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Abstract 

The detection of the water leakages is significantly important in different under-

ground pipeline networks due to the lack of fresh water in today’s life. Fast detection 

and accurate recognition of the leakages, in monitoring systems, became one of the 

top researches in the field. Aim of this master thesis is to test and evaluate a set of 

non-invasive sensors suitable for detection of the leakages to the buried urban water 

pipelines as well as acoustically comparing the essential data features of this project 

with other related features in some other datasets in this field.  

Our contribution in this study is the methodological approach where we examine 

some of the machine learning techniques for leak detection, in which decision tree 

classification methods, apart from neural network approaches, that used for the task 

shows satisfactory predictive results. On the other hand, the result comparison of 

different feature selection of the classification methods along with data preprocessing 

strategies used in different learning approaches for acoustic noise datasets is the sec-

ond contribution in this project. We compared the attributes of other similar datasets 

with each other from the acoustic aspect and reported the most important attributes 

applicable for our studies.    

The algorithm results evaluated at the end and the best possible machine learning 

techniques and attribute collection is discussed in detail for acoustic leak detection 

of water pipelines. 

 

Keywords: noninvasive sensors, water pipelines, internet of things, LoraWAN, ma-

chine learning, acoustic leak detection 
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Chapter 1  Introduction 

This chapter outlines the thesis overview. It describes the motivation and the general con-

cept behind the research and the questions which are going to be covered by the work. 

It explains the theoretical background and methodology alternatives for evaluation and 

performing the thesis experiments. It will briefly inform the thesis structure at the end. 

1.1 Background and related work 

1.1.1 Motivation 

There is a large amount of water loss in the world each year due to leaky pipelines. This 

volume of wastage is one of the main causes of the water crises while our planet is running 

out of the fresh water therefore, the number of people struggling for water resources is 

getting increased. 

There is a tremendous population of the world have no proper access to safe drinking 

water and it's increasing by every passing year and by 2025, 2/3 of this population will 

be living in lack of water condition[1]. 

Lack of water resources could threaten agricultural crops, infrastructure and even humans’ 

life. Risking human’s life, from one hand, and the rupture of the huge pipes and incidence 

of catastrophic wars due to the water crises from the other hand, results devastation. 

Recent researches show that, each average person consumes around 135 liters of fresh 

domestic water per day which implies that the consumption is rising with the population 

growth [2]. Therefore, these mentioned statistics highlight the requirement of the water 

pipeline monitoring systems. 

Although transportation of the water in all cities around the world is through the tubes 

and pipelines, there is a possibility of damage, failure, or destruction of the pipes over 
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time due to many circumstances surrounding us. Natural hazards or human faults in dif-

ferent situations could lead to the leakages in the water pipelines.  

Apart from all other researches, our planet is suffering from lack of water resources due 

to climate changes and this problem is becoming irrecoverable catastrophic issues in dif-

ferent continents from many aspects. There are different errors in water supply in some 

other continents with enough water resources which may go undetected for a long time 

until they turn into huge rupture and cost cities millions of dollars[3].   

Lack of water resources becomes one of the significant issues in different countries 

around the world and turns out to be the challenging topic for the crisis management, 

hence the detection of the water leakages with precise scale is significantly important. 

Many questions come to the picture at the time of facing the failure. where are the exact 

points of the leakages?  How’s detection could be developed in terms of seriousness of  

the failures? To solve the problem by maintenance staff, how long is it take to verify the 

failure? 

In 2016, Statistics implies that, around 99.5 percent1 of the residents in Norway are con-

nected to the municipal water supply system which is the safe supplied drinking water 

from many aspects. It’s obvious that the massive infrastructure behind it to supply the 

water for such a huge demand, needs smart maintenance. 

In 2016, about 3800 leak repairs in corresponding infrastructure were reported. So, the 

first solution comes to mind is that how to minimize the failure? How does pipeline re-

placement work? So, the quality of the pipes must be maintained with the minimum re-

quirement before applying any leak detection strategy. 

Its estimated to take 145 years2 to replace and reach the satisfactory quality level for all 

the available pipelines, said statistics Norway. 

Although the pipeline standardization process is a long-time plan and currently it’s on 

progress, but there is an obvious need for leak detection strategy to be developed paral-

lelly. 

 

 

 

 
1 Statistics Norway 2016  
2 https://www.fhi.no/en/op/hin/infectious-diseases/drinking-water-in-Norway/ 
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The topic has become one of the priority projects in most of the municipalities in Norway 

to search deeper about the best possible solutions according to their corresponding under-

ground piping infrastructure. So, Viken county and related different municipalities with 

respect to their water piping infrastructure are involved in this investigation as well.  

Still drinking water in some cities in the county is transferred under old pipes from many 

years back, and the leak detection of the pipelines is discovered manually through the 

human experienced operators for each specific case, reported by the municipality. 

Investigation on using different sensors to detect the leakages was the first proposed so-

lution by the research institute and approved by all involved parties while acoustic sensors 

nominated to be the priority candidate according to that research. 

Acoustic sensors seem to be promising model in different leak detection scenarios[4]. On 

the other hand, the combination of acoustic sensors and machine learning algorithms with 

the help of different patterns on captured sound signals, proved to be reliable alternative 

to identify and locate leakages in different pipelines[5][6]. 

1.2 Exploring research 

In order to get a better insight of the scenario we started a study to explore the topic with 

same simulation projects, since we didn’t have any information to start with. Being aware 

of different simulation scenarios about the acoustic sensor performance in detection of 

the water leakages could give us better intuition of the project. 

Information gathering about the project which we had to start, we overviewed some in-

teresting projects with similar methods from the sensor installation perspective. In [7] the 

sound propagation strategy is used throughout the pipeline with the predefined measured 

distances between the acoustic sensors, that the likely leakages can be detected through 

the distance calculation by the acoustic sound speed intensity.  

Another acoustic sound propagation simulation technique is operated [8] inside the labor-

atory to locate the pipeline leakages with respect to the fluid as the noise spreading ma-

terial. It stated that, the changes of acoustic noise equal to 10dB at the leak location can 



Master’s Thesis   

12 

 

be detected almost from 6 inches (15,24 cm) distance from the leak point itself. The ex-

periment is conducted with simulation tools.   

1.3 Problem statement 

In mentioned water leakage detection project, the whole scenario divided into three parts 

from the general perspective. First part, Implementation and installation of the proper 

sensor for leak detection, then data collection for a long time with a help of wireless an-

tennas on LoRaWAN technology3  is the second part of the project and third part is the 

analysis of the received data in order to detect the leakages. 

The mentioned classification shows that, from the research aspect these parts are almost 

three separated sections, joint together in the form of a project. In our contribution in this 

thesis we have gained required knowledge by conducting a research study in the first 

section and then we have completed an investigation in last section by analysis the data 

received from the project and comparing the result with few similar acoustic cases rele-

vant to our research. 

So, in data analysis part we first apply different machine learning algorithms in acoustic 

water leak detection environment. Secondly, we try to identify the best possible package 

solution in terms of the acoustic sensor and relevant employed algorithms in detection of 

the leakages in urban water pipelines. 

In defined project, we try to propose best possible method for leak detection and conse-

quently efficient attribute collection with respect to different datasets. 

 

 

 

 
3 https://lora-alliance.org/about-lorawan/ 
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1.4 Research questions 

Basically, freshwater is crucial for human health. So, maintaining the efficient water dis-

tribution system is essential for our survival. Detection of the leakages in an accurate way 

using any known method is a difficult task hence it should be measured precisely for 

better efficient output. 

The experiments and algorithms applied in this study aim to answer following questions: 

1) What are the appropriate machine learning methods in acoustic leak detection? 

(How to study?) 

2) Which attributes are playing important role in detection of the leakages in urban 

water pipeline data analysis? (what to study?) 

1.5 Required background study 

This section is a briefly explanation of the main technical concepts of the study. Before 

start, in order to have a better understanding of the scenario and to have a better view of 

the related technical concepts into our project, we need to overview some machine learn-

ing terms. 

We introduce the preprocessing method in analysis of acoustic sound data and then we 

focus on different machine learning concepts and general overview in anomaly detections. 

1.5.1 Acoustic sound classification of scenes and events 

 Basically, there was a growing demand in machinery fault diagnosis with different ap-

proaches reported by [9]. The promising approaches are claimed to be pressure and tem-

perature sensor-based [10] [11], vibration sensor-based [12] and sound detection, acoustic 

sound detection is one of the methods in monitoring fault diagnoses.  

Applied feature extraction approaches in machinery fault detection through vibration 

data, is another traditional method of fault diagnostic scenario. The performance is 
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improved by applying deep learning to learn features from vibration data and modified 

diagnosis performance through classification [12].  

1.5.2 Acoustic sound detection and deep learning 

After machine learning development in last two decades, deep learning approaches played 

an important role in acoustic sound detection and classification. To build an appropriate 

model from the training dataset and applying different strategies to decrease the errors 

which led on with reliable results in this field.  

Applying Fourier transform algorithm to convert the signals into frequency representation 

of continuous time signals is a common method of researchers and commercial products 

[13]. The article shows that using ANN, artificial neural network to build a model to find 

the location of the leakages with a high number of accuracies is another efficient instance 

using machine learning techniques on acoustic sound datasets. 

1.5.3 Norway water distribution system, Viken-Halden municipality 

There are 700 million4 cubic meters of drinking water delivered throughout a year in Nor-

way water services. The water consumption for each person estimated as 200 litres daily 

[14]. 

In Norway, the open water is controlled and managed at the state level and then the dis-

tribution is handled by the water workers often at municipality level, and at the end of the 

line drinking water is managed by the end users. 

Almost 1600 waterworks which supply water, covers 90% of the population of the coun-

try and the other 10% of the population use private wells. Since the land has the enough 

water resources, still the majority of the water supply in Norway is based on surface water 

unless there is a need to use the ground water in case of geographical boundaries. 

Out of all supplied water, households use 41% of the water production, 2% for the cabins 

for holiday periods and 25% goes to the industry. Researches show that approximately, 

 

 

 

 
4 https://www.norskvann.no/images/torilh/The_water_services_in_Norway_endelig.pdf 
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32-34% of the remaining drinking water produced is lost due to the leakages and line 

disruptions of the water distribution system which is a highly considerable amount of 

water. 

For a safer water distribution in the state, Halden municipality is also involved with sev-

eral projects for developing, testing, and implementing different solutions, as artificial 

intelligence and IT solutions shows promising output in monitoring and maintenance 

strategies. 

Nordic innovation5 is divided the system solution to the challenges in into two different 

parts in Halden city. The first part is advanced monitoring at reservoir with a water quality 

verification unit and second part, is the smart fiscal flow units to measure, water flow 

rate, temperature, absolute pressure, turbidity, return stop valve user and acoustic sensor 

for leakage positioning.       

   

1.5.4 Machine learning concepts 

As most of the concepts and techniques have been used all over this thesis is based on 

machine learning concepts, we briefly explain some of the important phrases and tech-

nical concepts of the workflow. 

Basically, every machine learning approach with its corresponding dataset requires some 

specific steps as follows: 

• Pre-processing of the dataset 

• Suitable division of dataset into training and testing sections  

• Training the model from divided training dataset 

• Predicting the target values from the build model 

• Techniques to calculate & evaluate the target value 

• Optimization techniques for model improvement 

• Model comparisons among different algorithms 

 

 

 

 
5 https://www.nordicinnovation.org/ 
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• Visualization of the desire result 

 

Each of the mentioned steps above, includes many techniques and method strategies 

which must be chosen corresponding to our dataset type and the goal of the project in that 

specific boundary. So, for better understanding of the following concepts, we will explain 

the techniques which has been applied in this thesis.  

