auction structure of this market

has not been paid much attention, and until recently, mathematical co-optimization of auction-based day-ahead

and intraday markets (and sometimes balancing market) were the predominant approach. For example, Abrell and

Kunz (2015) develop a rolling planning procedure in a stochastic electricity market setting to analyze the impact of

both uncertain wind generation as well as network constraints on the results of sequential markets. By modeling the

German power system, they illustrate how intermittent wind generation affects the flexibility providers’ dispatch

in an auction-based intraday market. More recents papers like Neuhoff et al. (2016a) and Neuhoff et al. (2016c)

empirically assess the hybrid intraday market design, which is based on the simultaneous operation of continuous

trading and several discrete auctions. In Neuhoff et al. (2016c) the effect of adding the 3 pm local auction (for

quarters in Germany in December 2014 at the European Power Exchange (EPEX SPOT)) to the current continuous

trading is investigated. They find that the additional auction enhances liquidity, and gives rise to higher market

depth and reduced price volatility. Neuhoff et al. (2016a) analyze how the various intraday market designs - one

or more auctions alongside or instead of continuous intraday trading - affect market efficiency. They conclude that

the introduction of intraday auctions entails the potential to support efficiency.

As mentioned before in Section 5.1, the limit order book is the tool for continuous trading intraday market

operations. The literature on limit order book modeling and trading strategies in stock market continuous double

auctions is more abundant than continuous intraday markets for electricity. Von Selasinsky (2016) reviewed the

related literature very comprehensively. Based on his classification, limit order books can be modeled either by

equilibrium or by stochastic models. The former approach is used to illustrate how the interaction of market agents

forms the prices, however the main disadvantage of this approach is that due to the anonymity of the agents, their

characteristics are not known. Hence, the parameters of such models are unobservable and this gives incomplete

intuition about the statistical properties of limit order books (Luckock et al., 2003). Stochastic modeling of order

book dynamics, on the other hand, is based on the assumption that the evolution of the order book is driven by

the collective behavior of all market participants not the individual ones. Therefore, most of the models in this

category (in stock market studies) are based on queueing techniques. Queueing behavior plays an important role in
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short-term market dynamics. Kiesel and Luckner (2018) is the only reference in the electricity continuous trading

intraday market subject that models market order arrivals by a stochastic process called Hawkes process. In markets

with a limit order book structure, the timing of order arrivals play a key role because these market orders are the

ones that may change the mid price and bid-ask spread. By empirical analysis, Kiesel and Luckner (2018) illustrate

that a Hawkes process with exponential baseline intensity and exponential excitement function is able to capture

the dynamics of market order arrivals very well.

Thus far, Von Selasinsky (2016) is the only and the most comprehensive reference in simulating continuous

trading intraday electricity markets. Since this reference is inspirational to many ideas mentioned in this paper, its

approach will be brifely summerized here. To find the initial point for the intraday market, the first step is to clear

the day-ahead market. The day-ahead result determines the dispatched and non-dispatched generators as well as

satisfied and unsatisfied consumers. The continuous structure of the intraday market is modeled by discrete time

steps; meaning that for a given hour in the future ten pre-defined time steps and thus ten possibilities to balance

forecast errors are considered. In other words, Von Selasinsky (2016) assumes that for each day-ahead clearing of a

future trading hour, the wind forecast can be updated ten times. At the first time step, market participants decide

to offer buy or sell order based on the results of the day-ahead market. Then, by a very innovative procedure, an

intraday offer pair (quantity,price) is calculated for each market participant. The resulting offers are utilized to

generate an order book for the first time step by sorting bids in descending and asks in ascending order with respect

to their price. Von Selasinsky (2016) also assumes that a central renewables manager (CRM) tries to balance the

cumulative forecast errors from all renewable producers. Therefore, when the limit order book is created, with

respect to the direction and the magnitude of the forecast error, the CRM decides to either sell or buy a quantity

and hence start to be matched with the highest priority orders from the limit order book. Next, the matched orders

will be stored and the position (quantities) of cleared market participants will be updated to be used for the next

time steps. A similar simulation procedure is repeated for nine more time steps when forecast errors are updated.

Even though Von Selasinsky (2016) made outstanding contributions to continuous trading simulation, especially

in calculating optimal price and quantity of orders submitted to the intraday market by different types of market

participants (generators and consumers), his model is still not able to capture the dynamic structure of entering

the orders, adding them to the list, matching, and many other characteristics of the limit order book. Moreover,

the forecast errors of all intermittent producers are balanced by a central manager and this authority, irrespective

of the submitted order prices, just try to trade the imbalance quantity after each updated forecast. Hence, firstly

each intermittent generator cannot decide for its own imbalances and secondly by this approach the CRM has to

balance forecast errors whenever it receives the updated information. So, no trade-off between risk and profit of

intermittent producers is allowed in this decision making process.

