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Abstract

In this thesis, we investigate if the quality minus junk (QMJ) factor can be used to predict

the stocks responsible for the excess wealth creation in the US. We find that quality

has a low predictive power on next months wealth generating stocks. Our findings do

suggest that investors can benefit in terms of risk-adjusted returns if they use quality to

predict portfolios of wealth generating stocks and portfolios of wealth destroying stocks.

A predicted QMJ factor that buys and sells these high and low portfolios does not provide

any additional compensation for risk over the original QMJ factor, unless investors are

willing to weight the stocks equally. We also find that quality portfolios of stocks that

are considered wealth generating and wealth destroying differs in quality, and that this

difference also increases over time.
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1 Introduction

The motivation for this thesis arises from the findings presented by Bessembinder (2018),

where the majority of firms listed on the US stock market failed to outperform 1-month(4

week) treasury bill in generated wealth during their lifetime. Bessembinder (2018) found

that only about 4% of these stocks were responsible for the entire net wealth creation in

the US market from July 1926 to the end of 2016. Since there are so few stocks that are

considered responsible for creating wealth in the market, we are motivated to test if they

share a concentration or similarities in some known accounting measures that would allow

us to separate them. A factor that is based on these accounting measures might prove

useful for this manner. Since there exists a jungle of factors that proxies for a variety of

different sources of risk, and for the purpose of separating firms related to creation of

wealth, we find the quality minus junk (QMJ) factor to be appropriate. The QMJ factor

was chosen because it involves a battery of accounting measures in assigning each firm

a quality score, and its abnormal risk-adjusted return generated has yet not been fully

explained.

Asness, Frazzini, and Pedersen (2013) documents that portfolios which buys quality stocks

and sell junk stocks generate abnormal risk-adjusted returns, which as of yet cannot be

tied to a collection of different sources of risk. What drives this abnormal risk-adjusted

returns is valuable, and motivates alternative approaches for explaining this anomaly.

This thesis emphasizes an alternative approach, where we test if the QMJ factor manages

to separate wealth generating stocks (WGS) from other stocks. A troubling finding

documented by Bessembinder (2018) motivates this. That only 42.6% of stocks listed

in CRSP database have outperformed a 1-month treasury bill in wealth creation during

their lifetime, while the stocks have a median lifetime of 7.5 years. If these stocks can be

separated or identified by the QMJ factor the choice of stocks to include in portfolios might

become more straightforward. Stock picking is especially valuable to actively managed

funds that holds a small collection of stocks and as a result of this are poorly diversified.

Asness et al. (2013) also show that higher quality is associated with a higher price.

Highly priced stocks are generally considered as safer and investors should from a simple

capital asset pricing model, demand a lower return for lower risk. However, the risk-
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adjusted return generated from buying high quality portfolio has historically been higher

than expected. A cause for this might be that the QMJ factor is able to separate the

wealth-generating stocks.

By allocating wealth in a collection of risky stocks, it is beneficial to know which are

more likely to generate wealth. Also, since the risk aversion of individual investors is

likely to vary, some may choose to allocate in a combination of risk-free bonds and risky

stocks. However, they should under equal believes choose to allocate between the same

portfolio of risky stocks and a risk-free bond. Depending on their risk aversion, some

prefer to be cautious when investing and some prefer to take an excessive amount of risk.

Actively managed funds have historically underperformed diversified indices in terms of

risk-adjusted returns, likely as a consequence of cherry-picking stocks based on confidence

and subjective opinions, such as the Black-Litterman framework allows for (Black &

Litterman, 1992). However, by allowing for this, the Black-Litterman model is internally

inconsistent. If the QMJ factor manages to separate WGS from non-WGS then investors

are better of in terms of diversification and risk-adjusted return by allocating their wealth

in a combination of risk-free bonds and the stocks identified by the QMJ factor.

This thesis builds on a replication of the main findings of "Quality minus junk" presented

by Asness, Frazzini, and Pedersen (2019). The 2019 edition of the paper is chosen above

the 2013 edition because the sample in their 2019 edition is relatively newer. We extend

upon their replication by using an extended definition 1 of quality components that use

additional accounting information to assign a firm with a quality score. Followed, we apply

the methodology presented by Bessembinder (2018) to determine the accumulated wealth

created above a 1-month treasury bill. The wealth score of each firm is transformed into

different indicators and used to determine if the QMJ factor manages to separate WGS

from non-WGS in the US market for years 1963:06-2020:12. Hence, we aim to ascertain if

the QMJ factor correctly predict these stocks, and if it is applicable for an investor real

time. The issue of the thesis is as follows:

Can the QMJ factor predict WGS?

1The extended definition of quality also includes a firm’s payout score, consistent with the alternative
definition of quality presented by Asness, Frazzini, and Pedersen (2019). We also use an additional
variable to account for safety-component, IVOL.
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To answer the question, we construct several hypotheses to determine how WGS behaves

in terms of quality. Our first hypothesis is a neutral one where we determine if it exists a

relationship between quality and WGS:

H1: Is there a relationship between Quality and excess wealth created?

The second hypothesis tests whether WGS have different quality characteristics compared

to the stocks that destroy wealth. In this hypothesis also aims to test if the difference

persists over time:

H2: Is there a difference in quality between WGS, and non-WGS, and does it persist?

We test the hypothesis to see if a difference in quality between WGS and non-WGS exists.

If this is the case then QMJ factor to predict the WGS. Their difference in persistence of

quality is also measured to complement the following hypothesis.

The last hypothesis investigates if the stocks quality scores can be used to indicate a

predicted probability of a stock being a WGS the following period. Investors can make

predictions of which stocks that are more likely to become WGS next period and the

selection of stocks to choose will become more applicable. If the relationship between a

high-quality stock and WGS persists, there is a good reason to buy stocks with high-quality

characteristics as this is likely to generate long-term wealth. The hypothesis is as follows

H3: Can quality be used to predict WGS?

This hypothesis assess the predicted probabilities and use it to predict if a stock is either

a WGS or not. For evaluating the results of this predictive model, we use the confusion

matrix framework. Through this, valuable information about which stocks to include in

the portfolios are provided. If WGS are concentrated in the portfolios it sells, then the

predictive model should, if successful, flag these stocks in advance. The hit rate of the

QMJ factor is especially important. This measure indicated the percentage of correctly

predicted WGS in the sample.

What follows is a section where we will present background of this thesis. A summary

of the main findings of Asness, Frazzini, and Pedersen (2019) and Bessembinder (2018)

will be presented. Together with the Fama French three and five factor model. After the

background section, we present our replication of the QMJ paper and our contribution.
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We contribute to the existing literature surrounding Quality minus junk by assessing the

QMJ factor’s ability to predict WGS and how successful it has been in predicting them.
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2 Background

In this section, we present a short introduction of the literature this thesis motivated

from. First, the findings of the quality minus junk (QMJ) paper by Asness, Frazzini, and

Pedersen (2019) is presented, followed by the findings of Bessembinder (2018). The Fame

French (FF) factor models is then presented, as this is used to control for certain types of

risks.

2.1 Introduction to quality minus junk

This thesis extends on the QMJ paper written by Asness, Frazzini, and Pedersen (2019).

They provide a framework where they show that the price of a stock should mirror its

different quality characteristics, where quality is defined as characteristics that should

demand a higher price (Asness, Frazzini, & Pedersen, 2019). A higher price in a security

is associated with safety, profitability, growth, and payout as Asness et al. found deriving

from the Gordon Growth Model2. Profitability component is explained in that if all else is

equal that profitable firms should have a higher price. Quality is also predictable, meaning

that high-quality portfolios today, will also persist and be considered high-quality years

ahead.

As quality is associated with safety, stocks of high quality have lower exposure to

fluctuations in the market. Buying a portfolio of high quality stocks does generate

risk-adjusted returns above what one would expect after controlling for several sources of

risk, while low-quality (junk) portfolios do generate significantly low risk-adjusted returns.

This high abnormal risk-adjusted return gained from high-quality portfolios combined

with selling junk portfolios does provide high risk-adjusted returns and is referred to as

the QMJ factor. The factor’s high risk-adjusted returns have still not been fully explained

and Quality is also documented to have a low explanatory power on price (Asness et al.,

2019).

Asness et al. (2019) argue that they cannot rule out that an unknown risk factor can

explain this anomaly. The unexplained risk-adjusted return generated from the QMJ

2P0 = D1
r−g , where price P0 should be higher with higher payout D1, or when growth g or a lower

required return r (safer stock).
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factor also motivates alternative approaches. A puzzling finding that may be related to

this was presented by Bessembinder (2018).