1.5.4.1 Pre-processing of dataset 

The very first step to start the machine learning approaches is processing the dataset in 

most desired form correspond to our problem.  

Clearly, preprocessing steps impacts the accuracy of the machine leaning algorithms and 

significantly improves the accuracy. An the experiment which is conducted on big data 

before and after the preprocessing techniques in [15] can positively approve the claim.   

1.5.4.2 Handling null values   

There are always some null values available in majority of datasets. The datasets retrieved 

from a real-world scenario usually comes with some null values which is not understand-

able for the machines. 

One of the solutions to handle this situation is to remove the rows and columns included 

with the null value. Usually this will happen when we combine two different parts of the 

available datasets to make a larger meaningful dataset for our project.  

There are some other methods available to handle the situation like imputation of missing 

values, but it depends to our datasets if the number of the null values are not negligible in 

that dataset.  

1.5.4.3 Encoding 

When we have some categorical values in our dataset, we must encode it to numbers and 

the numerical values which is understandable for the machines before we fit and evaluate 

the model. There are several techniques available like integer encoding and one hot 
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encoding. In what follows we explain them briefly as we have used them alternatively 

with respect to our datasets. 

Integer encoding is when each label mapped to an integer, so the number of integers could 

be as many as required for that specific labels. Usually it happens when we deal with 

ordinal categorical data with ordered additional information.  

One hot encoding is when each label mapped to a binary digit. It usually happens when 

we deal with limited group of labels in our categorical dataset. 

However these are not the only techniques available for encoding as there are some ex-

periments evaluated the comparison and accuracy of different encoding techniques [16] 

but it depends to the nature of corresponding dataset. 

1.5.4.4 Normalization 

The scaling techniques that the values are shifted between 0 and 1 is called normalization. 

One of the normalization subsets is also called as Min-Max scaling6 which changes the 

values of numeric columns in the dataset without distorting differences in the ranges of 

values.  

However, the investigation on several normalization methods from different data prepro-

cessing research areas on normalization impact to improve the classification performance 

shows that, normalized data supports the outcome in terms of better predictions on clas-

sification problems[17]. 

It also believes that; the mean and standard deviation measures are more important and 

suitable for normalization in compare with Min-Max and median measures. It’s obvious 

that we can add some features to our dataset by calculating the mean, median, Min-Max, 

and standard deviation from the data points of our dataset. These mentioned important 

points regarding data normalization will be discussed explicitly later in coming chapters.  

On the other hand, some studies implies that, this type of scaling does not necessarily 

have impact on the outputs all the time and reliable changes on accuracy and precision 

 

 

 

 
6 www.analyticsvidhya.com 
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depends to the dataset itself and it happens when the features have different ranges. In 

other worlds, applying normalization impacts the prediction if the data points are not dis-

tributed well7. 

After all, due to the different features properties that our datasets may have, data normal-

ization has more subjective nature rather than having objective nature and applying nor-

malization goes back to the nature of the data which we deal with, plus having a better 

insight about the whole dataset.  

1.5.4.5 Standardization 

When we deal with some attributes with numerical values in our dataset, and they are far 

away from each other, as two different attributes from numerical point of view, we may 

apply Scaler to transfer them into an acceptable range.  

Although, we can write our own function to do so, as there is formula available from 

statistical science but there is a readymade standardization function available from 

Sklearn library which makes it more comfortable to apply the concept.  

It calculates the mean8 and standard deviation of that column and then for each data point 

it subtracts the mean and divides the result by standard deviation to transform all the 

values into the suitable scale. 

The difference between normalization and standardization comes to the picture when both 

concepts rearrange and make the range of the points meaningful for the machine. 

There are different aspects available to deal with it as both concepts has more subjective, 

rather than objective nature as mentioned earlier, but it’s found when the distribution of 

the data follows the Gaussian distribution, the standardization technique is reported to be 

more meaningful9 data application. 

 

 

 

 
7 www.medium.com 
8 www.towardsdatascience.com 
9 www.analyticsvidhya.com 



  Introduction 

   19 

So, as we mentioned earlier, if the distribution of the data in our dataset does not follow 

the Gaussian distribution, then we better apply the normalization to rescale them between 

0 and 1. 

1.5.4.6 Training the model with machine learning algorithms 

Next step after preprocessing of the data, is to apply training algorithms on training da-

taset. This is to make the model from split training dataset. After the dataset is prepared 

to feed into the algorithms, it must be split into two training and testing parts in a suitable 

way.  

Usually the division is in 75%-25% or 80%-20% of the corresponding dataset in such a 

way that the larger amount of the data goes for training subset and the rest of that kept for 

the testing subset. So, the result of the algorithm after applying on training section is 

tested and compared with the testing subset which was not included in the training data 

subset. 

But more precisely, if there is insufficient data, then it’s better to use some techniques for 

data splitting [18] like cross validation in case of supervised learning. 

1.5.4.7 Supervised, Unsupervised and Semi supervised learning 

Labelled dataset availability is the difference between supervised and unsupervised types 

of learning. In supervised learning, our dataset is labelled, and we can make a correction 

of our prediction from the training subset with mentioned labels. It’s called supervised 

hence the process of learning can be thought of like a teacher supervising the learning 

process. 

If there is no label data given, then there is no correction anymore on the training subset 

and the algorithms decide on their own to discover some interesting pattern or structure 

from that dataset, so it’s called unsupervised learning. 

If the large amount of dataset is partially labelled, then we probably could have the teach-

ing and correction method but not for all our dataset, so the mixture of supervised and 

unsupervised techniques can be used as progress method (semi supervised) of this type 

of learning.  
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1.5.4.8 K-Nearest neighbors’ algorithm (KNN) 

A supervised machine learning algorithm that can be used both for regression and classi-

fication problems. The concept of KNN algorithm is based on this assumption that, sim-

ilar things exist in close proximity. In this algorithm, k is the number of the neighbors 

chosen at the beginning of the procedure, then for each instance in dataset, it calculates 

the distance (also called Euclidean distance) of that point to those neighbor points and 

adds the instance to the closest category. This procedure is repeated for all the instances 

of that dataset. 

 

1.5.4.9 Cross validation 

Cross validation is another statistical method that can be referred as an evaluation method 

for machine learning models. A resampling procedure to measure machine learning per-

formances on a limited data sample is another better definition of cross validation tech-

nique. 

Perhaps when we are dealing with enough amount of data, applying cross validation may 

not impact a lot, but for limited data samples it’s one of the key factors [19]. 

In this technique, the given dataset is going to be split into groups, and the number of 

groups are represented by a single parameter called k. So, in 3-fold cross validation the 

corresponding dataset is split into 3 groups. 

1.5.4.10 Data sampling techniques, stratified sampling 

There are many sampling methods are available, but we explain the stratified sampling 

as we applied it on our dataset. 

It’s a test set of the population, which represents the best entire population being studied10. 

The random sampling in stratified techniques is different and involves the ransom 

 

 

 

 
10 www.medium.com 
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selection of data from entire population. This method avoids bias sampling as there is a 

sample data selected from all different verities of the population. 

 

1.5.4.11 Ensemble learning 

In order to create another optimal predictive model with most accurate predictor, many 

base models combined in a new form of a new united optimized model which is called 

ensemble learning. Ensemble technique utilization is with the decision trees even though 

they are not the most popular one used for ensemble learning technique. Bagging and 

Random Forest models are different types of ensemble learning.  

1.5.4.12 XGBoost 

Extreme Gradient Boosting is a decision tree-based ensemble learning machine learning 

algorithm which uses the gradient boosting environment. This algorithm is generated in 

a development process from a decision tree base model. It covers a wide range of appli-

cations to solve different problems in regression and classification prediction problems.  

It’s much faster than the other algorithms in the same class and adjustable with different 

environments.  

1.5.4.13 AdaBoost 

It stands11 for Adaptive Boosting, so another boosting technique that is used in ensemble 

method of machine learning. The weights are reassigned with higher weights to each in-

stance, which is incorrectly classified. So, the learners are grown exponentially. In other 

word, weak learners are turned into strong learners. 

1.5.4.14 Random Forest 

Unlike AdaBoost, we can have unlimited depth of the trees in Random Forest algorithm. 

In previous ensemble learning algorithm, the learner can have two children in first stage, 

 

 

 

 
11 www.mygreatlearning.com 
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but in random forest algorithm, the tree can have much more width in the beginning stages. 

It creates decision trees on data samples under supervised learning approaches, and gets 

the prediction from each, and finally takes the best solution by voting concept. 

It overcomes the overfitting problem in datasets and maintains high accuracy. Normali-

zation usually doesn’t impact the performance in RF as usually there is not any significant 

changes in accuracy after prediction without scaling12.  

1.5.4.15 Bagging classifier 

Bootstrap aggregating or Bagging algorithm is another powerful ensemble learning. It’s 

an application of the bootstrap method for high variance machine learning so, it can be 

used to reduce the variance usually in decision tree algorithms, so overfitting can be 

avoided.  

In other world, bagging has the primitive effect of random forest algorithms since RF is 

the improvement of the bagging algorithms. 

1.5.4.16 K-means clustering 

It is one of the simple, accurate and popular unsupervised machine learning algorithms. 

The value of the K as the target division digit, defines the number of the clusters must be 

looking for by the algorithm in the corresponding dataset. 

It works in such a way that the beginning points for cluster centroids are selected ran-

domly and then with iterative calculation the position of the centroids are stabilized and 

the related points in each boundary will find their place by the distance calculations.   

1.5.4.17 Model tuning 

Hyperparameter optimization is to increase the model accuracy by customization of the 

model to the corresponding dataset. Random search and grid search are two different ap-

proaches of hyperparameter tuning. 

 

 

 

 
12 www.tutorialspoint.com 
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1.6 Thesis short structural setup  

The thesis is structured as follows: 

➢ Chapter 2 is the review of the literature. It provides background information on 

available researches and previous works which is done in related field. In the 

section concerning search range, several methods and algorithms are presented. 

This section describes some of the different techniques developed for perform-

ing different sensors and their connectivity issues. Finally, another proposed 

approach to solve the mentioned problem partially and it’s the topic of this the-

sis itself. 

 

➢ Chapter 3 is the methodology of the thesis. It gives a general description of the 

design and planning in order to solve the research questions. It reflects the mas-

ter topic itself and describes the progress of the implementation part. 

 

➢ Chapter 4 represents the implementation process. It explains from the first to 

last step of taking action to solve the problems for answering the research ques-

tions in detail. It also handles result and evaluation of the thesis. It gives a de-

tailed description of the new method and the research methods that have been 

developed. This chapter also explains how the performance is evaluated. 

 

➢ Chapter 5 presents discussion. It describes whether the problem can be solved 

using the approach presented in all the parts. It compares the results and dis-

cusses the outcomes from the comparison. 

 

➢ Chapter 6 is conclusion which provides the summery of the work carried out in 

the thesis. This chapter briefly explains the goal of the thesis and how they 

gained outcome satisfies the corresponding goal and the future work.  
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Chapter 2  Related works 

The thesis project is carried out at the Institute from the Institute For Energy Technology 

Halden (IFE) in Norway for the urban water pipeline network of the city, joint with the 

municipality of the Halden as co-project leadership. 