In this paper, in contrast to the very advanced price and quantity setting model devised by Von Selasinsky

(2016), very simplified assumptions are made on price and quantity decisions. Instead, I focus on the limit order

book modeling wherein market participants (they can be any type of intermittent and conventional generators,

elastic consumers and even financial traders) randomly (based on a uniform distribution) submit market or limit

orders with random quantities chosen from their residual capacity or cleared capacity (depending on ask or bid order

submission) and with their day-ahead marginal cost as the submitted price. The model is able to manage the order

arrivals, their addition to the list (as limit order) or matching them with the best available opposite order (market

order), store the matched trades, update the quantities of matched orders and lastly to accept part (or whole)

of matched orders to maintain the feasibility of the transmission network with respect to the nodal constraints

of the network. Hence, the procedure allows for taking into account congestion management by checking trades
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against available remaining capacity, and curtailing trades when the capacity is not sufficient. By this approach,

the stochastic process of order arrivals is still very simplified and independent of the current state of the limit order

book but it provides a solid fundamental model for the limit order book. Then the other characteristics of the limit

order book like dependence of order arrivals to the state of the limit order book, modeling intermittent entrance

by the time of receiving updated forecasts and advanced trading startegies of non-intermittent market participants

- like their decision to trade or not, submit ask or bid orders, and (quantity,price) pair decisions - can be attached

to the fundamental basis provided in this paper.

5.3 The reasons for participating in the intraday market and price

impacts

As I explained before, the intraday market lets market participants correct their day-ahead decision and adjust

their quantity and price appertaining to either their own deviations or new information extracted from the market.

In this section, several motivations for intraday market involvement will be discussed. Hagemann (2013b) studied

empirically the effect of diverse factors over intraday market prices which are reflecting the market participants

willingness to involve in this market. His hypothetical price determinants are:

1. Unplanned power plant outages

2. Forecast errors from intermittent renewable energy sources

3. Load forecast error

4. Cross-border trading

The empirical analysis on German data confirms that forecast errors from intermittent renewables, especially

wind, have the highest impact on the average price.

Neuhoff et al. (2016c) mention that in the case of power plant outages, which need large adjustments, market

participants are more willing to negotiate bilaterally. In this fashion, a buyer is allowed to identify its needs for

consecutive hours and the seller of (this large flexibility) is allowed to do more comprehensive adjustments of its

operational schedules, e.g. the start-up of new units. Therefore, in this paper we exclude the possibility of flexibility

trading owing to outages.

In the following subsections, it will be illustrated how prices and/or quantities submitted to the limit order

book are influenced by these elements.

5.3.1 Price setting decisions in the intraday market due to the intermittent genera-

tors’ forecast error

For better analyzing the intraday market, the day-ahead market results can be utilized. Figure 5.1 illustrates

conventional supply and demand curves for a given hour in the day-ahead auction. Since in the supply curve

the generators’ offers are ranked according to increasing prices, this curve is referred to as the merit order curve.

Renewables have a very low marginal cost. Hence, they are found at the bottom of the curve. Then respectively,

base load, mid-load and peak-load power plants are stacked.
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Figure 5.1. Day-ahead auction for a given hour (Von Selasinsky (2016))

The bids received from consumers are sorted descendingly (with respect to price). In uniform price markets, the

intersection of the supply and demand curves determines the clearing price. It is generally assumed that under full

competition, all market participants offer their true valuation which is the marginal cost of production for generators

and the willingness to pay for consumers. As can be seen from Figure 5.1, dispatched generators and satisfied

consumers are those accepted to produce and consume at the day-ahead clearing price. Generators/consumers

with offer prices above/below the clearing price are called non-dispatched generators/unsatisfied consumers. It is

assumed that all accepted and non-accepted day-ahead participants can take part in the intraday market. After

revealing the day-ahead market results, we can divide the market participants into two groups: Buyers (submit bid)

and sellers (submit ask) in the intraday market.

Dispatched generators sold in the day-ahead market, hence they are able to buy back quantities in the intraday

market by submitting a bid. Similarly, since unsatisfied consumers were not able to buy in the day-ahead market,

they can buy their required quantities in the intraday market by submitting a bid. Satisfied consumers bought in

the day-ahead market, thus they can sell the quantities they bought before by submitting an ask in the intraday

market. Finally, non-dispatched generators did not succeed in selling in the day-ahead market, therefore, the

intraday market provides a new opportunity to sell (ask).

Figure 5.2 demonstrates that by vertical rotation of the demand function around the day-ahead equilibrium,

dispatched generators and unsatisfied consumers can be grouped as bidders, while non-dispatched generators and

satisfied consumers are able to submit ask.

Now the question is how do market participants set the prices in a continuous intraday market? By submitting

the true valuation of the electricity bought or sold, which is called the indifference price, market participants would

not make a profit from the transaction, meaning that they are indifferent between staying in the current position

or changing this position. Nevertheless, the incentive to participate in the intraday market is to earn more profits

not just to be indifferent. Therefore, in a competitive continuous intraday market a profit-making strategy for

generators and consumers is to bid below their true valuation for quantities they buy and to ask above their true

valuation for quantities that they sell. It should be noted that the profit-making strategy should not be confused

with market power issues, seeing that they are a straightforward consequence of continuous trading design. Forecast
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Figure 5.2. Framework for analysing the intraday market (Von Selasinsky (2016))

errors from intermittent renewables is one of the main stimulating factors for other generators and consumers to

trade in the intraday market with the aim of profit increment.