2.2 Introduction to Bessembinder

The paper presented by Bessembinder (2018) emphasizes the role of positive skewness in

individual common stock returns. He documents that about 4% of the firms listed on the

CRSP database have managed to outperform a 1-month treasury bill in terms of wealth

created during their lifetime. A puzzling finding is that about 0.33% of the common stocks

are responsible for half of the net wealth creation in the US (Bessembinder, 2018).

Bessembinder defines net wealth creation as the accumulated market value generated over

a compounded 1-month treasury bill3. Bessembinder highlights the role of diversification

and there is a value in not excluding stocks in portfolios as they might be generating

wealth. There are few stocks that generate wealth, diversified portfolios are holding more

stocks and of that reason are having a higher probability of holding these. This might

explain why actively managed funds that hold a low collection of stocks in their portfolio,

usually underperform diversified indices (Bessembinder, 2018). This is as they miss the

wealth generating stocks (WGS). In poorly diversified strategies have a lower probability

of including these WGS. In addition to this, poorly diversified strategies are more subject

to positive skewness of individual common stocks, positive skewness is good in cases where

you are able to find the extreme positive values4. As this is not the case for most investors

this is usually considered a bad thing. The positive skewness can be reduced through

diversification (Bessembinder, 2018).

Predicting stocks that will generate a high amount of wealth can provide significant

positive returns, but require skills. If predicted correctly it is also difficult to determine if

the investor actually is skilled or just lucky (Bessembinder (2018),pg. 36). In this thesis,

we test if quality can be used to predict or in some way are able to capture stocks that

will generate wealth, and if the QMJ factor has managed to correctly predict them. To

adjust for different sources of risk, we use the FF models presented in the next section.

3Excess wealth creation can be viewed as the accumulated market value minus the compounded value
one would receive from investing the same initial amount in a savings account.

4This a case where you would be rewarded for taking the higher risk in not diversifying.
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2.3 Fama French factor models

The Fama French factors are used to control for different sources of risk. The two types

of risk are firm-specific and market-specific (systematic), and together they add up to the

firm’s total risk. To adjust for the systematic component of risk, we use the FF factor

model. While the firm specific risk is captured in residuals from this regression.Fama

and French (2015) Fama French three-factor model is a extension of the CAPM from

Sharpe (1964) and ?, where they added to new risk factor to the market risk. These was

the component of small cap stocks tend to outperform large cap stocks, Small Minus

Big(SMB), and the value stocks outperform growth stocks, High Minus Low(HML)(Fama

& French, 1993).

The FF five-factor model extends on the three-factor model, by also controlling for the

uncaptured variation in profitability and investments. This model uses five sources of

risk to capture the systematic component of risk, where these components are market,

size, value, profitability, and investment profile. This model has empirically shown good

performance where it explains 71% to 94% cross-sectional variations in expected return in

size, value, profitability and investment portfolios(Fama & French, 2015).

In terms of measuring the regression intercept (alpha), the abnormal return should be 0 if

all sources of risk are controlled for. However, this is not always the case and motivates

controlling for additional sources of risk. The QMJ factor has shown significant alphas after

controlling for the FF 3 factors plus investment, profitability, liquidity, and momentum

(Asness et al., 2019). The abnormal beta-adjusted return generated from the QMJ factor

might be controlled for with an unknown risk factor, but we focus on an alternative story

for this thesis. The alternative story our work emphasizes is that the QMJ factor separates

the WGS presented by Bessembinder. In the following section, our data is presented.
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3 Data

The data used for this thesis is collected from a variety of sources. In this section we will

show where what data is gathered from and, when applicable, what kind of adjustments

that have been done on the data sets.

3.1 Accounting data and return data

Our main source for data was the Wharton Research Data Services (WRDS) database.

All data were collected with a date and a stock identifier for each observation. The

stock identifier is different from Compustat and The Center for Research in Security

Prices (CRSP) , this requires the CRSP/COMPUSTAT Merged Database (CCM) for

merging accounting (fundamental) data and return data. From WRDS, we collected 40

annual variables from the Compustat Fundamentals Dataset of which 30 were accounting

variables. Accounting data starts in June 1950 and ends December 2020. The return data

was from CRSP also gathered from the WRDS database, all containing information about

what exchange the stock is listed. Monthly return data consists of both the CRSP stock

data (crsp.msf) and the CRSP events data5(crsp.mse). CRSP stock data consists of price,

returns, returns without dividends, volume, shares outstanding, company id, and split

adjustments for both price and shares. The events data have information about delisting

events for each company. We are using month return data and event data from December

1925 to December 2020, but we are reducing this period to fit the accounting data for most

of the analyzes. Collected daily return data consisted of returns and delisting returns, we

have reduced this data to start in January 1950 as we do not use the data before this.

3.2 Risk free rate, market returns and Consumer Price

Index

The risk-free rate and market returns are collected from the Kenneth R. French Data

Library under U.S. Research Returns Data. We collect this both for daily and monthly
5CRSP events data consist of information about all events happening to firms listed. These events6

are such as delisting, dividends, reorganization, merger, exchange changes, change in shares, stock split,
stock buy-back, liquidation etc. As most of these are in the holding period return in CRSP stock data.
We are only interested in the delisting information such as return and reason for delisting.



3.3 Sample adjustments 9

returns. The Fama and French (FF) risk-free rate represents a proxy for the 1-month (4

week) Treasury Bill (T-Bill) rate. The variable for market return is the excess return on

the US stock market. This means the return is the value-weight return of all CRSP firms

listed on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX),

and National Association of Securities Dealers Automated Quotations (NASDAQ). FF

only use firms with a CRSP share code of 10 or 11, good shares, and price data at the

beginning of the month, and a good return for last month adjusted for the risk-free rate

and risk-adjusted market returns. Consumer Price Index (CPI) is a monthly variable

gathered from the Federal Reserve Economic Data (FRED) database by the Research

Division of the Federal Reserve Bank of St. Louis.

3.3 Sample adjustments

To replicate the papers we reduced the data gathered from the sources to match the

papers as close as possible. There were some small differences between the QMJ paper

and Bessembinder. The reduction of the sample size was done in the following way.

First, the data was reduced to only include securities that both have account data and

return data available. For each month we only include the security (PERMNO) with the

highest market equity (ME) for each company (PERMCO). sampleFrom QMJ (2013) we

require that the securities are common shares with share code (SHRCD) 10 or 11, the only

exchanges (EXCHCD) we include are NYSE (1), AMEX (2) and NASDAQ (3). This is

different from the approach QMJ choose in 2018, where they included all securities except

over-the-counter exchanges. It is still consistent with the approaches Asness, Frazzini,

and Pedersen (2013)), Fama and French (1993), and Bessembinder (2018) exercise. All

financial firms are included and we do not include stock that is incorporated outside the

US. This gives a sample of 21586 different securities(stocks) for the period. We also add

N.A. to dates missing in the return data for each PERMNO to maintain a balanced panel

data.
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3.4 Data adjustments

The returns are adjusted for delisted return. We do it as following7: In cases where

delisting payment date (DLPDT) is the same or earlier than delisting date the delisting

return is a partial-month return8. We calculate return adjusted for delisting return as

return = delisted return in these cases. When the DLPDT is after delisting date the

delisting returns is the return of a security after it is delisted. We then calculate it as

return = (1 + return) × (1 + delisted return) − 19 to get both the return before and

after the delisting on the security. If delisted returns are missing and the stocks have

the delisting code 500, 520, 551-574, 580, or 58410 the stock is given a return of -30%

consistent with Shumway (1997). If a stock has -100% returns these are set to -99.999% for

computational reasons, one of them when we take the log of the gross return (log(1 + ret))

which is not possible if the return is -100%. Market equity (ME) is adjusted in cases

where a company has multiple securities, we keep the security on the primary exchange

and add the ME for all PERMNO to only keep one observation for a company for each

month. The market return from FF is adjusted for risk-free rate; we add this back to get

unadjusted market returns when calculating betting against beta (BAB) and idiosyncratic

volatility (IVOL) factors for QMJ. In cases we add delisting data, the exchange code

(EXCHCD) and SHRCD is missing. We replace the missing values with values of the last

given EXCHCD and SHRCD for that stock. This is to make them fill the requirement

from sample adjustment.

The book equity (BE) is the book value of stockholders’ equity plus deferred taxes minus

the book value of preferred stock. Stockholders’ equity is SEQ if available; if not the sum

of common equity (CEQ) and preferred stock (PSTK) is used; if this is not available we

make a proxy by taking total assets (AT) minus total liabilities (LT). Deferred taxes is

deferred taxes and investment tax credit (TXDITC), deferred taxes or investment tax

credit depending on availability in prioritized order. Preferred stock is the preferred stock

redemption value (PSTKRV), liquidating value (PSTKL) or total (PTSK). This also

7“ CRSP Calulations of Delisting Returns adjustment ©2021 Center for Research in Security Prices
(CRSP), The University of Chicago Booth School of Business.”