Picture shown below is the control unit of Halden municipality water distribution system. 

   

 

Figure 2-1 Controlling unit of Halden municipality water distribution sys-

tem 

2.1 Research topic area 

As the keyword selection for our research is essential at this point, we go through the 

mentioned research questions once again. According to our research questions: 

 

• What are the appropriate machine learning methods in acoustic leak detection?  
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• Which attributes are playing important role in detection of the leakages in urban 

water pipeline data analysis? 

 

The first research question seeks all the approaches available when two combinations of 

“machine learning” and “acoustic water leak detection” meet each other. 

Since our project is about the detection of the water, we consider the word “water” as 

separate keyword in our searching keywords as leak detection of other liquids might have 

some other scientific reasons to deal with, especially when we are investigating in acous-

tic sound and sensor field. 

We used high citation databases and the google links listed in table for our research along 

with combination of “water” AND “leakage” AND “machine learning” AND “acoustic 

sensor” as nominated keyboards.  

We have adopted the methodology of Kitchenham & Bacca which categorize the process 

into three sub-categories as, planning, conducting the research and reporting the result 

[20] [21].     

In planning sub-category, we must select suitable journals and define the criteria of our 

study. There are three criteria as general, exclusion and specific defined in planning sec-

tion. According to our literature review methodology, selection of journals is the first step 

of the planning section of our systematic review. 

The list of the nominated high citation databases along with found papers in 1st research 

iteration, with corresponding keyboards are listed as shown in Table2-1. 

 

Nominated  

databases 

1st   research itera-

tion based on se-

lected keyworks 

2nd research iteration 

based on title and ab-

stract reading 

3rd research iteration 

after reading the ar-

ticle 

ACM 14 9 5 

IEEEXplore 21 18 14 

ScienceDirect 44 15 13 

SpringerLink 21 5 3 

Wiley Online Li-

brary 

27 2 1 
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Google scholar 354 28 15 

Total 481 77 51 

Table 2-1  Nominated databases and search results 

We must mention that, duplicated papers from google scholar search are discarded from 

the table 2-1. After selection of the journals, we must have a clear understanding of in-

clusion and exclusion criteria of studies. 

 

2.1.1 General criteria 

By having the proper criteria, we can categorize our findings for further analysis. We 

collected the papers published between 2008 and 2021. 

Studies that describe the leak detection framework with wireless sensor networks from 

the 2nd research iteration demonstrated different categories. For example: 

• Water quality monitoring with wireless sensor networks 

• Water leak detection in different environments like, soil, underwater etc. 

• Real time water leak detection with acoustic sensors as well as other sensors under 

machine learning approaches 

• Leak detection in oil & gas industry by wireless sensor networks under machine 

learning approaches 

• Leak detection using inner spherical detector (dynamic) approach in water and oil 

• Leak detection according to the leak size 

In general, we can classify gained information from different perspectives like types of 

the pipelines and the techniques used in leak detection methods. In most of the researches 

the pipeline systems are restricted to water, oil and gas, wastewater, and industrial pipe-

lines. But the techniques fall into two large groups as direct and indirect methods. 

The direct method of leak detection is when we realize directly that some pipe burst or 

explosion or even the leakage has occurred in our pipeline system. Visual inspection and 

soil sampling are the examples of direct method. Currently, some municipalities in Nor-

way are using this method for leak detection. 
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Another direct method is hardware-based approach. This method itself categorized into 

two large classes namely 1) In-pipe devices and  2) Out-pipe devices, as mentioned in 

[22]. 

With respect to the rules and regulations in most of the municipalities in Norway, by using 

In-pipe devices, we need to go through many circumstances to get the required permis-

sions from the authorities. So, the acoustic sensor method of leak detection is one of the 

“out-of-pipe device” approaches in this classification which seemed to be suitable for that 

purpose. 

On the other hand, for indirect methods, software-based approaches in different status 

like, static, dynamic and combination of both, is another promising leak detection strategy. 

In what follows in review of the literature, we are going to investigate pipeline leak de-

tection approaches in combination of two hardware & software-based methods from di-

rect and indirect classes, and we will focus more on data driven part of the software-based 

methods. 

2.1.2 Exclusion criteria 

Another section of eliminated studies from the 2nd research iteration are the studies that 

not identified as articles in selected journals along with studies with “no open access” 

label. Studies included with the target keyword but are about some other topics or the 

term only appears in the references, placed in this criterion.   

2.1.3 Specific criteria 

 

The papers which gathered in the 3rd research iteration column, are the related researches 

to the project and they are reliable to be referred as verifiable resources. They have come 

out from some specific related criteria as follow:      

• Signal processing & supervised machine learning 

• Feature selection  

• Leak detection with neural network with Mel frequency coefficient of acoustic 

sound 

• Ensemble learning approaches for acoustic scenarios 
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2.2 Review of the literature 

In our literature review, apart from conducting the research according to our keywords 

and title related projects, we tried to lead the investigation towards answering the men-

tioned research questions. 

Our first research question clearly demands all available researches in the field. Although 

machine learning approaches in analysis of the acoustic sound data’s for leak detection 

techniques is our primary research topic, but what we found, is the combination of all 

these terms and phrases which could be helpful to understand the whole project step by 

step. So, in what follows we overview in detail the specific criteria as 3rd research itera-

tion.  

2.2.1 Finding related literatures 

In this part we try to answer the mentioned research questions based on the literature 

survey. 

2.2.2 All available researches in field 

RQ1: What are the appropriate machine learning methods in acoustic leak detection? 

Reviewing all the researches in the field help us to find almost what should be studied? 

As the project scenario is based on the occurrences of the real world and it is in touch 

with our daily life, the collection of the required data could be under different conditions 

which impact the entire performance evaluation like different techniques and methods for 

water leak detection in [23]. 

As mentioned earlier, direct method of leak detection classifies into two large in-pipe and 

out-pipe device classes. 

Apart from applying machine learning algorithms, sometimes the detection of usual be-

haviour of the signals found by finger printing method [24] as some other methods are 

available as well. 

Although acoustic methods is often used for a direct leak detection in some specific situ-

ations like, background leak, when the pressure caused by the leak is very low or when 
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the soil is already waterlogged at the time of leakage, it’s not trustworthy to detect the 

leak by acoustic devices said [25]. The reason why, the acoustic technique is useful for 

more small leakages is that, the frequency of vibration goes down as leak size increases. 

Stealing the water is one of the sub-category challenges of the smart water IoT monitoring 

system. So, the real time leak detection monitoring in long range with the help of the 

internet of things can be solution for both problems at the same time. Implementation of 

the smart water system with the Lora technology with ultrasonic sensor is another ap-

proach which holds many similarities with the current project from the wireless sensor 

network perspective [26].  

In [27] author claims to develop a system for the user with easy installation and self-

calibration system, to show when, where and how much water they are using. the method 

implies that having the vibration sensor is worth and feasible to exploit the correlation 

among vibration on each pipe and reading meter to estimate the water flow rate in each 

pipe. the disadvantage of the method is that each pipe requires a separate vibration sensor 

which is a tedious task, and not feasible from financial aspect. 

the most prevalent technology used in oil and gas industry for leak detection is the wire-

less sensor network [28]. The study is the comprehensive review detailed comparison of 

the most recent systems investigated for monitoring various anomalous events in oil and 

gas industry. The important requirement for WSN deployments in the related industry is 

discussed. 

In this study [29] some other pipeline leakage detection framework for district heating 

systems DHS using multisource data is proposed, which the remotely sensed thermal in-

frared imagery, visible imagery, and GIS data are utilized. 

Leak detection techniques with microelectromechanical approach is discussed in [30]. 

From the qualitative analysis approach, which is done on the research topic, they found 3 

main categories, 1) MEMS WSNs 2) MEMS accelerometers 3) MEMS hydrophones. 

among them MEMS accelerometer is based on machine learning models. Data from pres-

sure and flow sensors were used for detecting large leaks whereas smaller leaks were 

detected using data from acoustic/vibration sensors. For large leaks, a relatively lower 

number of sensors required since large leaks generate pressure pulses which could be 

detected over a long distance. Pressure sensors identified large leakages based on 
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transient methods while acoustic sensors used to complement pressure sensors in identi-

fying small leaks. The study shows that, acoustic sensors play crucial role in wireless 

sensor network leak detection, even if we use the acoustic sensors included in some other 

techniques. 

The detection of the leakages in different pipelines is investigated from different perspec-

tives. One of the classified categories is the size of the leak. The leak localization in pipe-

lines with small leakages, takes different strategies than detection of the pipe bursts. SELS 

TENG or single electrode liquid-solid triboelectric nanogenerator [31] is another method 

for identifying and detecting the liquids leakages. High classification accuracy is 

achieved, combining the application of TENG with big data and machine learning ap-

proaches.   

Water pipeline burst detection with the help of the sudden changes in water flow/pressure 

is another method of finding the leakages which is classified as abnormal changes in 

anomaly detection strategies [32]. 

 

2.2.3 State of the art 

RQ2: Which attributes are playing important role in detection of the leakages in urban 

water pipeline data analysis? 

Using tethered robot with acoustic sensor is another approach for detecting the leakages 

in distributed water systems [13]. One of the drawbacks in mentioned system is the con-

tinuous maintenance of the sank robot in the drinking distributed system to avoid water 

pollution. Another issue which was our consideration at the beginning of the project is to 

convince the authorities to use such device inside the drinking water system, in touch with 

the water itself, which takes lot of efforts to report and deal with different organizations.   

Apart from ensemble learning, another mixed up approach which is been popular for 

acoustic sound scenarios in the field is to employ some techniques improving the main 

applied machine learning algorithm performance. The impact of local binary pattern 

(LBP), an efficient texture operator, with different machine learning approaches as well 

as neural network algorithms is tested and reported in [33].   
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Another interesting study about the detection of an event from acoustic signals shows 

efficient result from applying machine learning algorithms on corresponding dataset 

which can be extended to our project scenario. An acoustic signal recognition technique 

is tested to detect the obstructed pipes in water circulation system with the help of support 

vector machine (SVM) algorithm [34].  

The methodology shows the mixture of machine learning and a single acoustic sensor, “a 

viable option to predict pipe obstructions and the type of obstruction”, said by the author. 

 By going through most of the studies, and analyzing their performance evaluations, it 

can be stated that using combined techniques and strategies usually gives better efficiency 

in applying different class approaches. The methods developed by combination of two or 

more techniques, shows more successful performance in leak localization [22] and can be 

used as promising approaches in future development. 

PipeNet system which is made by combination of both “pipeline” and “network” is an-

other interesting method that shows promising leak detection with acoustic metrics under 

data analysis approaches [35]. 

Few false alarms to a range of pipe material applications, cost effective to produce, install 

and maintain, ability to distinguish between sensor fault and system fault, as well as hav-

ing flexibility in data-flow based programming environment, makes the PipeNet system 

a promising approach, said by the author [35]. 

An acoustic leak detection approach based on CNN with Mel frequency cepstrum coeffi-

cients is proposed in [36]. Acoustic approaches can be categorized into two classes. first 

class is only the detection of the leakages, but second class is not only leak detection but 

structural condition inspection with some techniques like tethered and acoustic emission. 

There is a feature extraction methodology for acoustic sound conversion handled by Mel 

frequency as the auditory feature covered by the convolutional neural network approaches 

to detect the leakages is another interesting source related to the second research question. 