If the output from renewables is underestimated, they are eager to sell electricity, and the market participants

on the left side of Q� can submit bids to buy their quantities in the intraday market. In order to have a profitable

trade, the bidders have to bid below their day-ahead offer price (bid arrows in Figure 5.2). In this fashion, if the

bidder is a generator, it is able to get the quantities cheaper from the intraday market than from its self-production.

Similarly, for a consumer it is profitable to buy electricity when prices are below its willingness to pay.

Conversely, an overestimation of renewable outputs means that they have to buy the difference in the intraday

or balancing market. Thus, if the agents on the right side of Q� ask above the price of their unsuccessful day-ahead

offer, not only their marginal cost is covered but also some profit is attainable. Satisfied consumers will only sell

the quantities they acquired in the day-ahead market if at least their true valuation is paid.

Thus far, we have mentioned that in the first order placements in the intraday market the buyers bid below

and the sellers ask above their marginal costs and willingness to pay. But the main feature of continuous trading is

to let market participants trade electricity for a given hour in the future multiple times. For instance, intermittent

renewables like wind generators may decide to react to updated forecasts whenever they get a new one. Then they

try to buy (in the case of overestimation) or sell (in the case of underestimation) electricity for a given hour in the

future. Hence, they provide this opportunity for other generators and consumers to modify their intraday decisions

in order to make more profit. Even though the possibility of trade among all market participants could exist,

the probability of this occuring is not very high. As an illustration, since a non-dispatched generator has higher

marginal cost than a dispatched one, its ask price is probably higher than the willingness to pay of a dispatched

generator.
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5.3.2 Intraday market trading for relieving congestion

Different congestion management approaches in day-ahead and balancing markets in European power markets

create inefficiencies within and between countries as follows:

� Within countries: As the network is simplified in the day-ahead market, the value of generation at differ-

ent locations is not recognized thoroughly by this market, resulting in gaming opportunities and inefficient

dispatch.

� Between countries: capacity allocation of transmission across zones is treated differently from intra-zonal

dispatch, which gives incomplete information on the state of the transmission network and usually ending up

with underutilization of the network.

Hence, if the EU commission, electricity regulatory forum or any other related political economics institutions

still put their foot down to operate simplified networks in the day-ahead market, there is still the possibility to

relieve congestion resulting from day-ahead schedules in the intraday market. In this paper, we suggest a congestion

management method to have feasible trades in the intraday market but we are not necessarily attaining the optimal

nodal solution.

5.4 Model

5.4.1 Modeling assumptions

In a limit order market, transaction prices are determined by the interaction of incoming orders with the current

state of the order book. So, in order to have a proper model of the price formation and stochastic properties of

prices, we need to have a better perception of this interaction.

Owing to the inherent complexity of limit order markets, developing a tractable model may be hindered by

many simplifying assumptions:

1. The arrival of orders of any type (bid, ask, limit order, market order) as well as the type of entrant agent

(generator or consumer) is based on simple uniform distribution in (0,1). If we want to see the relation between

incoming orders with the current state of the limit order book then we have to work on this assumption.

2. Market participants submit their (price,quantity) pair without using information about the current state of

the limit order book. This situation usually happens in very active markets in which the order book changes

before a reaction of an agent can be transmitted (which is not the case at least in current intraday markets).

Hence, by this assumption the expected order arrival rates will be independent of the order book state. In

the more advanced case, we need a self-exciting process to show that the market participants’ decisions are

not independent of the state of the limit order book, because they watch the current prices in the list, the

spread or average price, then decide to enter or wait and choose the (price,quantity) pair. It seems that a

Hawkes process is very suitable to model the self-exciting behavior of the limit order book. In this paper, the

dependence of order arrivals on the current state of the limit order book is relaxed and will be investigated

in future research.

3. The independence assumption let us assume that agents just submit their marginal cost (MC) or willingness
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to pay (MB) as the price, and quantities are determined randomly based on the agents’ available or cleared

capacity in previous trades. Hence, in this paper, I avoid to focus on the profit making strategies of agents

by finding optimal price and quantity values.

In general, these assumptions can be interpreted as a market with zero information flow.

5.4.2 Mathematical model

When a market participant submits an order, three important factors price, quantity and time must be

considered. Hence, an ordered triple x � ppx, qx, txq represents that an agent has submitted an order x with price

px, quantity qx at time tx to trade up to qx units at a price not lower than px to sell or not higher than px to buy.

The third assumption in Section 5.4.1 mentions that limit order prices are placed from a price set P �

tMCg1 ,MCg2 , ...,MCgG ,MBd1 ,MBd2 , ...,MBdDu. G and D are respectively the total number of generators and

consumers.

At time zero, the limit order book is empty. At time t, the state of the order book is kept track of with a

continuous time process Xptq � pXMCg1
ptq, ..., XMCgG

ptq, XMBd1
ptq, ..., XMBdD

ptqq, t ¥ 0, where | Xpptq | is the

number of limit orders at price p P P .

If Xpptq   0, then there are �Xpptq bid orders at price p;

If Xpptq ¡ 0, then there are Xpptq ask orders at price p.