8The partial-month returns do not represent values after delisting.
9In some cases the delisiting return is in seperate month and we get return = delisted return in

these cases too.
10These are the delisting codes Shumway found in his paper to have negative delisting returns. All of

these codes are interrelated to performance of the firm as the reason for delisting.
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depends on availability. We require the stockholders’ equity to have one of the values,

but for the others, we give a value of zero if all are missing. We also gathered adjusted

book equity data from the Davis database. This is used supplement in cases where we

are missing BE for a PERMNO, then we add it if available from Davis. Davis provides

additional book equity data during the earlier years and only ranges up to 200111.

3.5 Survival bias

Asness et al. (2019) states that some of their results are conditional on survival. In our

data, firms with a lower lifetime are not treated differently than those with a longer

lifetime, thus we try to limit the survival bias to the extent it is possible. This is done to

provide realistic scenarios in capturing WGS, as the median lifetime of a firm has been

documented to be 7.5 years, and with a 90 percentile lifetime of 28 years (Bessembinder,

2018). Our sample does require a firm to have been listed for at least 5 years to be assigned

a growth score, which conflicts with the low median lifetime reported by Bessembinder.

3.6 QMJ specifics

We have relatively few observations from Compustat annual and Davis BE during the

early years (1951) relative to 1963 and forth. To avoid unnecessary omitting of variables,

we determine a per case basis where there is a sub-component of a variable missing if it

should receive an indication of a missing value or if the missing sub-component should

be ignored. One of the variables which this concerns, is the stocks total debt (TOTD).

This is composed of long-term debt (DLTT), short-term debt (DLC), minority interest

(MIBT), and preferred stock (PSTK). We require only one variable to be present in order

to assign a firm with a total debt12. Similar to Cash flow (CF), which is constructed

from net income (IB) plus depreciation minus change in working capital (WC) minus

capital expenditures (CAPX). For this variable, we only require net income (IB) to be

11The book equity provided from the Davis database is left-joined on the Compustat Book equity
component. Meaning that if there already exists book equity provided through Compustat annual, then
Davis Book Equity data will not be supplied. Only when N.A. values are listed in Compustat annual will
the other database be used.

12Meaning if the stock only has its expenditures financed by short-term debt only, then TOTD = DLC.
To filter out sub-components that are missing, we use coealesce() from SQL syntax to strip missing
observations. missing observations are not replaced by 0, as this gives numerical meaning.
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present in order to determine the CF of a firm, albeit these instances are few13. Another

adjustment is that the gross domestic product (GDP) price level in dollar amount from

last year (lagged one year), as their explanation lacks time script, but this is indicated in

the original paper by Ohlson (1980).

What follows is our replication of the QMJ paper, by Asness, Frazzini, and Pedersen (2019)

where we will show what the tables that we found interesting to test our hypotheses.

13If there are only not available(N.A.) values, there will be no reported CF, but if there only are net
income (IB), then CF = IB.
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4 Methodology

4.1 Variable Construction

The construction of variables and factor data are based on accounting information only

available for the public with the fiscal year ending in June, following the Fama (1992)

standard.14 We create factors that proxies for different characteristics of the firm, such as

the firm’s safety, growth, profitability, and payout policy.

Most of the constructed variables are described in the appendix, while some measurements

require specific adjustments and will be described in detail in this section. One of these is

the earnings volatility (EVOL) of a stock, which is constructed as the standard deviation of

monthly earnings with a five-year rolling window, conditional on no missing observations.

The construction of the stock’s market beta, for the BAB component, is constructed by

following the pre-ranking beta estimation of Frazzini and Pedersen (2014):

βi = ρi,m
σi
σm

,

where the estimated volatilities, σi, and σm uses daily 1-day overlapping log gross return

with a 1-year rolling window. For the correlation, we take into account the possibility

of non-synchronous trading and therefore use a 3-day overlapping log gross return with

a 5-year rolling window. A firm also only gets a correlation and standard deviation

conditional on 750 and 120 trading days without missing observations, respectively. The

monthly reported beta is the last daily beta of the month and is chosen because the

rebalancing of portfolios happens at the end of each month.

Under the construction of a firm’s market beta, we observed a handful of firms with

extreme beta values. The methodology presented by Vasicek (1973) is therefore used to

reduce the expected estimation errors. This is done by shrinking the stocks market beta

βTS
i towards the cross-sectional mean βXS. This new market beta, βi, is now adjusted for

estimation errors and have reduced the outliers, and can be stated as follows:

14The Fama (1992) and french methodology forms portfolios with fiscal year ending in June.
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βi = w ∗ βTS
i + (1− w)βXS,

where w is a constant weight of 0.6 15 and the cross-sectional mean βXS is set to 1 and is

chosen for simplicity.

The construction ofidiosyncratic volatility (IVOL) we are taking basis in findings of Sharpe

(1964) and ? from CAPM. IVOL is the part of total volatility of a asset’s return that

cannot be explained by market returns, but can be diversified away by holding a large

portfolio of stocks. Idiosyncratic return is the error term from a regression after the

market has explained the systematic risk. First we created the idiosyncratic return εi,t as:

εi,t = Ri,t − rf,t − βi,t(Rm,t − rf,t),

where Ri,t is the return of each stock, Rm,t is the market return, rf,t is the risk free rate

and βTS
i is the beta we created above before the shrinkage factor.

Then we used the estimated idiosyncratic return εi,t to create an IVOL factor as following:

IV OLi,t =
−252∑
t=−1

√
var(εi,t),

where the IV OLi,t for firm i in period t is the sum of standard deviation of last year (last

252 days) idiosyncratic return εi,t, skipping the most recent trading day.

4.2 Quality Score

Based on accounting information and return data, we assign each firm an individual

quality score derived from four different components of quality. A firm of quality is a safer

firm that is profitable, growing, and offers payout, similar to the alternative description

of quality provided by (Asness, Frazzini, & Pedersen, 2019). We include the additional

payout component based on the argument presented by Bessembinder (2018). Stocks that

have created a high amount of wealth during its life can get a low stock price before filing

15The shrinkage factor did not have any significant impact in the "Betting against beta" 2014 paper.
The weight of 0.6 is chosen in consensus with this paper. Vasicek (1973) shrink this factor based on
firm-specific and time-varying factors. We consider this to be too comprehensive and use fixed parameters
instead.
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for delisting if they offer high payouts in form of dividends16. The construction of each of

these quality components will further be described in detail.

The z-score assigned to each measure of these quality components are constructed in

the following way. For each firm every month, we do a cross-sectional rank of variable

xi. Where this variable represents an accounting measure for a particular firm. This

leaves us with a vector of ranked scores relative to other firms, ri = rank(xi)
17. This

tells us the stocks position of its accounting measure, ri, and allows us to compare this

measure relative to other stocks. However, to combine this measure with other accounting

variables, we center and scale the rank, providing us with a normalized z-score (N(0,1))

for the variable.

zx =
r − µr

σr
,

where r is the rank of the firm, µr is the mean of all ranks that period18 and σr is the

standard deviation of the ranks in that period19

Now, each accounting measure share an equal footing through being normalized. Using

this recipe, we assign each firm a profitability, safety, growth, and payout score based on

the average of the z-scores, Zx, of their components. If any sub-components of quality are

missing, then the z-score will be the average of the remaining ones, the same goes for the

components of quality.

Profitable firms are associated with a high gross profit over asset (GPOA), return on

equity (ROE), return on asset (ROA), cash flow over asset (CFOA) and gross margin

(GMAR). Followed by deducting the accruals (ACC) (Asness, Frazzini, & Pedersen, 2019).

Each of these components gets assigned a z-score, zx, where the average z-scores of these

variables gives us the profitability score.

Profitability =
1

N
(zgpoa + zroe + zroa + zcfoa + zgmar + zacc) (4.1)

16Bessembinder (2018) argues that General Motors generated a high amount of wealth, but as a result
of offering high dividend payout prior to bankruptcy had a low price.

17Different software or programs define the rank function differently. In r, rank() assigns N.A.’s a
ranked score. To properly adjust for this, we allocate all observations with N.A.’s on the top and rank
ascending. Followed by replacing the scores given to the N.A.’s with N.A. at their position in the vector.