The effectiveness of SVM algorithm over RVM is verified in the [37]. It shows that SVM 

can give much better accuracy in case of multiclass classification rather than binary clas-

sifications. It also stated that, the acoustic emission features are used to identify and lo-

calize the leakages in pipeline with applying suitable instruments. 
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Analysis of applying K-means clustering algorithm for the vibration data collected from 

the PVC pipe surface due to the water flow in order to classify the abnormal detection of 

the flow inside the pipe can lead into finding sudden detection of the leakages [38].  

Another use of acoustic emission for detection of the leakages in different pipe material 

is discussed in [39]. The investigation is done on the water-filled plastic pipes using tuned 

wavelet for clustering and localization of acoustic emission signals as well as detection 

of the leakages.  

Acoustic emission can be coupled with accelerometers to detect incidental events such as 

break or crack growing. This strategy shows the changes from small leak pipe to a big 

pipe crack event which is when the acoustic signals exceeds the predefined baseline [40]. 

The collected data is analyzed with different algorithms like SVM, decision tree and Na-

ïve bayes with very high-level accuracy in distinguishing the leak states from non-leak 

states. 

Testing different machine learning algorithms like SVM, KNN and neural network in 

classification of the acoustic sounds on a customized dataset from the ambient events, 

implies the better performance of the customized LSTM-CNN algorithm in compare with 

other classification algorithms in different sound environments [33]. 

Another research proposes a novel method in high pressure steam leak diagnosis [4]. The 

method is to find out the distinguishable features from the acoustic signals which are 

captured by remotely microphone sensors and evaluated by the RF, XGB and KNN algo-

rithms. The outperformed results of the decision tree algorithms on this pressure case is 

important for our study. 

One of the common methods to find out sudden water leakage in smart water systems is 

the use of regression machine learning approaches on the water consumptions [41]. The 

model can be made by hourly intervals provided information on cumulative water con-

sumption. 

2.2.4 Summary of the literature review 

The table shown below, briefly represents the literature review summary: 
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Nominated databases Leak detection with ML 

approach 

Leak detection with ML & 

acoustic approach 

ACM 5 3 

IEEEXplore 14 2 

ScienceDirect 13 9 

SpringerLink 3 1 

Wiley Online Library 1 0 

Google scholar 15 0 

Total 51 16 

Table 2-2 Literature review summary 

The detail of the related found papers is briefly described and classified with research 

questions. 
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Chapter 3  Methodology  

3.1 Design model 

In this chapter will explain in detail how we designed our project in order to answer the 

research questions. After the review of the literatures in previous chapter, we came up 

with that conclusion that, some more experiments and investigations are required in soft-

ware-based data-driven part of the leak detection techniques. 

The method used in this study is based on the process model structured from design sci-

ence research methodology in information science offered in [42] which is originated 

from behavioral and design science in [43]. Behavioral science tries to find out “what is 

true?” while, design science paradigm searches for “what is effective?” so both are insep-

arable requirement factors of a suitable research methodology.  

 The important part of the design science is that the research should produce an “artifact”, 

which addresses the problem correctly and its utility, quality and efficacy must be evalu-

ated rigorously. 

3.2 Exploring of the methodology 

Exploring the design model of our study according to the design science methodology we 

have taken lead us thorough 6 important activities in nominal sequence as follows: 

• Problem identification and motivation 

• Define the objectives for a solution  

• Design and development 

• Demonstration  

• Evaluation  

• Communication  
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In problem identification and motivation section, we define the research problem and we 

try to justify the solution, as problem definition is the reason to develop an artifact which 

is the solution to our problem.  

This section interpreted in several ways by different researchers like important and rele-

vant problems, analysis [44], identify a need and important and relevant problems by 

some other researchers [42] . This identification is tried to be explained in previous chap-

ters as the only resource required for this section is the knowledge about the problem 

along with the importance of the solution. 

In defining the objectives for a solution section, we must drive what is possible and fea-

sible from the problem definition, as the objective of the solution. The resources required 

for this section is again the knowledge of the state of the art about the problem and the 

current available solutions.   

Moving from objectives to design and development is the 3rd iteration process of the gen-

eral procedure. After this section in project, the artifact is created and can solve one or 

more instances of the problem. The testing is the operation of the demonstration activity, 

which involves the use of artifact in experimentation, simulation, case study and other 

appropriate activities. 

Figure 3-1 illustrated the general design science research method which can used for IT 

projects 
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Figure 3-1 Design science research method process model in information 

science 

Evaluation, measures how well the artifact can support the claimed solution to the prob-

lem. This activity consists of different comparison among the required satisfactory level 

of the solution to the problem and actual performance of the artifact in demonstration part. 

The final activity of the mentioned process model is the communication activity which 

testifies the utility of the artifact. In this section after utilization of the model, it reveals 

whether the model or artifact is designed rigorously.  

Problem identification & motivation 

Objectives for a solution 

Design & development 

Demonstration 

Evaluation 

Communication 

Theory 

How to knowledge 

Metrics, Analysis 

knowledge 

Disciplinary knowledge 

Inference 
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3.3 Planning and design 

Although this study consists of two different approaches, but the focus of this research is 

towards deploying data science techniques for the analysis of the received data, as well 

as available data in leak detection applications. 

The study is involved with different steps which carries different concepts in each stage 

like, sensor installation, acoustic sound investigation, sensor evaluation, wireless sensor 

network, data storage, and analysis of the stored data at the end of scenario. So, the project 

is divided into three main sections as follows: 

1) Sensor installation and configuration 

2) Data transfer from the sensor to a local gate and transferred to the storage 

3) Analysis of the stored data  

As we mentioned earlier, our intention in this study is the 3rd part of this classification, 

and what we discuss further from other parts of this classification is the required infor-

mation to support the hypothesis and the mentioned research questions. 

Figure shown below illustrates the schematic representation of the project scenario from 

the general perspective: 
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Figure 3-2 General perspective of the project included two different ap-

proaches communicating together 

3.4 Hardware architecture 

After problem identification, our first primary idea in defining the objective for the solu-

tion of the problem is represented as shown in the figure 3-3. 

                                             

 

 

                                                                                                                                                                     
                                                                                               

                        

 

 

 

 

      

 

                                                                                                                   

 

  

Related Framework 

Software architecture Hardware architecture 

ML approaches 

Sensor 

Prototype 

Gateway 

send/ 

Recieve 

data 



  Methodology 

   41 

 

Figure 3-3 Primary idea13 of the project in defining the objective stage of 

the project 

 

3.4.1 Sensor device 

The nominated acoustic sensor in our project is consists of a contact microphone CM-

01B14 along with 3D digital accelerometer with high performance mode ability and ena-

bling always-on low-power feature for an optimal motion experience. 

The contact microphone built with sensitive and robust piezoelectric material combined 

with low noise electronic preamplifier to provide a sound or vibration pick up with buff-

ered output. The microphone can minimize the external acoustic noise, while being highly 

sensitive to vibrations. 

The microphone is located inside of the holder with metal spring behind it to induce mi-

crophone sensitivity as shown in the figure 3-3. The spring force is increased by screwing 

the plunger. The microphone and accelerometer installed on the top position of chosen 

water pipe located inside of the manhole. Then the response of the sensors verified as 

shown in the figure 3-3. 

 

 

 

 
13 From internal meetings IFE 
14 www.metrolog.net/cm01b.php?lang=en 
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Figure 3-4 Installation of microphone & accelerometer from top position of 

the water pipe located inside of the manhole ~ 2 meters underground level 

- Response diagram of the sensors after installation (bottom left corner) 

 The location of the manhole is fixed after verification and confirmation among all the 

parties. 

3.4.2 Send and receive gateway 

Another important hardware architecture in our project is the transmission of the captured 

data to the storage, like wireless sensor network performance. 
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This part of the project is handled by LoraWan technology15. The concept of this technol-

ogy is on star-of-stars topology which gateways trust the communication messages be-

tween the end devices and central network server. 

A raspberry Pi connected to the sensors along with the antenna to transmit all the captured 

data of the sensors into the closest gateway station which is fixed on network-based in-

frastructure. The radio transmission handles the wireless section of the data transmission.  

Clearly there is a need for the energy consumption inside the manhole for the sensors and 

the raspberry Pi. In our study, we used a lithium battery to cover all the required current. 

The battery is fixed in order to complete and test our prototype as shown below: 

 

 

 

  

Figure 3-5 raspberry Pi of the LoraWan infrastructure and the energy con-

sumption strategy 

 

 

 

 

 
15  www.lora-alliance.org/about-lorawan/ 
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3.5 Software engineering architecture 

After setting up the instruments in the field, we must find out the base software architec-

ture of the study. In what follows, we focus on ML for software architecture, which targets 

on developing ML techniques for better application programs. 

Although there is no difference between software components and machine learning com-

ponents at the architectural level but, they will be considered as another components such 

as model generator or model consumer as well as being event generator and event con-

sumer [45]. 

In here we will follow a normal data-driven process to realize the solution to the problem. 

The promised solution of the system uses IoT along with standard data pipeline architec-

ture for data ingestion, data monitoring, statistical optimization, and data analytics to ful-

fill the demand for leak detection techniques. 

3.6 Machine learning approaches 

The machine learning approach in this study, must be included with real time prediction 

workflow, as well as historically prediction workflow. The real time prediction workflow 

is to make online predictions from the streaming dataset which is keeping updated by a 

time variable. Our project intrinsically demands the need of real time prediction in detec-

tion of the leakages at the time, but we skip that in this study, since we must have rest 

API calls enabled. The project is not reached the final level in storing the received dataset 

in real time way. 

Figure 3-6 is the representation of the historical prediction workflow: 
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Figure 3-6 Historical prediction workflow 

3.6.1 Data collection and consolidation 

Data collection is the first step of every machine learning application. In this section, the 

required data is collected in different methods and will be changed into the suitable format 

for the learning application of the project. 

When we receive datasets to work with, at the starting point of the project, usually we 

must deal with unstructured type of data. Unstructured datasets take lots of efforts to be 

prepared and suitable to the context of the project and in most of the cases the most chal-

lenging part of the machine learning process, is the data preparation part. 

The more clean and structured data we prepare when the training section of the project 

begins, the more accurate model we will have after building the model and finally it leads 

us for better prediction. 

Structured data is made by numbers, dates, string and usually takes less memory, but 

unstructured data types could be media files, text files and emails with larger capacity. 

More than 80% of the enterprise data will be unstructured [46].   

 In this study, we deal with 3 different datasets. In what follows we will discuss about the 

category and type of them in detail.  

3.6.2 Data preparation 

 

The datasets that investigated in this study are as follow: 

1) Received dataset from the installed sensors on water pipeline in Halden city 
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2) Tosshullet water data flow from Halden municipality guard system 

3) Yorkshire16 water daily acoustic logger data  

4)  MIMII17 dataset baseline 

  

➢ First dataset is the transmitted data by LoraWAN technology from the sensors 

which already installed on the water pipe inside the manhole. 

The recorded file in the CSV format with two attributes as sensitivity and fre-

quency from the microphone. There is no time set for the data, but we can estimate 

the dates, from the starting capturing point. 

  

➢ Second dataset is the flow data of the water from the guard system of the Halden 

city belong to one of the water pipes in Tosshullet area. 

This dataset is also in the CSV format, consist of three attributes as date, time, and 

the flow of the water on that specific date. 