In the limit order markets, we are interested in the best bid and best ask prices stored in the order book. Lets

define pAptq as the lowest (i.e. best) ask price at time t:

pAptq �Minptp P P | Xpptq ¡ 0u Y tpcapuq

And pBptq as the highest (i.e. best) bid price at time t:

pBptq �Maxptp P P | Xpptq   0u Y t0uq

When the ask list in the order book is empty, an ask price of pcap (which is the market cap price) is forced and

when there is no bid order, a bid price of 0 is forced. Without loss of generality, we can assume that at any time t,

the order book consists of a queue of unexecuted sell orders with sorted prices α1ptq, α2ptq, ... and another queue of

unexecuted buy orders with sorted prices β1ptq, β2ptq, ... waiting to be matched with incoming orders. These prices

are actually reindexed such that α1ptq � pAptq and β1ptq � pBptq. Hence, the prices will satisfy the inequalities:

... ¤ β2ptq ¤ β1ptq   α1ptq ¤ α2ptq ¤ ...

Whenever a new order is submitted, the order book will be revised according to the following rules:

1. If the new order is a buy (bid) at the price pb and quantity qb, at time t, then:

� If pb ¥ pApt� 1q, the new bid order becomes a market order and is immediately matched with the current

best ask (lowest ask). Then the matched price and quantity are:

pmatched � pApt� 1q

qmatched �Minpqb, qApt� 1qq

Thus, the updated lowest ask price (in the case that the whole order quantity is not matched)

If qmatched � qb, then pAptq � pApt� 1q

If qmatched � qApt� 1q, then pAptq � the next lowest ask price in the list (α2ptq)
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� If pBpt � 1q   pb   pApt � 1q, then the new bid order will be a buy limit order which places at the top of

the bid list causing a change in the highest bid price at time t; pBptq � pb, qBptq � qb.

� If pb ¤ pBpt � 1q, then the new bid order will be a buy limit order (and will be added to the bid list) but

will not change the highest bid price; pBptq � pBpt� 1q

2. If the new order is a sell (ask) at the price pa and quantity qa at time t, then:

� If pa ¤ pBpt� 1q, the new ask order becomes a market order and is immediately matched with the current

best bid (highest bid). Then the matched price and quantity are:

pmatched � pBpt� 1q

qmatched �Minpqa, qBpt� 1qq

Hence, the new highest bid price is updated as follows:

If qmatched � qa, then pBptq � pBpt� 1q

If qmatched � qBpt� 1q, then pBptq � the next highest bid price in the list (β2ptq)

� If pBpt� 1q   pa   pApt� 1q, then the new ask order will be an ask limit order which places at the top of

the ask list causing a change in the lowest ask price at time t; pAptq � pa, qAptq � qa.

� If pa ¥ pApt� 1q, then the new ask order will be an ask limit order (and will be added to the ask list) but

will not change the lowest ask price; pAptq � pApt� 1q

In this paper, order arrivals are not only taken from a stochastic process but also the available/already cleared

capacity of market participants from the day-ahead market and previous intraday trades are considered to decide

about bid or ask order submissions. The details of the stochastic process will be explained in the simulation section.

5.4.3 Simulation of the continuous intraday market

Figure 5.3 demonstrates the simulation procedure of the continuous intraday market. The steps are as follows:

1. Day-ahead results: after solving the day-ahead market based on formulation 5.1, information about cleared

quantities, qDA�

g and qDA�

d , of generators and consumers respectively, as well as zonal prices are announced
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Figure 1. Flowchart for intraday market simulation procedure
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by the market operator (power exchange).

MaximizeqDA
g ,qDA

d ,fe

¸
dPD

Bdpq
DA
d q �

¸
gPG

Cgpq
DA
g q (5.1a)

subject to: qDAg P FRDA , qDAd P FRDA g P G, d P D (5.1b)

NIz �
¸
g P z

qDA

g �
¸
d P z

qDA

d : pλzq z P Z (5.1c)

NIz �
¸

e:ω0peq�z

fe �
¸

e:ω1peq�z

fe z P Z (5.1d)

�ATCe ¤ fe ¤ ATCe e P E (5.1e)

The objective function (5.1a) maximizes the social welfare of the power system. Cgpq
DA
g q and Bdpq

DA
d q show

the cost and benefit functions of generators and consumers, respectively. The constraint (5.1b) reflects the

production/consumption capacity constraints of generators and consumers or in general it can show any

constraint on market participants in the feasible region FRDA. NIz declares the net injection (outflow (if

NIz ¡ 0)/ net inflow (if NIz   0)) of power to zone z. The day-ahead power balance constraint at each zone

z P Z is demonstrated by equation (5.1c), meaning that production minus consumption with positive/negative

sign equals to the net outflow/inflow at each zone. Therefore, the shadow price λz of this equation is interpreted

as the day-ahead clearing price of zone z. Unlike nodal day-ahead market, just commercial flows which do

not reflect physical network constraints are modeled in the zonal day-ahead market. For every adjacent zones

which are connected by physical connections l, there exists a cross-border interface e P E which conveys

commercial flows between zones. Corresponding to each interface e, there is a flow pfeqePE . If ω0 and ω1 show

the starting and ending zones of interface e and fe ¡ 0, then it means that commercial flow is flowing from

ω0 to ω1. Constraint (5.5e) shows the cross-border trade capacities (ATC) over the cross-zonal interfaces.