18µr is always 0.
19σr is always 1.
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The growth measure is constructed by using the same measures as profitability, but is

based on the change over a five-year period20. We use growth in residuals to weight the

choices a firm makes regarding retaining its earnings.21

Growth =
1

N
(z∆gpoa + z∆roe + z∆roa + z∆cfoa + z∆gmar + z∆acc) (4.2)

Firms that are characterized as safe are firms with low βMarket (BAB), low leverage (low

LEV), low bankruptcy risk (Ohlson’s o-score and Altman’s z-score), and low earnings

volatility:

Safety =
1

N
(zbab + zlev + zo + zZ + zevol + zivol) (4.3)

Further, we measure a firm payout score (4) based on its one year change in split-adjusted

shares (EISS), one year change in total debt (DISS), and its five-year change in net payout

over profits:

Payout =
1

N
(zeiss + zdiss + znpop) (4.4)

Combined, each firm is assigned a quality score based on these four measures of quality

(5):

Quality =
1

N
(Profitability +Growth+ Safety + Payout) (4.5)

If there are periods where only some components of quality are available, we ignore the

ones not present and calculate the average quality score from the remaining ones22. This

quality score tells us which firms that are considered to be of higher and lower quality.

In the following section, a factor that buys high and sells low quality portfolios will be

introduced.

20We only assign a stock a growth score after being listed for five years.
21A firms who retain earnings but generates the same amount of income as a firms who does not

will be penalized through the use of residuals. Using five-year change in profitability measures does not
capture this.

22If a firm only has a profitability and growth score, its quality score will be the mean of these
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4.3 Quality minus junk and Fama and French factors

In this section, the quality score of each stock presented earlier is used for allocation

in different portfolios. It is valuable to know which stocks are more likely to be a

WGS. Through the six different portfolios of quality we will present, it is likely that

the concentration of WGS is different from each portfolio. We will also present how we

replicated the Fama and French 5 factor model plus momentum.

The recipe we use to construct the QMJ factor is as follows. At the end of each month,

common stocks from the primary exchange23 are ranked in ascending order based on

previous month’s market capitalization. The median of these ranked stocks is then used

to divide small and big stocks into two size portfolios, Small and Big. Where US common

stocks24 are allocated25. Conditional on these size portfolios, the common stocks are sorted

into three different quality portfolios, high (top 30%), neutral (middle 40%), and low

quality (bottom 30%). This leaves us with 6 portfolios where the value-weighted average

is used to calculate the return of each portfolio. The QMJ factor is constructed from the

intersection of buying the two quality portfolios and selling the two junk portfolios26.

QMJ = 1/2 (Small Quality + Big Quality) - 1/2 (Small Junk + Big Junk)

As shown above, the QMJ factor is formed from the average return of going long in the

average of the two high value-weighted quality portfolios and going short in the average of

the two low value-weighted quality portfolios. Since the QMJ factor follow the Fama and

French methodology, we also replicate their 5 factors plus momentum to appropriately

adjust for different sources of risk. Because of this, we do not use external factor return

data available from Kenneth R. French’s website, only their risk-free component provided

by Ibbotson Associates Inc.

23Primary exchange in US is NYSE.
24US common stocks are the securities listed on NYSE, AMEX and NASDAQ.
25The number of small firms is higher than Big firms since the NYSE median is much higher than

most of the common shares listed in NASDAQ and AMEX.
26This is the equivalent of a double sort on size/quality which follows the FF methodology.

Double sorting is when you first sort based on characteristic like size and then on a second like
quality/value/momentum.
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Under the construction of these factors, the BE is of last year’s fiscal year and reflects

the public information available at the construction date27. BE is then divided by the

firm’s market equity in December last calendar year. To replicate these factors, we follow

the recipe explained by Fama and French (1993) and a suggested replication provided by

Chang and Liu. We replicate these factors in the following way:

We start by only including the stocks with common BE listed in the CRSP database

ranging 1950:07-2020:06. Further, the construction of small and big portfolios are the same

as with the QMJ factor, where quality represents a value, in the value-sorted portfolios.

The FF factors are the constructed from double sort on size and value28.

SMB double sort consists of three buy buckets and three sell buckets:

SMB =
1/3 (Small Low + Small Neutral + Small High) -

1/3 (Big Low + Big Neutral + Big High)

HML double sort consist of two buy buckets and two sell bucket29:

HML =
1/2 (Small Low + Big Low) -

1/2 (Small High + Big High)

By following this methodology we replicate factors that control for market risk (Mkt),

firm size30 (SMB), firm value HML, operating profitability, investment, and the Carhart

momentum factor. This momentum factor is used in all of our replications which are

presented in the following section.

27The BE available at the construction date of the portfolios in June is from the fiscal year available
last calendar year

28Value portfolio are in FF methodology referred to a portfolio of a value characteristic. For the QMJ
factor this is the quality variable.

29This is the method used on other factor in the FF factor models.
30Size is constructed by multiplying shares outstanding with current price, ME = SHROUT ∗ Price
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5 Replication

In this section, our replicated results will be presented. The tables we have chosen to

replicate both verify the structural properties of our replicated quality score, and are also

important later when determining quality’s ability to separate WGS.

The following replications we provide shows that quality persists and that the return of

quality sorted portfolios increases monotonically. For the QMJ factor, we replicate and

provide the alphas after controlling for several risk factors. Combined, these form four

tables with replicated results.

5.1 Persistence of quality

We choose to focus on the persistence of quality, since this property may be common

among WGS. Excess wealth creation is generated by only a few percentage of stocks

(Bessembinder, 2018). This table involves sorting stocks into portfolios based on their

quality scores and valuating their persistence. It is also related to our later hypothesis

where we test if there is a difference in persistence among WGS and non-WGS.

By using the quality score and its individual components, we replicate the results from

Table 1: Persistence of quality measures, by Asness, Frazzini, and Pedersen (2019). Our

replication highlight that a portfolio’s quality and its components persists over time and

still increases monotonically after 10 years. This predictability of quality may allow for

the use of quality today to predict WGS of tomorrow. If WGS share the same quality

characteristics and persists differently than non-WGS, then the predictability of quality

should provide valuable information about which stocks that are more likely to be WGS.

We replicate table 1 by following Asness, Frazzini, and Pedersen (2019). At month t, NYSE

decile breakpoints are created based on the Quality scores observable. US common stocks

are then allocated into these portfolios based on their quality score, forming 10 quality

portfolios. For n months ahead in time, we calculate the value-weighted quality-score at

t+ nmonths using the firms selected in the portfolio at time t. This is done for 12, 36, 60,

and 120 subsequent months ahead in time for the quality score and for 120 months for its

individual components. The quality score reported in table 1 is the time-series average
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of each portfolio’s monthly value-weighted quality score, ranging 06/1975 - 12/2016.

Further, the rightmost column reports the quality score of a portfolio that buys high

(P10) and sells low quality (P1). The standard errors used are heteroskedasticity and

autocorrelation consistent (HAC) over 5-year window, in consensus with Newey and West

(1987)31. Statistical significance at 95% level is indicated in bold. The hypothesis tested

is:

H0: There is no significant difference in high and low quality portfolios.

HA: There is a significant difference in high and low quality portfolios.

Our replicated results are presented in the top panel, while the original results are in the

bottom panel.

31HAC standard error are used to control for Heteroscedasticity and autocorrelation. Heteroscedasticity
indicates that variation in errorterms are not similar over time. While autocorrelation indicates that the
error terms are correlated. By controlling for these, the uneven variation in error terms and its correlation
are reduced. These standard errors are then used to calculate the t-stat.
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Table 5.1
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Our replicated results presented in Panel A shows that quality increases monotonically

and persists across quality portfolios up to 10 years. From this, a portfolio of stocks that

are considered high-quality today, are also considered high-quality in 1, 3, 5, and 10 years

ahead in time. Our results from the portfolio (H-L) that buys high quality (P10) and sell

low (P1) quality generate a similar spread relative to the original results. We find that the

growth component are the least persistent, followed by payout and safety component. Our

low growth portfolio (P1) has a rather high growth score after 10 years, but the spread

(H-L) between high and low are still significant and similar.

Asness, Frazzini, and Pedersen (2019) assume that their results are conditional on survival.

Our replicated results are also subject to this survival bias, as the firms who have survived

during the reported periods are the only ones included in the sample32 when computing

quality scores.

Overall, our replicated results are similar to then original ones, and because of the

significant reported results we reject the null hypothesis of no difference between high and

low quality portfolios up to 10 years. We will later extend on this replication by testing if

WGS and non-WGS persists differently.

Further, we follow Asness, Frazzini, and Pedersen (2019) by verifying that high- and

low-quality portfolios deliver a significant positive and negative abnormal risk-adjusted

return, respectively. We do this to validate our replicated quality score.

5.2 Return of quality-sorted portfolios

In this section, we aim to replicate the findings in the original paper that shows that high

quality portfolios outperform low quality portfolios. Portfolios of higher quality are safer

and should have a lower loading on the market factor. We aim to show that positive

significant alphas are still present after controlling for the FF-3 and FF-3 plus momentum

models . Our replicated table, Table 2, shows the regression results of each quality

portfolio after controlling for different sources of risk. The returns are beta-adjusted by

market risk (CAPM), firm size (SMB), value of the firm (HML), and momentum (UMD).