 

➢ Third dataset is the Yorkshire acoustic logger data, belong to the water system of 

the Yorkshire county in northern England. The data consist of two files logically 

connected to each other. The first file is the acoustic logger data, consist of logger 

IDs, the acoustic average level, and spread of the noise measured over a few hours. 

The next included available file is the leak alarm file which consists of the logger 

IDs, leak alarm and leak found attributes noticed by the inspection visited date 

after receiving the alarm leak.   

 

➢ Last dataset is the sound dataset for malfunctioning industrial machine investiga-

tion and inspection, known as MIMII dataset. “It contains the sounds generated 

from four types of industrial machines, i.e. valves, pumps, fans, and slide rails. 

Each type of machine includes multiple individual product models, and the data 

 

 

 

 
16  https://datamillnorth.org/dataset/yorkshire-water-daily-acoustic-logger-data 
17  https://github.com/MIMII-hitachi/mimii_baseline/ 
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for each model contains normal and anomalous sounds. To resemble a real-life 

scenario, various anomalous sounds were recorded. Also, the background noise 

recorded in multiple real factories was mixed with the machine sounds.” 

 

Data preparation must be done for each of these datasets in order to rearrange the entire 

rows and columns. Usually the given data must be rearranged with respect to the date and 

time of the event to be more understandable for further development. 

The null values plus incomplete data columns must be handled for each dataset. Usually 

there are some methods to deal with those values in each dataset, but if the amount of that 

is not large, its recommended to be discarded. In this project we have removed the null 

values along with the uncompleted data points after data preparation of CSV files.  

To work with the dataset and access the data in the script the CSV file is loaded into the 

Pandas data frame library in Python 3,7. This library tool handles most of the preparation 

process at the beginning of each project.  

3.6.3 First dataset-First transmitted data from installed sensors 

Two different files transmitted from the sensors by LoraWAN technology, are belong to 

the installed accelerometer and microphone. The microphone is consisting of piezo film 

inside to capture the event movement and convert into the volt to show the recorded vi-

bration in volt per mm as described in the manual. Therefore, we must have the proper 

timestamp to link the accelerometer files side by side to realize the direction of the vibra-

tion in case of any event. 

The timestamp is not available in the recording configuration of the sensor, but we can 

estimate the experiment time from the sensor installation date.  

After receiving the data from two sensors, we have three coordination direction in accel-

erometer file and sensitivity along with frequency in received file from microphone. We 

converted the frequency of that noise from time domain into the frequency domain by 

Fourier transform equation. We realized that there is no important event in that period. 

On the other hand, there is no leakage occurrence reported in that period, said by the 

guard set of Halden municipality monitoring system. 
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3.6.4 Second dataset- Tosshullet water flow dataset 

During the project period, the water monitoring guard system of the Halden municipality 

reported a leak detection in Tosshullet, Halden. 

When we requested the data from the municipality guard system, we received the water 

flow data from 17th December of 2019 into 3rd October of the year 2020 periodically for 

the targeted location. The data consists of date, time, and the water flow in every second 

throughout the day. 

After pre-processing unit, we assumed two different conditions for the captured dataset. 

First, we assumed that the data is unlabelled, and we tested the unsupervised K-means 

clustering algorithm to find out any anomaly behaviour and in second assumption, we 

made the dataset labelled with respect to the municipality manual leak report. The labelled 

leak found column is added and we performed a set of supervised learning algorithms to 

find out classification accuracy. There are two scenarios defined inside the supervised 

learnings to test the result with/without date included in the dataset. Two classification 

algorithms (XGB and Random forest) tested and the result is reported with grid search 

hyperparameter tuning. 

3.6.5 Third dataset – Yorkshire acoustic logger data 

This dataset is chosen and tested as one of the case studies in this thesis. The positive 

point about this project is the scenario which is acoustically analysis of the leak detection 

with help of the loggers. It almost holds most of the aspects of our project. 

 As explained earlier, Yorkshire water system is deployed a set of acoustic loggers for 

leakage detection. The loggers are fixed and constantly listening to the water flow net-

work. They will gather more data in case of hearing a leak noise from the system. If the 

leak alarm raises, there will be a site visit to check the area. Some points near the alarmed 

point is also visited to see if a leak can be identified. 

We can have two different assumptions on this dataset, since only few instances of the 

combined dataset are holding “yes” label for leak alarm and leak found columns and for 

the large number of rows there is no clear label addressing. 
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• On our first assumption is, finding the leak instances of the data and set them as 

leak label then we can label the rest of the dataset for “no leak” as there is no 

reported leak. Considering whole of the dataset as labelled dataset and proceed 

with supervised learning. 

• The second assumption is, finding the leak instances of the data and set them as 

leak label and leaving the rest of the dataset as it is and consider it as semi dataset 

for semi supervised machine learning. 

Except two attributes for leakage data in the dataset, we are dealing with four main attrib-

utes like ID, Date, Average level and spread level of the noises. We will also verify the 

algorithm performance with considering only two features of the average level and spread 

level of the noise from the feature importance perspective. 

3.6.5.1 Using Label propagation concept and self-training approach 

Using labelled part of the dataset for training part to make the classification model and 

then predicting the unlabelled part of the dataset with respect to the created model is called 

self-training semi supervised strategy. In our second assumption, we used self-training 

approach. the technique [47] [48] works as follow: 

• Step 1: starting with the labelled part of the dataset and split into the training and 

testing sets. We used 70% for train and 30% for the test 

• Step 2: trained classifier is used to predict labels for all the unlabelled data in-

stances. In this part, the probability of the label being correct is verified and the 

highest ones classify as ‘pseudo-labels’ 

• Step 3: concatenation of the ‘pseudo-labels’ with the first labelled training data 

and retraining the model with new training dataset 

• Step 4: predicting the left unlabelled instances and evaluation of the algorithm 

performance. The steps can be repeated until no more unlabelled instances left.

  

3.6.6 Fourth dataset – MIMII 

From this dataset, we can find out the importance features of the acoustic data in some 

other environments. The dataset belongs to the malfunctioning industrial machine 
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investigation and inspection. The main intention of using such dataset is what are the 

main features of the industrial acoustic noises and how it helps us in our project. 

So, the first step to analyze the audio is the file conversion. After the files are transferred 

into the CSV file, data preparation is started. 

We built some other features like, mean, median and standard deviation apart from min-

imum and maximum features to help our training model to achieve a better result. 

comparing autoencoder and LSTM neural network with some other algorithms on this 

dataset with respect to our intention and data preprocessing is another experiment of this 

part. 

We conducted hyperparameter tuning optimization to see the changes in our algorithm’s 

performances in different combinations of the Min, Max, Mean, Median and standard 

deviation attributes. 

3.6.7 Feature engineering 

3.6.7.1 Fast Fourier transform equation and audio to CSV file conversion 

Using Fast Fourier Transform is the common method to convert sound from time domain 

to frequency domain. “Fourier analysis converts the signal from its original domain to a 

representation in the frequency domain and vice versa”. The Fourier transform formula 

[49] of the function f(x) is the function F(w) where: 

F(𝑤) = ∫ 𝑓(𝑥)𝑒−𝑖𝑤𝑥𝑑𝑥
∞

−∞

 

And the inverse Fourier transform is  

f(𝑥) =
1

2𝜋
∫ 𝐹(𝑤)𝑒−𝑖𝑤𝑥𝑑𝑤

∞

−∞

 

With the corresponding algorithms, we can see the data points of the sound files and vice 

versa.  
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3.6.8 Data pre-processing 

3.6.8.1 Feature selection 

It’s a very important concept of machine learning that can change the entire performance 

of the algorithm in each machine learning approach. To do so, we must have a clear un-

derstanding of the problem and the dataset we are dealing with. 

This core concept in machine learning, identifies the important related attributes of cor-

responding dataset and removes the irrelevant and less important features from the da-

taset. We can make some supportive attributes and add to them to the working dataset to 

impact the prediction.  

3.6.9 Train – Test data split 

Splitting the data into train and test set is the next job after the pre-processing section.  

The nature of the problem of our project and its target values, implies that the classifica-

tion machine learning approach must be chosen. So, the data splitting is much easier when 

need to apply the classification approach. Usually we don’t need to worry about the 

timestamp, and we have already shuffled our dataset before loading for training session.  

In this study, splitting operation is handled by using the Scikit-learn library packages.  

 

3.6.10  Model training and evaluation 

Our dataset is ready for training now. We have the desired dataset prepared for the train-

ing to create the best predictive model. In this project, we have set our pre-processing in 

such an integrated way that we received a pickle file for each algorithm separately, as it 

is required sometimes to have different set of datasets rearranged for our new algorithm. 

For instance, sometimes the type of the data we load for the neural network is different 

than others. Apart from that, we need to apply different approaches on our dataset, so we 

need to be prepared and plan for such sudden changes from the beginning of our devel-

opment process. 

there are many techniques available, for the evaluation of our model. Confusion matrix is 

the first evaluation method applied in our project as we need to know the ration between 
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the true positive and false negative. Some evaluation metrices which give us the better 

insight of the model performance throughout the project are described below. 

3.6.10.1 Evaluation metrices  

• Classification accuracy is what we usually looking for in evaluation of the classi-

fication algorithms. The formula18 shown below describes the term accuracy: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
=

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙𝑆𝑎𝑚𝑝𝑙𝑒
 

This definition is the also the confusion matrix accuracy, where we try to identify the 

number of the correct and incorrect predictions in positive and negative predictions. 

• Area under the curve is one of the usual metrices for the evaluation section. “AUC 

is the area under the curve of plot false positive rate vs true positive rate at differ-

ent points in [0,1]”. 

• Testing the accuracy is measured with F1Score. It says, how well the model clas-

sifies the instances correctly. The corresponding formula is shown below: 

𝐹1 =  2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

• The precision is the number of correct positive results divide by all positive results 

as shown below: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  2 ∗
𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

 

All the metrics are tested, and we took Area Under Curve (AUC) and Receiver Operating 

Characteristics for all the supervised machine learning algorithms.  

 

 

 

 
18 https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234 
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3.6.11  Feature importance 

Feature importance is the set of techniques to examine the attributes and scoring them to 

a predictive model that shows the importance level of each, while making the prediction. 

Applying feature importance is essential in our case studies and the result of different 

experiments in importance of the features is one of our main intentions of the case studies 

to help our project.  

3.6.12  Optimization techniques 

After the model created, it needs to be modified in its best possible outcome combination 

as there are many values are available for the algorithm parameters, which can be tested. 

So, the tuning process is started.    

3.6.12.1 Grid search for model tuning  

The process of model tuning goes through the hyperparameter tuning optimization pro-

cess. It’s the technique, that makes sure that, all the possible combinations with different 

parameter values defined for the algorithm are tested with the available model and the 

best possible output is already chosen.   

A parameter is an internal characteristic of the model and the value of that depends on the 

data being applied. Grid search tests all possible combinations of different appropriate 

parameters and report the best results along with the best parameters. 

For all the applied algorithms in our study we have examined the hyperparameter tuning 

optimization process and desired outputs are noted. 

3.6.13  Imbalanced dataset in machine learning 

3.6.13.1 Tactic to handle imbalanced datasets 

We know that, one of the main challenges of our datasets in this study is the imbalanced 

data. We don’t have the complete labelled or unlabelled datasets and most of them are 

semi labelled. 
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One of the important techniques to handle the imbalanced data is the sampling strategies 

and stratified sampling is one of the effective sampling among them. “It ensures each 

subgroup within the population receives proper representation within the sample”. 

We see the effect of stratified sampling in our case studies. 