Thus, the day-ahead dispatch model (5.1) can be elucidated as a partly network-constrained auction where

the cheapest generators and the consumers with the highest willingness to pay are cleared. Due to the network

simplification at day-ahead stage, most probably the day-ahead solution is not satisfied by the physical network

constraints and therefore is not a feasible initial trade for intraday market.

2. Day-ahead power flow: in order to have feasible trades in the intraday market, the system operator has to

check the power flows of the physical transmission lines for the day-ahead results, by checking the following

equations:

NIn �
¸
g P n

qDA�

g �
¸
d P n

qDA�

d n P N (5.2a)

fl �
¸
nPN

PTDFnl �NIn l P L (5.2b)

| fl |¤ fmaxl l P L (5.2c)

NIn in equation (5.2a) shows the net injection of power into node n for optimal day-ahead solution qDA
�

g

and qDA
�

d . Nodes of the network are connected by a set of physical transmission lines L. Corresponds to

each line l, there is a flow f � pflqlPL. To calculate the physical power flow over each line l, the PTDF-based

formulation (5.2b) can be utilized. PTDFnl is the power transfer distribution factor, which states how much

power flows through line l if 1 MW is injected in node n P N and is taken out in the reference node. By

inequalities (5.2c) flows are forced to be in the capacity limit of the lines. If the day-ahead schedule is not
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satisfying the power flow constraints (5.2c), then the congested lines must be saved and optimal curtailment

is done.

3. Day-ahead curtailment: we need to have a feasible flow before intraday trades occur. Because it is very

probable that a matched trade in the intraday market is totally curtailed due to the infeasibilities caused by

other market participants in the day-ahead stage. Thus, the transmission system operator (TSO) is running

the following curtailment model:

Minimizeqcurt
g ,qcurt

d

¸
gPG

qcurtg �
¸
dPD

qcurtd (5.3a)

subject to: NIn �
¸
g P n

pqDA�

g � qcurtg q �
¸
d P n

pqDA�

d � qcurtd q n P N (5.3b)

¸
nPN

NIn � 0 (5.3c)

fl �
¸
nPN

PTDFnl �NIn l P L (5.3d)

| fl |¤ fmaxl l P L (5.3e)

0 ¤ qcurtg ¤ qDA�

g g P G (5.3f)

0 ¤ qcurtd ¤ qDA�

d d P D (5.3g)

The objective (5.3a) minimizes the total curtailment of the day-ahead quantities. It is assumed that all

generators and consumers have equal value of lost of generation and load, hence the weight of qcurtg and qcurtd

is equal to 1. NIn in equation (5.3b) is the net injection of power into node n when the day-ahead solution is

curtailed. Equation (5.3c) guarantees that the sum of net injections over all nodes in a lossless system must be

equal to zero. Constraints (5.3d) and (5.3e) have the same interpretations as (5.2b) and (5.2c). Finally, (5.3f)

and (5.3g) guarantee that the curtailed quantities do not exceed the original production and consumption

in the day-ahead solution. After finding the curtailed quantities, generation and consumption is updated as

follows:

qg � qDA�

g � qcurtg qfreeg � qmaxg � qg g P G (5.4a)

qd � qDA�

d � qcurtd qfreed � qmaxd � qd d P D (5.4b)

4. Intraday initialization: The updated feasible schedules qg and qd for all g and d are conveyed to the intraday

market. However, at the opening of the intraday market (for a specific delivery hour) the limit order book is

empty. If generators enter the intraday market, then they may submit part of their cleared (and curtailed)

quantity for buy and residual capacity (which equals to qfreeg ) for sell, while consumers may submit a portion

of their residual capacity qfreed for buy and cleared quantity qd for sell. Moreover, since at the beginning, the

limit order book is empty, I initialize the prices such that the ask price is set to the price cap and the bid

price is set to zero.

5. Random entrance: when the intraday market is opening, there could be several reasons (Section 5.3) for the

market participants to enter into the intraday market. This is the part that is difficult to model because we

have to model them based on the limit oreder book state. We have to make a chaos from the day-ahead

market. For example, a consumer may enter first because of a load forecast error, or a wind generator may

enter first because of the updated forecast it gets, but in all these cases it is important to consider what would

be their submitted price and quantity and how prices are evolving based on the latest information which
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is attainable from the limit order book. The orders can either enter at a constant rate (like in the Poisson

process) or be governed by an intensity function. However, in reality it is often known that the arrival of an

event increases the likelihood of observing events in the near future. An earthquake aftershock event is a very

good example for this type of events. It seems that a class of processes in which the arrival rate explicitly

depends on past arrivals is perfectly fitted to the limit order book model and the most well-known self-exciting

process is the Hawkes process. As explained in the second assumption in Section 5.4.1, in this paper it is

assumed that the order arrivals are independent of the state of the limit order book and the order arrival

is modeled by a very simple uniform distribution. A random number, rand ent, is picked up from (0,1). A

number less than 0.5 means that a generator enters while a number greater than 0.5 means that a consumer

enters to the intraday market.

6. Like in stage 5, a generator (rand g) or a consumer (rand d) is sampled uniformly at random, from the integers

1 to G or 1 to D and therefore, by assumption 3, its MC (for generator) or MB (for consumer) will be the

submitted price. Hence, in this paper the price submission is not in accordance with the ideas mentioned in

Section 5.3.1 and the optimal bidding of market participants to the intraday market is neglected.