The regression results reported are from FF 1-factor (CAPM), 3-factor model (Mkt, SMB

32If any stocks gets delisted, the value-weighted quality-score will be calculated based on the remaining
ones from the initial portfolio. As a result of this, the reported quality scores are survival biased.
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and HML), and the 4-factor model presented below.

ri = α + βMKTMKT + βSMBSMB + βHMLHML+ βUMDUMD + εi

Where ri is the return of portfolio, α is the regressions intercept, and β represents the

portfolios loading on market, size, value and momentum. we construct table 2 in the

following way. For each month, 10 deciles are constructed from 10 NYSE breakpoints based

on the quality scores of the firms. Each firm is then allocated into one of these buckets

based on their quality score. The portfolio’s value-weighted return is then calculated

based on last month’s market capitalization. The column to the right reports a self-

financing portfolio33that buys high-quality (P10) and sells low-quality (P1) portfolios.

The hypothesis tested are as follows:

H0: There is no significant difference in return between high- and low-quality firms

HA: There is a significant difference in return between high- and low-quality firms

Statistical significant values reported are indicated in bold, and the alphas and excess return

are in monthly percentage. Standard errors are heteroskedasticity and autocorrelation

consistent over 5 years and information ratio and sharpe ratio are annualized. The Beta

reported are the market loading for the respective portfolio. The alphas reported are

the intercepts from the three different regressions. Information ratio are estimated from

the 4-factor alpha divided by the standard deviation of the residuals from this regression

(Asness, Frazzini, & Pedersen, 2019). Our replicated results are presented in the top panel,

and the original are presented in the bottom.

33A self financing portfolio is a portfolio that does not have any in our out flux. This means that the
portfolio can ony buy from the sales it makes. In this case it buys high quality and sells low quality
portfolios. There are no additional transactions going in or out besides these.
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Table 5.2
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Our replicated result shows that excess return increases in quality significantly from

P3 to P10. This increase also appears to be almost monotonic. Important results are

also present among the two high-quality portfolios, P9 and P10. There CAPM alpha is

significant and positive, indicating a common structural property of the stocks included

in these two portfolios. High-quality stocks are considered safer stocks, and as a result

of being safe they are less exposed to fluctuations in the market. If the market is in a

recession, then these high-quality portfolios will do it better during these bad times. A

high safety score is incorporated through the low market beta of safety’s BAB component.

Our replication also shows that portfolio P9, in addition to P10, also have a significant

positive alpha when controlling for the one, three, and four-factor model. While this is

not present in their original results for portfolios P9. We also observe that the beta is

decreasing in quality. This is a result of the sorting on quality, as safer stocks are among

the higher portfolios and vice versa(Asness, Frazzini, & Pedersen, 2019).

The three and four-factor alpha replicated are similar to the original paper. We show

a strong significance among the lower and higher quality portfolios. Where the low

quality portfolios have underperformed, and high quality have overperformed in terms of

risk-adjusted returns. Our self-financing portfolio which buys high and sells low quality

does as a result of this earn significantly high risk-adjusted return. The excess return

for this portfolio is also similar to the original, while obtaining similar results for the

loading on market, three and four factor model. However, our loading when adding our

momentum factor is slightly lower than their original results.

The replicated sharpe ratios are similar to the original results, but show some variation

in the quality neutral portfolios ranging from P3 to P5. However, this measurement is

consistent across the lower and higher quality portfolios.

Because of the direction and significance of the reported alphas, and the market loading

decreasing monotonically in quality, our quality scores shows the expected exposure to

different sources of risk. Through this table, we observe that high-quality stocks are

considered safe and are less exposed to market-specific risk. And as a result of this,

high-quality portfolios overperform, and low-quality portfolios underperform, even after

controlling for the FF three- and four-factor models. Through this table, we have observed

consistency shown in the original results and validated of the structural properties of our
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quality score. Further, when testing the QMJ factor’s exposure to these sources of risk,

we should observe similar results.

In the following section, we validate our replicated QMJ factor.

5.3 Quality minus Junk

In this section, we present our replicated QMJ factor and verify that its alphas are

statistically significant and present after controlling for several risk factors. As shown in

the earlier section, buying high-quality and selling low-quality generates returns that are

unexplained by the FF four-factor model. A factor that buys high-quality stocks from

small and big portfolios, and sells junk (low-quality) stocks from small and big portfolio

does from this generate high risk adjusted returns. We validate the QMJ factor to show

that its overperformance is present in our factor. This factor will because of the quality

score provide useful information about the probabilities of including WGS in its portfolios.

In our later hypothesis, we assess the QMJ factor’s hit rate and success in predicting

WGS and home run stocks.

The QMJ factor is formed from the average return of going long in the average of the two

high value-weighted quality portfolios and going short in the average of the two low value-

weighted quality portfolios. This construction is also done similarly for the profitability,

safety, growth and payout score. We construct factors based on the components of quality

using the same recipe as the factors replicated earlier, the intersection between the 6

value-weighed portfolios. A more detailed description of the portfolio formation for these

are provided in appendix, section A5. These factors are named by the values they represent

in our two following replicated tables.

Table 3 provides the factor loading for the return generated from the QMJ, profitability,

safety, growth, and payout factors where the explanatory variables of the regression are

the same as regression used in the previous section. The results of a regression between

QMJ and these explanatory variables will be presented in the following table. Where the

alphas reported are the regression’s intercept. Both excess return and alphas are reported

in percentage and sharpe ratio and information ratio are annualized. The information

ratio are calculated from the four-factor alpha divided by the standard deviation of its

regression’s estimated residuals and statistical significance at 5 percent level are indicated
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in bold. Our replicated results are on the section to the left, and the original results are

provided in the section to the right.

Table 5.3

Our replication shows that after controlling for the 3 and 4-factor model, the QMJ

factor generates highly significant alphas. We also observe as expected that this factor

overperformed when controlling for the market loading. From the earlier results presented

in Table 2, we observed that portfolios that buys high quality and sells junk generate

significant alphas after controlling for the market. These alphas arise from the structural

properties associated with safety, that the portfolio buys low beta stocks, and sells high

beta stocks. The QMJ factor also has a negative risk-factor loading on the market, size,

and value. Given that this factor buys safe stocks, a negative risk-factor loading on the

market is to be expected. A negative loading on the size factor is also consistent with
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the QMJ factor buying highly priced stocks and selling low priced stocks. Stocks that

are higher priced are also associated with bigger firms, and small firms carry are priced

lower. Since the size-factor, SMB, buys small and sells Big firms, the QMJ factors attains

a negative risk-factor loading on size. (Asness, Frazzini, and Pedersen (2019))

The excess returns and risk-adjusted returns from the QMJ factor are slightly higher

than the original results. From the high excess return obtained from the payout factor,

this is to be expected as our quality score also includes this. Because the value factor,

HML, buys stocks with low price, and sells stocks with high price, the negative risk-factor

loading on the value shown from the QMJ factor is to be expected. As the QMJ factor

buys stocks that are, through quality, highly priced and sells stocks with a low price.

The profitability, safety, and growth factors all have a nearly identical excess return, one

and three-factor alpha. However, our growth component does not have a significant alpha

after controlling for market.

Altogether, our replication of the QMJ factor provides results consistent with what one

would expect from this factor. This is based on the direction and significance of the

risk-factor loading and the alphas presented after controlling for different sources of risk.

The QMJ factor does through quality buy highly priced stocks and sell low priced stocks,

thus the negative value-factor loading. Consistent with the results presented in Table 2,

the QMJ factor also has a negative risk-factor loading on the market and has significantly

outperformed it as a result of buying safe and selling unsafe firms. The QMJ factor

also consistent with original results shows a negative risk-factor loading on size, as the

size-factor buys small and sells big stocks, as smaller firms have lower prices, and larger

firms are higher priced. From the consistencies shown in our one, three, four-factor alpha,

and the risk factor loadings, we consider our replication of the QMJ factor as validated.

However, as a robustness check, we also control for the additional risk sources by using

the FF five factor and FF five factor plus momentum. The risk-factor loadings are also

presented in appendix, Table A6, and indicates that the overperformance of our replicated

QMJ factor are still present after additional explanatory variables. Similar results are

also obtained when using components of quality as dependent variables.

ri = α + βMKTMKT + βSMBSMB + βHMLHML + βCMACMA + βRMWRMW +

βUMDUMD + εi
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The risk factor loading obtained on the RMW factor is positive, as Quality are constructed

from measurements of profitability, while the RMW factor buy profitable and sells

unprofitable stocks. Overall, we see that the direction of the risk-factor loadings is

consistent with what one should expect from a portfolio that buys quality and sells junk.