3.7 Thesis’s tools and equipment 

The thesis algorithms are, XGB, RF, KNN, AdaBoost, Bagging and some preprocessing 

concepts like feature extraction uses python 3,7. The mentioned algorithms along with 

the convolutional neural network CNN, use the following third-party framework and li-

braries: 

• Keras modules19 – A high level deep learning tool for TensorFlow backend 

• Scikit-learn – A very useful machine learning data analysis tool [50] 

• Numpy – Fundamental package for scientific computing in python [51] 

• Matplotlib20 – A library for creating static, animated, and interactive visualiza-

tions in Python  

• Yaml21 – A parser and emitter for Python 

 

The following third-party frameworks used for audio feature extraction: 

• Librosa22 – A python package for sound analysis 

• Audioread23 – “Decode audio files using whichever backend is available” 

• SciPy24 – An open source library for mathematics, science, and engineering  

  

 

 

 

 
19  https://faroit.com/keras-docs/1.2.0/ 
20  https://matplotlib.org/ 
21  https://pyyaml.org/wiki/PyYAMLDocumentation 
22  https://librosa.org/doc/latest/index.html 
23  https://pypi.org/project/audioread/ 
24  https://www.scipy.org/docs.html 
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Chapter 4  Tests, Results & Evaluation 

 

In this chapter we show the details description of the methodology section of our study. 

The description of experimentational setup in different approaches like, purpose, expla-

nation, and motivation of the test. Corresponding tests results are represented, and the 

evaluation of the gained results are shown at the end of this chapter. 

We explained in previous chapter, that with respect to our datasets, somehow related to 

each other in different manners, we started with the pre-processing section and we will 

discuss the applied approaches on these datasets in detail in discussion chapter. 

In what follows, to avoid confusion, each dataset is pre-processed, tested, and evaluated 

separately and the results are discussed at the end of the chapter. 

4.1 First dataset  

4.1.1 Data preparation and pre-processing results 

The transmitted data by LoraWAN technology from the microphone and accelerometer, 

is included with two attributes as, frequency and sensitivity.  

Corresponding file with the same period is transmitted from the accelerometer with 3 

directions as X, Y and Z. The sensors are installed on 20th of December at 13:30 and they 

started to capture from the same time. It must be mentioned that both files don’t have the 

timestamp. The captured frequency from the microphone, should be converted from time 

domain into the frequency spectrogram for further development. 

4.1.1.1 Frequency spectrogram 

The spectrogram is another visual method of representing the signal strength over the 

time. By converting the frequency column to the spectrogram, not only we can see 
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whether there is energy at the event from 0 vs (n) HZ but also, we can see how energy 

levels vary over time25. 

The representation of the frequencies of first and second received microphone file is 

shown in figure 4-1 right column. The corresponding X, Y and Z points from accelerom-

eter is illustrated in the left side of the figure.  

 

 

 

ACC: [3375900 rows x 4 columns] 

 

 

ACC: [910470 rows x 4 columns] 

Figure 4-1 converted frequency spectrogram of first couple of received 

files 

 

The whole capturing period is less than a month due to the limited capacity of the battery 

installed inside the manhole. Following figure shows the whole period of capturing 

 

 

 

 
25   https://pnsn.org/spectrograms/what-is-a-spectrogram#:~:text=A%20spectrogram%20is%20a%20vis-

ual,energy%20levels%20vary%20over%20time. 
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vibration and sound for the installed accelerometer and microphone along with the fre-

quency spectrogram. 

 

 

Figure 4-2 Entire of file representation of accelerometer & microphone in 

that period with frequency spectrogram 

   

The more is the time domain period representation of the plot; the less file variation could 

be illustrated in the picture as the entire file must be shown in a small picture. So, in figure 
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4-1 we tried to show some detail example of the file in small scale period for both accel-

erometer and microphone, but in the figure 4-2 we can see the entire file represented over 

the time. We must mention that there is no leakage in that mentioned period, reported by 

the municipality.  

For better analysis and better vote for any types of detections, we need to collect some 

more attributes, specially from the machine learning perspectives. In water flow distribu-

tions, the flow of the water is one of the important attributes and in many researches, flow 

of the water counted as one of the important features included in the studies. 

4.2 Second dataset – Tosshullet water flow  

The schematic representation of the received data from the guard system for occurred 

leakage in specific area is shown in figure 4-3. 

 

Figure 4-3 Representation of the data flow in guard system 

The following table shows the details of the sudden flow changes illustrated in above 

picture. 
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Date & time ms flow m3

10/1/2020 11:55 265 5.2710248

10/1/2020 11:56 265 4.3837456

10/1/2020 11:57 265 3.9280918

10/1/2020 11:58 265 11.7644862

10/1/2020 11:59 265 34.7010598

S
u

d
d

en
 ch

an
g

es

 

Table 4-1 shows the exact date with sudden flow changes in the dataset 

 

4.2.1 Data preparation 

From the machine learning perspective, before the mentioned sudden changes to be con-

firmed as the leakage, and receive the labels, we only knew that, an abnormal occurrence 

was happening in our distribution system. The above table is pre-processed as follows 

and we can see the algorithm results voted for anomaly detection even though the answer 

was clear to be abnormal detection in this case-study from the sudden changes in that 

successive ordinal numbers.  

In this dataset the water flow is recorded in every second, hence we have enough number 

of rows to rearrange the dataset with respect to minute or hours. Restructuring the table 

with respect to hours makes more sense in detection of the leakages according to the 

available water flow data. We calculated the hourly flow of the water by taking the hourly 

average flow of the rows, hence the number of the rows are not sufficient for more accu-

mulations like daily water flow. 

For better prediction the above table is rearranged as follows with some important feature 

selections like calculating the min, max, mean, median and standard deviation of the cor-

responding row. For this dataset, we considered water flows with two different conditions 

in every one and three hours. The final shape of the data frame is shown below in table 

4-2. 
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Year Month Hour Flow min max mean median std 

2019 12 0 147.2625 1.8625 3.2875 2.454375 2.41875 0.337973 

2019 12 1 122.025 1.6 2.5125 2.03375 2.025 0.1852664 

2019 12 2 29.925 1.575 2.1125 1.8703125 1.875 0.1504767 

2019 12 3 65.2 1.55 2.125 1.8111111 1.78125 0.1487081 

. . . . . . . . . 

. . . . . . . . . 

Table 4-2 few rows of data preparation and feature selection of the dataset 

 

We can have two different assumptions dealing with this dataset. If we consider the men-

tioned dataset as unlabelled set of data, then we must choose anomaly detection approach 

for the further processing. 

4.2.2 k-means clustering in anomaly detection approach 

If we consider the unlabelled form of the data, by applying k means clustering algorithm 

in order to recognize the abnormal behaviour of the mentioned dataset, we will get the 
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following classification of the Tosshullet data in that 3 days captured data from 

29/09/2020 to 03/10/2020 : 

 

Figure 4-4 K-means clustering result for anomaly detection 

 

According to the above picture different classes of water flow are recognized as different 

categories of water consumption hours in people’s daily life. The classes are represented 

with different colours in the above picture and clearly the single class separated from the 

line with abnormal behaviour, is the occurred leakage of the dataset by applying K-means 

clustering algorithm.   

Another assumption is when the mentioned dataset is labelled, as we have the confirmed 

leak hours from municipality. The leak column is created and added to the dataset with 

all the sudden flow changes labelled as leakage according to the guard system report while 

the rest of the rows are left as no leakage. 

With this line, we also considered the dataset with respect to every 3 hours water flow for 

more result comparison. Testing the dataset with/without date column is another test con-

dition to be verified. 

In this scenario we considered 8 following possibilities to analyse our dataset with two 

RF and XGB supervised algorithms for better comparison. Standard scaler is applied to 

regulate the dataset and cross validation technique is done in order to test all possible 
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combinations. The following table describes the mentioned combinations and corre-

sponding results: 

 

Every 1-

hour flow 

Every 3-

hours flow 

No date Date with OHE RF XGB %Accuracy 

*  *  *  99,43 

*  *   * 100 

*   * *  99,28 

*   *  * 99,96 

 * *  *  99,90 

 * *   * 99,90 

 *  * *  99,90 

 *  *  * 99,90 

Table 4-3 Model comparison of different method combinations tested with 

two supervised learning algorithms 

 

The reason why the results turn out to be too good, is the imbalanced data problem. We 

have a few numbers of leak labelled occurrences in our dataset against large number of 

“no leak” labelled rows, and this makes the dataset imbalanced.  

4.2.3 hyperparameter tuning optimization algorithms  

Even though the results of our experiments are extremely high due to our dataset, but for 

sake of documentation, the performed result of our hyperparameter tunings with 3-fold 

cross validation are as follows: 

 
Every 1-

hour flow 

Every 3-

hours flow 

No date Date with OHE RF %Accuracy after hy-

perparameter tuning 

*  *  * 99,96 

*   * * 100 

 * *  * 99,90 

 *  * * 99,90 
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Table 4-4 Hyperparameter tuning optimization results for RF  

    

There are changes in every 1-hour flow with random forest algorithms, which is not con-

siderable hence the primary operation of the algorithm is clear. 

Two previous datasets tried to give emphasis to the acoustic sound attributes and flow of 

the water tubes. As mentioned earlier the more attributes and important features included 

in the machine learning approaches, the more is the algorithm accuracy and finally better 

precision. In the following section, we apply different machine learning algorithms on 

similar case studies to get a better insight view about our project. Different parts of deal-

ing with the datasets in these case studies gives us a better clue about the water leakage 

detection and the important fact of acoustic sounds.  

4.3 Case study I 

4.3.1 Third dataset – Yorkshire acoustic logger data 

4.3.1.1 Data preparation 

After combining all gathered data and preparing a single rearranged file for further pro-

cessing after removing null values, we have a data table with following attributes: 

 

ID Date value_Lvl value_Spr Leak Alarm Leak Found 
0 134 25-04 45 6 Y 
1 397 16-04 21 5 Y 
2 1076 16-04 18 3 Y 
3 20 3-Sep 26 8 Y 

Table 4-5 few instances of data preparation data frame 

Since two last columns of the dataset is categorical values, we have applied integer en-

coding to make them understandable for the machine. Both one hot encoding and integer 

encoding is applicable for the date column to change it to numerical values.  
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Remember the K-means clustering for the previous dataset. We applied the k-means clus-

tering algorithm on this dataset, to see the dispersion of the available data for “leak” or 

“no leak” categories. We received the result in figure after applying Gauss Rank scaler, 

hence applying normalization seemed to be ineffective (Table 4-6) for this dataset.  

 

Roc Score Comparison table for normalization effect on dataset 

Algorithm name Before Normalization After Normalization 

Random Forest 0.6750349545590731 0.6914936102236422 

XGBoost 0.9883734200690462 0.8576974932587635 

KNN 0.5899464172191445 0.6091800949971147 

Adaboost Classifier 0.8920137848366796 0.8022279948046758 

Bagging Classifier 0.5 0.5 

Table 4-6 Normalization effect comparison with four features 

By applying scaler with k-means clustering algorithm for the Yorkshire dataset, the dis-

persion of the available points with respect to the average level and spread level are as 

follows: 
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Table 4-7 Gauss Rank scaler with K-means clustering with respect to the 

average level and spread level of the noise 

 

By applying correlation matrix, it’s possible to find out the correlation of the attributes 

with each other. After elimination of target value and its highly correlated leak alarm 

attribute, the correlation matrix with 4 main attributes is shown below:  

 

 

Figure 4-5 Correlation matrix for Yorkshire dataset attributes 
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In this dataset, after considering the leak found dataset as target value, we get four attrib-

utes of ID, Date; Value_Lvl and Value_Spr. we have considered two feature and four 

feature datasets by applying XGB, RF, KNN, Adaboost and Bagging algorithms.   