7. As mentioned before, when an agent decides to submit an order in the intraday market, the pair (price,quantity)

must be submitted. The amount of residual capacity qfreeg (or qfreed ) is a determining factor when submitting

bid or ask orders, and several cases may happen. For generators, if the residual capacity qfreeg is close to

zero (LB is equal to 5, meaning that all quantities in the limit (0,5) are considered as almost zero) then

g does not have any extra capacity to sell and the only option is to buy. Hence, any random number in

rLBB , UBBs � r5, qgs can be submitted as the bid order quantity. If qfreeg is close to the capacity limit (UB

is equal to qmaxg � 5, meaning that all quantities in rqmaxg � 5, qmaxg s are considered as quantities close to

capacity), it means that g has not sold anything yet, and if g decides to enter now, then the only option is

to sell. Thus, any random number in rLBA, UBAs � r5, qmaxg s can be submitted as the sell order quantity.

Finally, if the residual capacity qfreeg P p5, qmaxg � 5q, then g can randomly decide to submit ask or bid orders.

8. After deciding on bid or ask orders, price and quantity submission, the procedure of matching or adding to

the list is exactly what is explained in Section 5.4.2. If matching occurs, then the opposite best order must be

updated, either deleted from the list or still stay in the list with updated quantity. Then the matched quantity

and their two related locations (nodes) in the network is sent to the TSO. The TSO checks the feasibility of

this trade and solve the curtailment problem (5.3) if necessary, by replacing qmatched instead of qDA
�

.

5.5 Illustrative example

5.5.1 Data

In this section, a small 6-node system is used to intuitively illuminate the main characteristics of the previously

discussed intraday market model.

Figure 5.4 depicts a 6-node system which consists of 6 nodes n P t1, ..., N � 6u, 3 generators g P t1, ..., G � 3u

placed respectively at nodes 1,2 and 5, 3 consumers d P t1, ..., D � 3u located at nodes 3,4 and 6, and finally 8 lines

l P t1, ..., L � 8u. The capacity of the lines is shown in the figure, and the reactance of every line is assumed to be

equal to 1. This nework is decomposed into to zones z1 and z2.
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Figure 5.4. 6-node network configuration

Data for the generators and consumers is collated in Table 5.2, where qmaxg and qmaxd are the generator g and

consumer d capacities . MCg is the marginal cost of production of generator g and MBd is the marginal benefit of

consumption of consumer d, which is assumed to be their offer price in the day-ahead as well as intraday market.

Table 5.2. Generators and consumers’ data

Generators
MC

(e {MWh)
qmaxg Consumers

MB
(e{MWh)

qmaxd

G1 12 450 D1 23 450
G2 20 350 D2 21 400
G3 17 400 D3 30 350

5.5.2 Day-ahead market results

In the day-ahead market, the zonal configuration with two zones and zero transmission capacity between them

is considered, meaning that ATC � 0, which is the worst case with respect to considering the transmission limitation

between zones.

The day-ahead result along with the power flows over the physical lines - which are calculated with respect to

the day-ahead net injections at each node - is illustrated in Figure 5.5. As the result shows, the day-ahead market

culminates in an infeasible network solution due to the violation of lines l13 and l46 capacity constraints. Therefore,

for the purpose of having feasible trades before the intraday market, the day-ahead result has to be curtailed by

curtailment problem (5.3) to reach a feasible solution. The day-ahead curtailed solution is depicted in Figure 5.6.

Hence, thus far a feasible starting point for the intraday market is extracted and the corresponding social surplus

equals to 7713 e.

5.5.3 Continuous intraday trading environment

At the beginning of the intraday market, the limit order book is empty. Assume that after a while, D1 decides

to enter (as mentioned before, the reason for D1’s participation is not paid attention to here, however in a more

advanced model we have to consider why this participant enters the intraday market).
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Figure 5.5. Day-ahead result for 6-node exampleDA results after curtailment 
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Figure 5.6. Day-ahead curtailed result

As Figure 5.6 demonstrates, D1 is assigned to consume 300 MW after the day-ahead curtailment, hence its

available capacity is equal to 150 MW. D1 can submit both ask and bid orders. Without knowing the reason of its

participation, we assume that D1 submits an ask order with price equal to its willingness to pay, which is 23, and

a random quantity from (0,300), because submitting an ask means that D1 wants to decrease its consumption by

selling part of the 300 MW that had been cleared before.

Then as a second entrant, D2 enters by submitting a bid order with price equal to 21 and a random quantity

from (0,350), meaning that it wants to increase its consumption from 50 MW.

Now assume that the third generator, G3, is interested in buying back a portion of its day-ahead production
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Figure 5.7. Limit order book after first order submission
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(it does not have an option to submit an ask, because it sold all its capacity in the day-ahead market, therefore if

it decides to trade, the only possibility is just to submit a bid). Then it submits a bid with price 17 and random

quantity 382 from the interval (0,400). Since its offered price is 17, which is lower than the highest bid price, G3’s

order is placed in the second priority after D2’s order, and still 21 is the highest bid price.