The significant abnormal risk adjusted return is still unexplained, even after controlling

for the 5 and 6-factor models.

As a summary of our replication, our quality score represents the properties of quality and

its exposure to different sources of risk. Higher quality portfolios consistently overperform

the market and low quality portfolios underperform. Adding additional explanatory

variables that proxies for different sources of risk does not add to the explanation of the

return of quality portfolios. A factor that buys high quality portfolios and sells low quality

portfolios does benefit from both the over and under performance of these. In the next

section, we will assess if the stocks quality scores can be used to predict WGS and test

our hypotheses to answer if the QMJ factor manages to separate WGS in its portfolios.

The role of the quality scores of each firm will also be used to assign each firm with a

probability of being a WGS.
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6 Wealth generating and home run stocks

Our definition of wealth-generating stocks(WGS) builds on the findings of Bessembinder

(2018), where they found that about 4% of all stocks account for all net wealth-generating

in the US stock market. Bessembinder, Chen, Choi, and Wei (2019) also found similar

results when test this in other stock markets. Individual stock returns are positively

skewed in this market, which means there is a chance of large positive return, but the

average return for a stock is less than zero. Only about 47.8% of all common stocks listed

on NYSE, AMEX and NASDAQ deliver higher return than the t-bill.

In this work we test if quality factor is able to predict these stocks with positive returns.

The choice of keeping WGS on a return level, is that we are not interested in magnitude

of wealth generate. Another important thing when defining WGS was to have stocks

that consistently deliver good returns, but also make sure this is not being caused by the

momentum effect34 by Jegadeesh and Titman (1993). This is done by only using the return

for the stock in time t: Wrt = Rt − rft, where Rt − rft is the return over the treasury

bill and Wrt is the wealth return. De Bondt and Thaler (1987) found effect of stocks

having negative returns in one period to have a reversal effect35 after this. The effect from

their finding where strongest in the first month after. One last effect we need to controll

for was the leverage effect36 from Christie (1982). This can cause securities to destroy

a lot of value in one period and create some value back in the next. This is controlled

for by a variable we call controlled return (Cr): Cr = ((1 + Wrt) × (1 + Wrt−1)) > 1,

where we require that the return has been positive37 across this month and last month.

This will ensure that stocks that have a higher leverage in the last period will still not be

considered WGS, unless they create more value than was destroyed this period.

The last adjustment was for small stocks hard to trade and are therefore likely to have

less liquidity with returns that are not market efficient because information of a small

34Momentum effect: short-term winners deliver higher return than short-term losers
35Reversal effect is related to the that markets are not efficient in short-term and tendency to overreact

to news.
36Leverage effect is a firm’s stock price declines and as a cause the firm’s financial leverage increases.

Debt/Equity ratio increases and the firm has higher risk.
37if both Wrt and Wrt−1 has 0 return the security will not be considered WGS as Cr is not larger

than 1. Same in cases where we destroy 50% of the stock value , but then make back 100% next. Still
not considered WGS as the stock has not created any wealth.
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stock gets less attention and it takes longer time for the market to adapt. A requirement

for a stock to be WGS is set to have a ME over 1 million dollars. If a firm fills these

requirements and has a positive wealth return in time t, they are considered WGS in that

period.

Ws =

Wrt > 0 = WGS

Wrt <= 0 = WDS

Haugen and Baker (1996) states that higher profitability gives higher stock return. They

also explain that profitable firms tends to grow fast and have a greater potential for future

growth (Haugen & Baker, 1996). From Gordon Growth Model38 we expect a higher stock

price if the growth of a firm is increasing. This can explain why growth is likely to increase

shareholders wealth and growing firms expected to have higher returns39. Also if the

growth or dividends are consistent for a longer long period of time, this will cause a higher

price and also return. This can be seen as the safety component of quality. Investors

would like to have safety in the returns they get. As mentioned we want the WGS to

reflect on consistently deliver good returns. Good returns may be captured by the quality

components payout and profitability, consistency can be thought as safety

Wealth generating stocks is a quite broad term in this paper and consider most of the

firms that generate positive returns, as of this reason we wanted to check for the quality’s

predictive power of a more narrow estimate we called home run stocks(HRS). These HRS

are mentioned in the conclusion of Bessembinder (2018). He did not specify exactly what

categorized a HRS, but mentioned that about 1/3 of 1% of all stocks account for over

50% of all net wealth generated in the market this is used as a foundation to create a

measure for HRS.

For HRS we decided to go for firm level, because we wanted the stocks to be the best in

the market the ones that are generating the most wealth. We said that the one percent

that has created most wealth in time t, while also have created wealth in t-1. We define

wealth generated as: Wgt = Wrt ∗ME, where Wgt is the wealth for a firm on this month.

HRS is considered to be the top one percent of the Wgt values each month. Here we

most likely will only have stocks with already a high ME, creating some challenge for

38Gordon (1959)
39return = P1−P0

P0 , where P1 is the price this period and P0 is the price last period
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the QMJ predict to test its capacity. To capture these QMJ would have to see these in

the big quality bucket. Larger firms also create more wealth and its more like to have all

information incorporated. This means if is quality score is right in capturing the quality

of firms, it should be reflected in a high quality stocks also being a HRS.
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7 Hypothesis

In this section, we aim to answer if our quality score can be used to predict WGS. The

QMJ factor buys portfolios of high quality and sells portfolios of low quality. If the

QMJ factor manages to predict these WGS, then investors can reliably use this factor

when selecting stocks in their investment portfolio. First, we determine if there exists

a relationship between a stock’s quality score and the wealth. The direction of this

relationship should provide valuable information about quality and wealth. If there is a

negative relationship between wealth and quality, then the WGS may be allocated on the

short side of QMJ portfolios. Selling WGS is not desirable as it leads to low returns. On

the other hand if there is a difference between WGS and WDS, then it is possible that

the QMJ factor have allocated WDS in the portfolio on the short side, and WGS on the

long side. Because of this, we test if there is a difference in quality between WGS and

WDS and if this difference persists. If WDS of high quality does not persist similarly to

high quality WGS, Then the difference is valuable to investors. However, if there is no

difference in persistence, it should be more difficult for quality to predict WGS.

In our last hypothesis, we test if quality can be used to predict WGS. The success of

the QMJ factor is also assessed, as this factor buys quality portfolios. We also inspect if

the QMJ factor have managed to correctly separate home run stocks, as Bessembinder

documents that a third of 1% of individual common stocks are responsible for half of the

excess wealth creation in the US. The QMJ factor holds diversified portfolios, and we

expect that some WGS will be predicted on the portfolios it buys. However, the number

of wrongly predicted WGS on the short side may very easily ruin the payoff from the

good predictions.

This section is constructed as follows, first we test the relationship between Wealth and

quality. Followed by this, the difference in quality between WGS and WDS are assessed.

Lastly, quality is used to predict WGS and the predictive power of quality on WGS is

evaluated.
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7.1 Relationship between wealth and quality

In this section, we aim to answer if there exists a positive significant relationship between

quality and Wealth. If there is a positive relationship, higher quality should be associated

with higher wealth. By construction, wealth incorporates the firms price, which also is

used as a sub-component of quality components. Because of this, we use wealth measured

on return level.

Since we are interested in a relationship, we approach this econometrically by using a

regression model that uses quality as the explanatory variable, and excess wealth created

as the independent variable.

Wealtht = α + βQualityQualityt + ε

As a robustness, we split the sample into 5 different decades. The wealth in the regression

is the accumulated wealth on return level.

Table 7.1

The results presented shows a significant positive relationship between quality and wealth

during the last 4 decades. However, the results also indicates that quality has no

explanatory power on wealth. The strength of the relationship have varied slightly up

2010, but have during the last decade shown a strong positive relationship. Besides the

significant direction between quality and wealth, the low explanatory power suggests

that this relationship likely is a result of quality and wealth being correlated. The result
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presented in this table suggests that quality does not manage to explain the variation in

wealth and that their relationship is a result of being correlated.

We show additional results in appendix, Table A10, where we run similar regression, but

use dummies for WGS and WDS to inspect their loading of Quality and its components

on the dependent variable, wealth. The results presented in that table also suggests that

the direction of the relationship is a result of structural components being correlated.

Viewing the first hypothesis of the thesis in light of these results, we find that there exists

a positive significant relationship between quality and wealth created. This relationship is

due to similarities in construction between the dependent and explanatory variable and

quality is not useful in explaining variations in wealth.

In the following section, we test the difference in quality among WGS and WDS.

7.2 Difference in quality between WGS and WDS

In this section, we aim to answer the second hypothesis of the thesis: Is there a difference

in quality between WGS and WDS? We test this hypothesis to make the selection of

which stocks to include when diversifying portfolios easier. If there exists a difference in

quality among WGS and WDS, then this difference could help predict the stocks that are

more likely to be a WGS the following month.