4.3.1.2 Algorithm comparison 

Before performing the algorithms, it’s essential here to check the importance of the fea-

tures again, so by applying the feature importance XGB decision tree algorithm, the im-

portance of the features is shown below: 

 

Figure 4-6 Feature importance XGB algorithm 

 

In our first assumption, the result comparison table for the first assumption with corre-

sponding Roc curves with/without considering date and ID column is shown below. The 

four features are date, ID, average level and spread level of noises. 
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Table Comparison in XGB 
TWO FEATURES FOUR FEATURES 

Accuracy : 99.89% 

roc_auc_score :  0.9964 

Accuracy: 99.91% 

roc_auc_score:  0.9658 

  
 

Table 4-8 Result comparison of XGB algorithm 

 

Table Comparison in Random forest 
TWO FEATURES FOUR FEATURES 

Accuracy : 99.94% 

roc_auc_score :  0.7934 

Accuracy : 99.88% 

roc_auc_score :  0.6373 

 

 

Table 4-9 Result comparison of RF algorithm 

 

Table Comparison in KNN 
TWO FEATURES FOUR FEATURES 

Accuracy : 99.94% 

roc_auc_score :  0.5986 

Accuracy : 99.96% 

roc_auc_score :  0.7480 
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Table 4-10 Result comparison of KNN algorithm 

 

Table Comparison in AdaBoost 
TWO FEATURES FOUR FEATURES 

Accuracy : 99.93% 

roc_auc_score :  0.9953 

Accuracy : 99.89% 

roc_auc_score :  0.8766 

  

Table 4-11 Result comparison of Adaboost algorithm 

 

Table Comparison in Bagging Classifier 
TWO FEATURES FOUR FEATURES 

Accuracy : 99.93% 

roc_auc_score :  0.4981 

Accuracy : 99.93% 

roc_auc_score :  0.4960 
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Table 4-12 Result comparison of Bagging algorithm 

 

In this part, except KNN, almost all the algorithms performed better with 2 features da-

taset.  

In our second assumption, if we consider the undefined leak found column as unlabelled 

then we deal with semi supervised learning and we have the following table: 

 
Algorithm No of iterations Test F1 

XGB 8 0,6842 

RF 19 0,6315 

KNN 8 0,7368 

Adaboost 7 0,6315 

Bagging 3 0,7105 

Table 4-13 testing semi supervised learning with self-training approach on 

four features dataset 

For the above results in above table, we tested the self-training approach in semi super-

vised learning. In order to utilize the mixed unlabeled and labeled data for classification, 

first we trained a classifier on small amount of labeled data, and then the classifier itself 

is used to make predictions on the unlabeled data.   

The important part of this method is the evaluation of the algorithm since we don’t have 

a unique labelled data part to refer to it. We have evaluated our algorithm performances 

with respect to the first labelled training dataset. The table above shows that the KNN 

algorithm performs better in compare with other algorithms after 8 iteration process.  
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4.3.1.3 LSTM - Autoencoder Neural networks 

LSTM stands for Long Short-Term Memory model and is an artificial recurrent neural 

network which deals with sequential data. In this method the output of previous step is 

fed as input to the current step. Since we plan to test the large-scale dataset, not the house-

hold consumptions in small scales, we tried to utilize a technique which is the combina-

tion of LSTM and Autoencoder. 

Basically, autoencoders are an unsupervised technique of learning and it doesn’t need 

labeled data for training section. They generate their own label from the training data, 

hence called self-supervised learning. Encoder-decoder LSTM approach is for the se-

quence datasets and used for noise detection as well. The output performance of this al-

gorithm along with standard scaler effect with 500 epochs and appropriate threshold on 

Yorkshire dataset is shown below: 

 

LSTM-Autoencoder 

algorithm 

Area under the 

curve 

Related diagram 

Before Normalization 

With four attributes 

AUC: 0,900 

 

After Normalization 

With four attributes 

AUC: 0,920 
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Figure 4-7 LSTM-Autoencoder result with normalization effect 

4.4 Case study II 

4.4.1 Fourth dataset – MIMII 

Malfunctioning industrial machine investigation and inspection dataset is exactly dealing 

with acoustic noise detection. we have chosen this dataset to test different algorithms to 

find out important features which are helpful in our project from the acoustic noise de-

tection perspective. We tried to find some similarities between the features of this dataset 

with average & spread level of the Yorkshire dataset. 

4.4.1.1 Pre-processing dataset 

After conversion of the pump labeled dataset into numerical values, we have extracted 

the minimum and maximum value of the amplitude as two columns of our dataset. It’s 

clear that we retrieved mean, median and standard deviation consequently. The labeled 

column is set with 0 & 1 values as another separate column to discern normal from ab-

normal waves. 

There are 4205 wave instances available in our dataset. All the waves are segregated into 

the minimum and maximum intensity, and the features like mean, median, and standard 

deviation is calculated for all the waves. We made the similar features as the previous 

dataset in Yorkshire project for better comparison.  

A reliable method for choosing the best features is applying feature importance strategy 

with nominated algorithm. Importance of the features is the intensity of relative feature 

to improve the performance measurement. On the other hand, it verifies that how well 

each feature can improve the final performance of the algorithm. The result of applying 

feature importance method with XGB algorithm is shown in the figure below: 
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Figure 4-8 Applying feature importance strategy with XGB algorithm 

 

The above figure implies that, features like, maximum, minimum, and standard deviation 

are likely to be more important from XGB algorithm calculation result.  

 

4.4.1.2 Applying algorithms 

In what follows we examine the result of the algorithms with respect to above feature 

importance. The following table is the result of the mentioned algorithms with Min, Max, 

Mean, Median and Standard deviation features of the dataset. 

 

XGB  
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Accuracy: 94.90% 

Precision:  0.96 

Recall:  0.62 
F1 Score:  0.75 

AUC:  0.9144 

 

 
RF 
 

 

Accuracy: 94.66% 

Precision:  0.91 

Recall:  0.64 
F1 Score:  0.75 

AUC:  0.93366 

KNN  

 

 

Accuracy: 94.43% 
Precision:  0.92 

Recall:  0.61 

F1 Score:  0.73 
AUC:  0.8493 

AdaBoost  
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Accuracy: 94.55% 

Precision:  0.89 

Recall:  0.64 
F1 Score:  0.74 

AUC:  0.9206 

 
Bagging  

 

 

Accuracy: 94.66% 
Precision:  0.90 

Recall:  0.64 

F1 Score:  0.75 

AUC:  0.9238 

Figure 4-9 Result comparison of the algorithms 

Although the received results from the algorithm performances are satisfactory for all the 

algorithms but Random forest shows the best results among all, with highest recall per-

centage along with Adaboost and Bagging techniques. 

4.4.1.3 Hyperparameter tuning optimization- MIMII result 

In applying XGB algorithm, we set different types of parameters as the power of this 

algorithm is constantly related into choosing proper tuning parameters. 

The parameters like, n_estimators, max_depth, learning_rate, subsample, colsam-

ple_bytree, booster, eval_metric, verbosity, and n_jobs are selected after hyperparameter 

tuning with XGB algorithm. The corresponding result is shown in table below:  
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XGB   
 
After hyperparameter tuning 

 

 

Accuracy: 94.66% 

Precision:  0.92 
Recall:  0.63 

F1 Score:  0.74 

AUC:  0.9277 

Figure 4-10 Optimization results 

 

The value of the recall says that, how well the model can detect considered classes. In 

this type of projects, for detection of the unusual events in detection of the leakages, we 

need to have better value for recall, despite of having high precision and accuracy. 

According to the feature importance result, the top 3 important features among the others 

are identified as, Std, Max and Min. considering these three as the attributes of our da-

taset, applying all algorithm once again to see the differences we have: 

 

Algorithms Features %Accuracy Recall AUC 

XGB Std-Min-Max 95.01 0.64 0.9331 

RF Std-Min-Max 94.90 0.65 0.9359 

KNN Std-Min-Max 94.55 0.61 0.8673 

AdaBoost Std-Min-Max 94.78 0.64 0.9226 

Bagging Std-Min-Max 94.55 0.66 0.9181 

Table 4-14 Algorithm results comparison with three important features 
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Now if we consider only two Max and Min features and applying the algorithms on them, 

then we have the following table: 

 

Algorithms Features %Accuracy Recall AUC 

XGB Min-Max 94.78 0.61 0.8549 

RF Min-Max 94.90 0.63 0.8750 

KNN Min-Max 94.20 0.72 0.8345 

AdaBoost Min-Max 94.90 0.63 0.8111 

Bagging Min-Max 94.43 0.60 0.8442 

Table 4-15 Algorithm results comparison with two important features 

 

Except KNN, no further changes in most of the result parameters which shows that we 

are still dealing with most important attributes. The interesting point about KNN is that, 

there is a significant improvement in recall which is very important, and the higher recall 

result claims that our model is more reliable with better true predictions.  

Result comparison of Mean and Std, another two available features we get: 

 

Algorithms Features %Accuracy Recall AUC 

XGB Mean-Std 93.39 0.48 0.8433 

RF Mean-Std 92.23 0.48 0.8192 

KNN Mean-Std 92.23 0.45 0.7238 

AdaBoost Mean-Std 92.81 0.47 0.8388 

Bagging Mean-Std 91.88 0.49 0.8125 

Table 4-16 Algorithm results comparison with two derived features 

 

4.4.1.4 LSTM-Autoencoder neural network performance 

By looking at the result of the LSTM-Autoencoder with 500 epochs and appropriate 

threshold, we realize that neural network acquired lower results compare with other algo-

rithms on this dataset. The following figure shows the AUC diagram: 
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LSTM-Autoencoder 

 

 

 

 

 
 

AUC:  0.6808 

Figure 4-11 LSTM-Autoencoder result  

  

We made several datasets to test our experiments as different sampling strategies can 

decrease bias in all the events. 
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Chapter 5  Discussion     

Leak detection of the pipelines is one of the important challenges in today’s life and water 

as a fundamental primary material of living things is much worth to give emphasis to this 

topic. On the other hand, growing technology in different sensors and combination of 

retrieved data with machine learning techniques, has opened another different chapter in 

research and market field to offer solutions to the problem.   

In this study, we have reported our trial and error attempts in the context of design science 

methodologies in information system. Therefore, we pointed one of the many nominated 

solutions to the problem from the earlier researches and case studies in order to investigate 

the best way of applying machine learning techniques into the data for similar scenarios. 

Apart from that, we tried to make a point of better data collection in terms of related 

attributes and important features.   

In this defined context, we pushed towards that goal by testing the first nominated acous-

tic type of sensors along with different approaches of machine learning to estimate the 

performance of the offered scenario. 

In this project we faced different problems in different stages of the project, like sensor 

installation, data collection and data analysis and we tried to report them well in such a 

way that could be helpful for further researches. 

Back to our research questions mentioned in previous chapters we had: 

RQ1: What are the appropriate machine learning methods in acoustic leak detec-

tion?  

The result of the researches shows that, machine learning techniques are the inseparable 

part of any detection specially when it come to the huge data monitoring and data collec-

tion in large scale projects. 