If G2 enters as a fourth entrant by submitting an ask order with price of 20 and a random quantity from

(0,350), since the asked price of the new arrival is lower than the current highest bid (which is 21), then matching

occurs between G2 and D2. The matched price and quantity are respectively 21 and 31. Thus, G2 is removed from

the ask list while D2 can stay in the bid list with a price and quantity pair of (21,174), or it can be cancelled after

matching, in which case the highest bid price goes down from 21 to 17 and the spread increases.

After each matching, the power flows over the physical lines can be calculated and in the case of violation,

a partial or full curtailment of the matched trade can be done by the system operator. The Latest power flows

after adding the new matched trade is shown in Figure 5.11. None of the lines are violated, so no curtailment is

needed, and the updated quantities are qG2 � 31 and qD2 � 81. By this trade the social surplus is raised by 31e

(p21� 20q � 31) and the total reaches 7744e.

Now, the simulation procedure is used to compare the two following cases:

� Lower number of entrances: it is assumed that 200 entrances occur which means that on average an entrance

occurs every 7 minutes. Then, in total, the intraday market trades raise the social surplus by 461e and the

total social surplus of the day-ahead and intraday market reaches 8174e.

� Higher number of entrances: it is assumed that 1000 entrances occur which means that on average an entrance

occurs every 1.5 minutes. Then, in total, the intraday market trades raise the social surplus by 754e and the

total social surplus of the day-ahead and intraday market reaches 8467e.

These solutions can be compared with the optimal nodal benchmark case with the following formulation:

MaximizeqDA
g ,qDA

d ,fl

¸
dPD

Bdpq
DA
d q �

¸
gPG

Cgpq
DA
g q (5.5a)

subject to: qDAg P FRDA , qDAd P FRDA g P G, d P D (5.5b)

NIn �
¸
g P n

qDA

g �
¸
d P n

qDA

d : pλnq n P N (5.5c)

NIn �
¸

l:ν0plq�n

fl �
¸

l:ν1plq�n

fl n P N (5.5d)

| fl |¤ fmaxl l P L (5.5e)

If ν0 and ν1 show the starting and ending nodes of line l and fl ¡ 0, then it means that power is flowing from ν0

to ν1. Optimal nodal power flow result is depicted in Figure 5.12. The best possible social surplus can be achieved

by the nodal result which is equal to 8912.5e.

An interpretation of these results demonstrate that if it was an aim to utilize the continuous trading intraday

market to resolve congestion issues, then a very liquid market is needed but still the optimal nodal solution will not

attained, with only bilateral trading.
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Figure 5.12. Optimal nodal power flow result

5.6 Suggestions for future research

With a fundamental basis for a continuous trading model, there are many possibilities to develop the model

further to analyze specific issues in a continuous trading environment. Some examples are given in the next two

sections.

5.6.1 Model intermittent producers entrance into the intraday market

The reasons for participating in the intraday market is mentioned in Section 5.3 but it has not been explicitly

modeled in this paper. An obvious reason for trading in intraday market is updated forecasts for intermittent

generation sources. Among the few references that suggest optimal trading strategies for wind producers in intraday

markets, Garnier and Madlener (2015)’s method considers the continuous structure of the intraday market in the

best way. They formulate an intraday bidding strategy for wind and solar producers to maximize the value of trade

under price uncertainty and production forecast error. Whenever an intermittent producer receives an updated

forecast for delivery hour t, it can either decide to trade immediately or postpone it to the next trade window

of updated forecasts. Their method combines the trade value concept with an option valuation and dynamic

programming to optimize quantity and timing decisions of an intermittent producer to balance their updated

forecast errors. The main important issue related to the intermittent producers’ participation in the intraday

market is their price submission with respect to the fact that their marginal cost is almost zero. The output of

the Garnier and Madlener (2015) model is also just the ”optimal quantity” and ”trade/or not trade” decision at

the time of receiving an updated forecast. This suggests that intermittent producers can just submit ”market

order” not ”limit order”. In other words, if the result of the Garnier and Madlener (2015) model says that trade

is valuable now, the intermittent producer submits a market order, otherwise no action is taken. As mentioned

before, in market orders an entrant agent’s quantity is just matched with the current best limit orders and no price

is submitted. Thus, the price setting issue for intermittent generators can be solved by this suggestion.
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5.6.2 Model conventional producers’ and consumers’ entrance into the intraday mar-

ket

As mentioned in Section 5.6.1, intermittent producers can just submit market orders. Therefore, before their

first entrance there must be other agents like non-dispatched generators and unsatisfied consumers in the day-ahead

market that are flexible enough to participate in the intraday market with limit orders. The method suggested

by Von Selasinsky (2016) calculates the optimal offer prices based on the trade-off between profit and risk for

conventional power plants, as well as elastic consumers. Even though he did not model the order arrivals by

stochastic processes, for price-setting decisions he utilizes all available information from the open order book to

model the success of trade probability.

5.7 Conclusion

The simulation of the continuous trading intraday market (limit order book) could help to analyze different

characterisitics of this market. For example, it can help market participants to test their trading strategies with

different risk preferences to compare their performance with volume weighted average price and adopt their optimal

level of risk and therefore maximize their expected profit. It also helps market participants, especially the flexible

producers, to test their automated trading strategy softwares and check their arbitrage opportunities that may arise

in the limit order book.