To test this hypothesis, we follow the methodology used in our replicated table 1. There

we tested if there was a significant difference in quality between high and low quality

portfolios. Some adjustments to this methodology have been done. Our definition high

and low quality are the top 70th and bottom 30th percentile, Where this done to provide

similarities with the value breakpoints of the FF methodology. The wealth score is based

on return level and not firm level. We choose not to use accumulated wealth at firm level

because large firms are then favored. Large firms with average return slightly over the

treasury bill will with the use of firm level receive a higher wealth score then a small firm

with much higher average return.

The reported quality score is the time series mean of the cross-sectional average quality

score from today up to 10 years ahead in time. The stocks included up to ten years ahead

in time are the same as selected at portfolio formation date. If any stocks are delisted, the
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quality score at the last month, will be the value-weighted average of the remaining stocks.

Table 5 consists of three panels, where the rightmost columns show the significance of the

difference in quality between high quality stock and low quality stocks for WGS and WDS.

Panel C reports the results of a test of difference in mean between quality portfolios of

WGS and WDS, and the persistence of difference in mean up to 10 years. The standard

errors used are HAC standard errors Newey and West (1987).
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Table 7.2

We observe that high quality portfolios among WGS remain higher quality up to 10
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years, while the high quality portfolios among WDS are less persistent. By looking at the

difference in quality portfolios presented in Panel C, we observe that there is a significant

difference in quality that increases monotonically over time for the neutral (P2) and high

portfolios (P3). This is, however, not the case with portfolios of lower quality.

From these results, we reject the null hypothesis of no difference in quality between WGS

and WDS. As a result of this, we accept at a 95% confidence level that there is a difference

in quality among WGS and WDS that persists up to 10 years.

The results of this hypothesis implies that WGS and WDS are different in terms of quality

and persists differently. This information is also useful in evaluating quality’s ability in

predicting WGS. In the following section, we will test our last hypothesis.

7.3 Quality’s ability to predict WGS

From the earlier hypotheses, we find that quality and wealth have a positive relationship.

Also that there is a difference in quality between WGS and WDS that increases over

time. In this section, we aim to answer if quality of today can be used to predict WGS

of tomorrow. To evaluate this problem, we are interested in the hit rate, meaning the

percentage of correctly classified WGS among the sample of WGS. If quality provides a

high hit rate, then these good predictions are extremely valuable to investors. However,

how bad the bad predictions are may easily ruing this payoff.

Since the outcome of a stock being a WGS or not is binary, our model is a predictive

probit regression. Where WGS is the dependent variable, and our replicated quality score

is the random variable. We choose to exercise the probit model above the logit model

because of the distribution of our random variable, the stocks normalized quality scores.

P (WGS|Quality) = φ(α + βQualityQuality)

By using the probit model, we assign each stock a probability of being a WGS. The

model is estimated on the quality scores of last month, where the fitted values is used as

probabilities of a stock being a WGS the next period. We split the probabilities at the

mean of probailities of each month, where those with probabilities above the mean gets

predicted WGS, and those below, WDS. This is done because of the data is unbalanced40.

40Our data is unbalanced in terms of the few WGS relative to its sample.
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As a comparison to our predictive model, we provide a plot of the hit rate gained from

the QMJ factors portfolios. Where the shown percentages are the WGS bought divided

by the total sample of WGS. Some WGS are also located in the quality neutral portfolios,

but are not shown in this plot.

We observe that the QMJ factor have historically allocated the majority of WGS in

either the small junk portfolio or the Small quality portfolios. That the QMJ factor have

allocated WGS correctly on its long side is desirable. However, some periods during the

later years, the majority of WGS have been allocated in the small junk. This indicates that

the high payoffs earned from the small quality portfolio is likely diminished by the shorting

WGS. By the use of our predictive regression, we hope to provide valuable information

about which stocks that are more likely to become WGS. If this model proves reliable,

then the predicted QMJ factor payoff could offer higher risk-adjusted returns.

In the following table, we show how the predicted probabilities from our probit regressions.

To assess how the predicted probabilities of holding a WGS have varied through time in

the QMJ factor, we take the mean of each portfolio’s average monthly probability for the

subsequent decades ranging 1971:2021. We also report the variation of these probabilities,

as well as the highest and lowest monthly probability of holding a WGS in the following

table, Table 6.
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Table 7.3

We observe from this table that the average probabilities of holding a WGS throughout

the decades have varied and have rarely been highest on the long side. On the short

side, we observe that the average probability of holding a WGS are during the later years

higher. In addition to this, we observe that the small quality portfolios from the plot

earlier which had the highest rate of classified WGS, now still has the highest probability
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of holding a WGS. It is possible that what we are observing is a size effect, as the small

portfolios consistently have a higher probability of being a WGS Banz (1981).

From the results presented in this table, the fitted values from our probit

regression(predicted probabilities) suggests choice of WGS consistent with the

classifications already done by the original QMJ factor. How well our predictions performs

are now of interest.

In the following table, Table 7, we present the classification results from our prediction

model. Where the Quality score of last month is estimated on WGS of tomorrow. A brief

summary of the meaning of the classification results presented in Table 7 are the true

positive(TP), true negative(TN), false positive(FP), false negative(FN), Accuracy(ACC),

precision and hit rate41. An accuracy score of about 50% indicates that the results are due

to randomness. The precision is the percentage of correctly predicted WGS among true

positive and true negative. While a high Hit rate indicates a high percentage of correctly

classified WGS out of the sample of WGS42. A high hit rate indicates that the model is

successful in predicting WGS.

41A true positive(TP) and true negative(TN) are the correctly predicted WGS and non-WGS,
respectively. The false positive(FP) is a predicted WGS that was a non-WGS, and false negative(FN)
means that the model predicted non-WGS but it was a WGS. Accuracy is the number of correctly
estimated WGS divided by the total sample.

42Hit rate is derived as: TP/(TP+FN)



42 7.3 Quality’s ability to predict WGS

Table 7.4

From the results presented in this table, we observe that there is a low accuracy of about

55% across all decades. This indicated that the results are due to randomness, and

that there are no valuable information provided in our predictive model. The table also

shows that quality have a hit rate ranging from about 35% to 43%. The predictions do

predict some WGS as WGS. However, a high number WGS are classified wrongly. This is

concerning. By following this predictive model. The model will in many cases predict a

WGS as a stock that should be sold (FN). This is also reflected in the low hit rate. The

majority of predictions are true negatives, indicating that most stocks that was flagged as

WDS were WDS. This is a good sign, but the high amount of bad predictions (FN) are

likely to reduce the payoffs. In appendix, Table A8, we show two versions of the predicted

QMJ factor, one where stocks are equally weighted (EW) and one where they are value

weighted (VW).

The predicted QMJ portfolios are constructed as follows. at each month, previous month’s

NYSE size median is used to divide firms into two portfolios, small and big. In this case,
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we do not do an conditional sort on quality, but a conditional sort on the predictive

probabilities from our probit regression. Where the top 70th NYSE percentile and bottom

30th NYSE percentile are used as probability breakpoints. Stocks are allocated into

these 6 portfolios based on their probabilities of being a WGS. Those above the 70

percentile are considered WGS and those below the 30th percentile are defined as WDS.

The classification results of the QMJ factor is presented in appendix, Table A7, and shows

a slightly higher hit ratio than earlier. From this it motivates to test if the predicted QMJ

factor performs better than the original QMJ factor in terms of risk-adjusted returns.

Our results presented in appendix, Table A8, suggests the VW predicted QMJ factor

performs much worse than the original QMJ, while the EW predicted QMJ factor have

much higher performance in terms of risk-adjusted returns.

To shed some additional light on the abnormal risk adjusted returns of the original QMj

factor, we also show the frequencies of home run stocks in the QMJ factor. These home

run stocks makes up for many of the badly selected stocks in terms of return. Thus, it

motivates to show where these stocks have been allocated historically. In the following

table, table 8, we present the average number of home run stocks in each quality portfolio

throughout the decades ranging 1971:2020.

Table 7.5

We observe that the Average frequency of bought home run stocks are clustered towards

the big portfolios of the QMJ factos. Theis factor buys between 40% to 48% of these

stocks, and sells relatively fewer. By holding the original QMJ factor, investors are

likely to capture the few home run stocks (HRS) that makes up for the many bad stocks.
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Additional results are also presented in appendix, Table A9. Where we run a similar

probit model to the one we used to assess if quality could predict WGS earlier, but in this

case in stead of the dependent variable being WGS, it is now HRS. HRS indicates 1 for

home run stocks and 0 for those who are not. The classification results shows that the

predictions have a very low hit rate and a overall lack of predictive performance.