Moreover, it is helpful for market designers and regulators to measure the usefulness of the market with market

depth which is the quantity of electricity that is offered at certain prices at given times. The higher is the market

depth, the more of the available flexibility is directly offered to the market and the more likely it is that renewables

decide to balance their forecast errors in the intraday market. By having access to a market simulator, market

designers can also measure market liquidity which is the volume of transactions in the market. By assuming the

other factors equal, the higher market liquidity increases the possibility of finding a trading partner. It is also

possible to test various congestion management techniques.

The fundamental basis for simulating the limit order book suggested in this paper combined with ideas men-

tioned in Garnier and Madlener (2015) and Von Selasinsky (2016) can lead us towards a full simulation of continuous

trading intraday market in a more realistic context.

132



Bibliography

Abrell, J. and Kunz, F. (2015). Integrating intermittent renewable wind generation-a stochastic multi-market

electricity model for the european electricity market. Networks and Spatial Economics, 15(1):117–147.

ACER, (2019). Establishing a single methodology for pricing intraday cross-zonal capacity. Available at :https:

//www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Individual%20decisions/ACER%

20Decision%2001-2019%20on%20intraday%20cross-zonal%20capacity%20pricing%20methodology.pdf.

(accessed 10.08.2019).

Aravena, I. and Papavasiliou, A. (2017). Renewable energy integration in zonal markets. IEEE Transactions on

Power Systems, 32(2):1334–1349.

Birge, J. and Mulvey, J. (1996). Stochastic programming. In Avriel, M. and Golany, B., editors, Mathematical

programming for industrial engineers, page 543–574. Marcel Dekker, New York.

Bjorndal, E., Bjorndal, M., Midthun, K., and Tomasgard, A. (2018). Stochastic electricity dispatch: A challenge

for market design. Energy, 150:992–1005.

Bjorndal, E., Bjorndal, M., Midthun, K. T., and Zakeri, G. (2016). Congestion management in a stochastic dispatch

model for electricity markets. Discussion paper, no. 2016/12, NHH Dept. of Business and Management Science.

Available at SSRN: https://ssrn.com/abstract=2829365.

Bjørndal, M. (2000). Topics on electricity transmission pricing. Phd thesis, Norwegian School of Economics (NHH.

Bjørndal, M. and Jørnsten, K. (2001). Zonal pricing in a deregulated electricity market. The Energy Journal, pages

51–73.

Bjørndal, M. and Jörnsten, K. (2007). Benefits from coordinating congestion management—the nordic power

market. Energy policy, 35(3):1978–1991.

Bjørndal, M., Jørnsten, K., and Pignon, V. (2003). Congestion management in the nordic power market—counter

purchases and zonal pricing. Competition and Regulation in Network Industries, 4(3):271–292.

Bjørndal, M., Jörnsten, K., and Rud, L. (2010). Capacity charges: A price adjustment process for managing

congestion in electricity transmission networks. In Energy, Natural Resources and Environmental Economics,

pages 267–292. Springer.

Borenstein, S. (2002). The trouble with electricity markets: understanding california’s restructuring disaster.

Journal of economic perspectives, 16(1):191–211.

133

https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Individual%20decisions/ACER%20Decision%2001-2019%20on%20intraday%20cross-zonal%20capacity%20pricing%20methodology.pdf
https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Individual%20decisions/ACER%20Decision%2001-2019%20on%20intraday%20cross-zonal%20capacity%20pricing%20methodology.pdf
https://www.acer.europa.eu/Official_documents/Acts_of_the_Agency/Individual%20decisions/ACER%20Decision%2001-2019%20on%20intraday%20cross-zonal%20capacity%20pricing%20methodology.pdf


Borggrefe, F. and Neuhoff, K. (2011). Balancing and intraday market design: Options for wind integration. Dis-

cussion paper 1162, DIW Berlin.

Boukas, I., Ernst, D., Papavasiliou, A., and Cornélusse, B. (2018). Intra-day bidding strategies for storage devices

using deep reinforcement learning. In International Conference on the European Energy Market, page 6. IEEE.

Braun, S. (2016). Hydropower storage optimization considering spot and intraday auction market. Energy Procedia,

87:36–44.

Braun, S. and Hoffmann, R. (2016). Intraday optimization of pumped hydro power plants in the german electricity

market. Energy Procedia, 87:45–52.

Brunekreeft, G., Neuhoff, K., and Newbery, D. (2005). Electricity transmission: An overview of the current debate.

Utilities Policy, 13(2):73–93.

Budish, E., Cramton, P., and Shim, J. (2014). Implementation details for frequent batch auctions: Slowing down

markets to the blink of an eye. American Economic Review, 104(5):418–24.

Budish, E., Cramton, P., and Shim, J. (2015). The high-frequency trading arms race: Frequent batch auctions as

a market design response. The Quarterly Journal of Economics, 130(4):1547–1621.

Canestrelli, E. and Giove, S. (1999). Scenarios identification for financial modelling. In canestrelli, E., editor,

Current Topics in Quantitative Finance, pages 25–36. Springer, Berlin Heidelberg GmbH.

Chao, H.-P. and Peck, S. (1996). A market mechanism for electric power transmission. Journal of regulatory

economics, 10(1):25–59.
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