In light of the our last hypothesis. We do not find that the quality score can be used to

predict WGS. What we find is that if we look in Table A10 appendix the high-quality

stocks actually destroy more wealth than low-quality in WDS. This is telling us that a

investor takes a risk investing in high-quality, they can either get much higher or much

lower returns. It does not explain why QMJ have high returns, but might be a piece of

the puzzle. However, we find that how the weights of the predicted QMJ factor matters.

By not weighting big firms more than the small ones, the equally weighted predicted QMJ

factor benefits in terms of risk adjusted returns.
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8 Conclusion

Through this thesis, we have contributed to the "quality minus junk" 2019 paper by

assessing the predictive power of quality and the QMJ factor on stocks that generates

excess wealth.

We find that quality does not manage to predict WGS. However, by sorting the probabilities

of a stock being a WGS, similar to the QMJ factor, the equally-weighted predicted QMJ

factor improves in terms of risk-adjusted returns. In addition to this, we show that there

is a difference in quality between WGS and WDS. This difference also increases over time,

as quality of WGS portfolios persists more than the quality among WDS portfolios. We

also find that quality has no explanatory power on excess wealth created, but a positive

relationship. The QMJ factor have historically bought the majority of WGS, but in the

later years, the allocation of WGS appears to be more concentrated in the short side of

the QMJ factor. A predictive regression that is estimated on last months quality score,

and used to predict WGS of the following month is useful in this manner. This model can

be used to form a predicted value-weighted QMJ factor. However, the predicted value

weighted performs much worse in therms of risk-adjusted returns. The weights of these

predicted portfolios matters. By assigning each stock equal weight, the predicted QMJ

portfolio provides a higher risk-adjusted return than our replicated QMJ factor. We also

show that the QMJ factor have historically managed to buy around 40% of the home run

stocks, but the use of quality to predict these are unsuccessful.
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Appendix

A1 Accounting variables43

ACT Current Assets - Total
AT Assets - Total
CAPX Capital Expenditures
CEQ Common/Ordinary Equity - Total
CHE Cash and Short-Term Investments
COGS Cost of Goods Sold
DLC Debt in Current Liabilities - Total
DLTT Long-Term Debt - Total
DP Depreciation and Amortization
EBIT Earnings Before Taxes and Interest Margin
IB Income Before Extraordinary Items
INVT Inventories - Total
LCT Current Liabilities - Total
LT Liabilities - Total
MIB Minority Interest (Balance Sheet)
MIBT Noncontrolling Interests - Total - Balance Sheet
PI Pretax Income
PSTK Preferred/Preference Stock (Capital) - Total
PSTKL Preferred Stock/Liquidating Value
PSTKRV Preferred Stock/Redemption Value
RE Retained Earnings
REVT Revenue – Total
SALE Sales/Turnover (Net)
SEQ Stockholders’ Equity - Total
TXDB Deferred Taxes Balance Sheet)
TXDI Income Taxes - Deferred
TXDITC Deferred Taxes and Investment Tax Credit
TXP Income Taxes Payable
XINT Interest and Related Expense - Total
XSGA "Selling, General and Administrative Expense"

Where "Total" means it has sub accounts45 (Chen, Miao, & Shevlin, 2015).
43“Description of variables from ©2021 Center for Research in Security Prices (CRSP), The University

of Chicago Booth School of Business.”44
44“Where description of variables is missing we use this description from ©2011 Center for Research

in Security Prices (CRSP), The University of Chicago Booth School of Business.”
45Sub accounts is refering to other accounting variables. All sub accounts add up to total value of the
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A2 Delisting Codes46

Code Description

500 Issue stopped trading on exchange - reason unavailable.

520 Issue stopped trading current exchange - trading Over-the-Counter.

551 Delisted by current exchange - insufficient number of shareholders.

552 Delisted by current exchange - price fell below acceptable level.

560 Delisted by current exchange - insufficient capital, surplus, and/or

equity.

561 Delisted by current exchange - insufficient (or non-compliance with

rules of) float or assets.

570 Delisted by current exchange - company request (no reason given).

572 Delisted by current exchange - company request, liquidation.

573 Delisted by current exchange - company request, deregistration

(gone private).

574 Delisted by current exchange - bankruptcy, declared insolvent.

580 Delisted by current exchange - delinquent in filing, non-payment of

fees.

584 Delisted by current exchange - does not meet exchange’s financial

guidelines for continued listing.

variable.
46“Delisting Codes information from ©2021 Center for Research in Security Prices (CRSP), The

University of Chicago Booth School of Business.”
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A3 Variables constructed

WC ACT − LCT − CHE +DLC + TXP Working capital

∆WC WCt −WCt−1 Change in working capital

CF NB +DPWCCAPX Cash flow

ME SHROUT ∗ PRC Market equity

GP REV T − COGS Gross profit

SHROUT_ADJ SHROUT ∗ CFACSHR Adjusted shares outstanding

TOTD DLTT +DLC +MIBT + PSTK Total debt

MWCPD -(DP −∆WC) Minus ∆WC plus depreciation

ADJASSET AT + 0.1 ∗ (ME −BE) Adjusted total asset

TLTA DLC+DLTT
ADJASSET

Total liabilities over total assets

WCTA ACT−LCT
ADJASSET

Working capital over total assets

CLCA LCT
ACT

Current liabilities over current assets

NITA IB
AT

Net income over total assets

FUTL PI
LT

Pretax income over total liabilites

CHIN IBt−IBt−1

|IBt|+|IBt−1| Change in net income

OENEG

1, if LT > AT

0, otherwise
Dummy for total liabilites larger than

total assets

INTWO

1, if max (IBt, IBt−1) < 0

0, otherwise
Dummy for negative income last two

years
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A4 Quality minus junk variables

Profitability

GPOA REV T−COGS
AT

Gross profit over assets

ROE IB
BE

Return on equity

ROA IB
AT

Return on asset

CFOA IB+DP−∆WC−CAPX
AT

Cash flow over assets

GMAR REV T−COGS
SALE

Gross margin

ACC DP−∆WC
AT

Low accruals

Growth

∆GPOA (GPt−rfATt−1)−(GPt−5−rfATt−6)
ATt−5

Growth in residual GPOA

∆ROE (IBt−rfBEt−1)−(IBt−5−rfBEt−6)
BEt−5

Growth in residual ROE

∆ROA (IBt−rfATt−1)−(IBt−5−rfATt−6)
ATt−5

Growth in residual ROA

∆CFOA (CFt−rfATt−1)−(CFt−5−rfATt−6)
ATt−5

Growth in residual CFOA

∆GMAR GPt−GPt−5

SALEt−5
Growth in gross margin

∆ACC MWCPDt−MWCPDt−5

ATt−5
Growth in accruals

Safety

BAB −β Low beta

LEV −DLTT+DLC+MIBT+PSTK
AT

Low leverage

Ohlson's O −(−1.32− 0.407∗ log(ADJASSET
CPI

) + 6.03∗TLTA−

1.43 ∗WCTA+ 0.076 ∗CLCA− 1.72 ∗OENEG−

2.37 ∗NITA− 1.83 ∗ FUTL+ 0.285 ∗ INTWO−

0.521 ∗ CHIN)

Low bankruptcy risk

Altman's Z 1.2WC+1.4RE+3.3EBIT+0.6ME+SALE
AT

Low bankruptcy risk

EVOL
√

1
5

∑5
y=1(ROEt−y −ROEt)2 Low ROE volatility

IVOL −σi
(t−1, t) Low idiosyncratic volatility

Payout

EISS −log( SHROUT_ADJt
SHROUT_ADJt−1

) Equity net issuance

DISS −log( TOTDt

TOTDt−1
) Debt net issuance

NPOP
∑5

y=1 IBt−y−∆BEt−y∑5
y=1 RETVt−y−COGSt−y

Total net payout over profits
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A5 Profitability, growth, safety and payout factors

Profitability:

PMU = 1/2 (Small Profitable + Big Profitable) - 1/2 (Small Unprofitable + Big Unprofitable)

Growth:

GMNG = 1/2 (Small Growing + Big Growing) - 1/2 (Small Not Growing + Big Not Growing)

Safety:

SMU = 1/2 (Small Safe + Big Safe) - 1/2 (Small Unsafe + Big Unsafe)

Payout:

PMR = 1/2 (Small Payout + Big Payout) - 1/2 (Small Retaining + Big Retaining)
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A6 Quality minus junk, robustness, six factor returns

Table A6.1
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A7 QMJ’s ability to predict WGS

Table A7.1
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A8 EW and VW predicted QMJ portfolios
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Table A8.1
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A9 Use of Quality to predict home run stocks

Table A9.1
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A10 Relationship between quality characteristics and

wealth among Quality sorted portfolios
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Table A10.1
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