The precise detection of the leakage projects has been started from oil and gas field and 

extended to the water leak detection as todays one of the most important challenges. 
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In real time water monitoring systems, the role of the anomaly detection method is clearly 

impressive in compare to the traditional approach leak detection to identifying anomalies 

in domestic usage by referring to the water meter at the end of the month [2]. 

The anomaly detection of machine learning approach in real time scenarios performs 

more effective when it comes to domestic water usage monitoring. It detects the abnormal 

usage for each household and the suspected area can be verified immediately right after 

the detection. On the other hand, it helps the system in large scales for pipe burst occur-

rences and not small leakages. 

If we put together all parts of different experiments and approaches performed in this 

project, we simply realized that essentially from the general aspect, applying machine 

learning techniques on a specific set of data, requires some knowledge about that data and 

fundamentally depends on the type of the data we deal with. 

Sometimes in case of unlabelled and labelled datasets, we know from the theory that un-

supervised and supervised learning is the techniques that must be applied on the corre-

sponding dataset respectively, but the result of these two are completely different when 

we can’t evaluate our result in case of unsupervised type of learning, hence we don’t have 

true labelled dataset to refer them. 

In this project, especially in our third dataset, we achieved the results with high variations 

in each attempt in case of semi supervised learning with unacceptably low performance. 

The reason is that, we had few labelled instances and that makes the dataset imbalanced.   

In case of imbalanced datasets, it is true that sampling techniques can change the entire 

output in case of supervised and semi supervised learning in our datasets. Stratified type 

of sampling proved to be a promising method for that purpose as declared earlier in some 

cases. 

Dealing with all datasets, first we tried to apply k-means clustering to find out best pos-

sible data classification of the dataset to have histogram of the data with the classified 

ranges. Among all the normalization strategies on our dataset, the effect of Gauss Rank 

normalization is significantly different in our third dataset. We got the information that 

our collected dataset in Yorkshire dataset is truly involves with 2 different classes as leak-

age and no leakage points with respect to the noise data.  
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The reason we didn’t try standardization on the Yorkshire dataset is that, from the theo-

retical aspect by checking the data histogram, the dataset does not follow the Gaussian 

distribution. So, we applied normalization instead of standardization and the theory is 

confirmed once again with significant result by applying the normalization. 

As shown in the evaluation section, we tried to apply 5 different algorithms. XGB, RF, 

KNN, Adaboost and Bagging are the nominated algorithms for result comparison. XGB 

and Adaboost, from the boosting algorithms performed better in compared with the other 

techniques specially after normalization techniques of pre-processing section. Even 

though all our algorithms performed well in our first assumption in Yorkshire dataset but 

the highest performance after hyperparameter tuning optimization is for the extreme gra-

dient boosting (XGB). 

It may implies by checking the comparison results from the first assumption in Yorkshire 

dataset, that the outcomes are too good to be true, but that’s not the case and the dataset 

is imbalanced from the few number of the leakage instances vs large number of “no leak-

age” events. 

In our fourth dataset, dealing with noise components, the XGB algorithms could not per-

form better than RF, even after the hyperparameter tuning optimization. This shows the 

rigidness of the Random Forest algorithm which is a suitable choice for datasets without 

normalization and less attributes.  

Although our LSTM-Autoencoder neural network didn’t performed like others on this 

dataset, but we can verify the normalization effect on it from the AUC diagrams showed 

earlier. Neural network techniques give a better result when dealing with more attributes, 

especially in some cases of unusual flows in datasets with proper balanced instances. 

 

RQ2: Which attributes are playing important role in detection of the leakages in 

urban water pipeline data analysis? 

The important part of the study is focused on the set of attributes and their impact on the 

corresponding algorithm performance. It is tried to verify the feature importance strate-

gies in different case studies to collect the suitable features for the leakage detection pro-

ject scenarios while the second dataset in our project, is a real evidence of the water flow 

attribute collection for anomaly detection in monitoring water distribution systems. 
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Although applying feature importance algorithms helps to identify the effective attributes 

of the related dataset having more impact on the algorithm performance, but the im-

portance of these attributes can be changed by small changes in the datasets on that spe-

cific period. This is the case specially when the numbers of the features are less. 

Considering the comparison algorithm result between two and four features, it implies, 

even though the date and noise average level was identified from the feature importance 

algorithm as the most effective attributes, but with elimination of Date and ID feature in 

two features test results, we received better algorithm outcome performances. 

On the other hand, elimination of standard deviation among three features like, Max, Min 

and Std which is calculated from the other features and is added to the dataset in feature 

selection process, effects the overall performance represented in the Table 4-15. 

Table 4-16 shows another comparison with two derived features and the algorithm per-

formance is significantly lower in compare with the Min & Max features algorithm per-

formances. 

The maximum and minimum intensity of the acoustic noises are represented as the main 

features of the acoustic datasets. Comparing these two features with the main data attrib-

utes of the Yorkshire dataset as average level and spread level of the noises, conveys the 

message that, more feature selection from the noise parameters are extremely helpful 

technique in acoustic analysis of the data. 

It also implies that, other attributes like Date, different IDs, location, and time are attrib-

utes with less effect in classification project scenarios. 

The anomaly detection techniques required more direct data gathering from the sensors 

and the flow of the water for reliable performances, especially in real time detection sce-

narios.  
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Chapter 6  Conclusion and future work 

 

The leak detection strategies in water transportation pipeline networks is an essential re-

search topic in today’s life. It helps to avoid the challenges in different fields like public 

health, resources wastages, agricultural deficiency parameters and financial problems.  

The acoustic signals collected by the listening devices for detection of the leakages in 

buried water pipelines is one of the many nominated techniques to deal with this problem 

and Norway like other countries, is seeking for the solutions in most of the country mu-

nicipalities.  

In this study, from the methodological perspective, working with two different datasets 

as our case studies, we examined different machine learning approaches and the results 

are reported. Towards the mentioned experiments, we tried to identify the best possible 

helpful features from the available case study datasets for our project. The project is 

started in institute for energy technology (IFE) with noise data collection as the first nom-

inated solution experiment to the problem. 

In this thesis, the machine learning approaches examined on several datasets from unsu-

pervised, supervised and semi supervised approaches with respect to the available da-

tasets. Decision tree algorithms like XGB and RF show promising values on water flow 

dataset which we received from the municipality guard system on specific period, while 

applying k-means clustering in an unsupervised learning method, detects the anomaly 

behaviour of the water flow. 

Applying decision tree algorithm techniques on two case studies, one with acoustic leak 

detection dataset and other with noise analysis of industrial machine malfunctioning 

noises, shows better performances in decision tree algorithms in compare with the neural 

network approaches. 

LSTM-Autoencoder neural network, which is counted as ensemble learning type of neu-

ral network, used for noise detection analysis, needs some more data features to compete 

with boosting techniques like XGB and Adaboost. 
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Testing the algorithm performances with different features, after applying feature selec-

tion techniques, shows that the feature engineering and feature selection techniques are 

extremely useful techniques in noise classification method analysis. 

Result comparison tables of algorithm performances for the same dataset in chapter 4 

with 2 features, 3 features and 5 features shows, even though the attributes like minimum 

and maximum noise intensity are the two main attributes of the dataset, but the derived 

attributes from these two can also play a crucial role in the algorithm performances. 

Combination of the water flow attributes with the acoustic attributes can give us a better 

precise leak localization result. We will combine all the received features from these two 

aspects, data flow feature details and acoustic features, to have a better prediction and 

detection of the water leakages in our future work.    
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Appendix A Abbreviations  

STD standard deviation 

Min minimum 

Max maximum 

RF random forest algorithm 

XGB eXtreme Gradient Boosting 

KNN K-nearest neighbours’ algorithm 
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Appendix B Pre-processing codes (MIMII) 

Attaching all the source codes is too bulky and not necessary to be attached. 

######################################################################## 

# import default python-library 

######################################################################## 

import pickle 

import os 

import sys 

import glob 

from tqdm import tqdm 

######################################################################## 

 

 

######################################################################## 

# import additional python-library 

######################################################################## 

import numpy 

import pandas as pd 

import librosa 

import librosa.core 

import librosa.feature 

import yaml 

import logging 

# from import 

from tqdm import tqdm 

from sklearn import metrics 

from sklearn.preprocessing import StandardScaler 

from sklearn.preprocessing import MinMaxScaler 

import librosa.display 

import matplotlib.pyplot as plt 

######################################################################## 

 

n_mels = 64 

frames = 5 

n_fft = 1024 

hop_length = 512 

power = 2.0 

dims = n_mels * frames 

 

""" 

Standard output is logged in "baseline.log". 

""" 

logging.basicConfig(level=logging.DEBUG, filename="baseline.log") 

logger = logging.getLogger(' ') 

handler = logging.StreamHandler() 

formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') 

handler.setFormatter(formatter) 

logger.addHandler(handler) 
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# normal_files = sorted(glob.glob(".\\data\\normal\\*.wav")) 

normal_files = 

sorted(glob.glob("/home/mohammed/separated_dataset/db+6_id_04/normal/*.wav")) 

 

normal_labels = numpy.zeros(len(normal_files)) 

if len(normal_files) == 0: 

    logger.exception("no_wav_data!!") 

 

# 02 abnormal list generate 

abnormal_files = 

sorted(glob.glob("/home/mohammed/separated_dataset/db+6_id_04/abnormal/*.wav"

)) 

 

abnormal_labels = numpy.ones(len(abnormal_files)) 

 

if len(abnormal_files) == 0: 

    logger.exception("no_wav_data!!") 

 

def datset_constructor(dataset): 

    df = pd.DataFrame() 

    df["min"] = dataset.min(axis=1) 

    df["max"] = dataset.max(axis=1) 

    df["mean"] = dataset.mean(axis=1) 

    df["median"] = dataset.median(axis=1) 

    df["quantile1"] = dataset.quantile(0.25) 

    df["quantile2"] = dataset.quantile(0.5) 

    df["quantile3"] = dataset.quantile(0.75) 

    df["std"] = dataset.std(axis=1) 

    df = df.reset_index() 

    df.drop(["index"], axis=1, inplace=True) 

    return df 

 

train_files = normal_files[:] 

y_train = normal_labels[:] 

test_files = abnormal_files[:] 

y_test = abnormal_labels[:] 

# print("normal label shape : ", y_test.shape) 

 

i = 0 

df_train = pd.DataFrame() 

df_test = pd.DataFrame() 

for idx in range(len(train_files)): 

    try: 

        multi_channel_data, sr = librosa.load(train_files[idx], sr=None, 

mono=True) 

 

        if i != 0: 

df1 = pd.DataFrame(multi_channel_data.reshape(1, -1)) 

    df_train = df_train.append(df1) 

 

else: 

    df_train = pd.DataFrame(data=multi_channel_data.reshape(1, -1)) 

    i = i + 1 

except ValueError as msg: 

    logger.warning(f'{msg}') 

x_train = df_train.reset_index()  
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n_result = pd.concat([n_x_dataset, y_dataset], axis=1) 

print(" result : \n", result) 

print(" result_abs : \n", result_abs) 

print(" n_result : \n", n_result) 

result.to_csv("/home/mohammed/result/separated_dataset/result_db+6_id_04.csv"

, index=True) 

n_result.to_csv("/home/mohammed/result/separated_dataset/result_Normalized_db

+6_id_04.csv", index=True) 

 

data_dict = { 

    "x_dataset": x_dataset, 

    "y_dataset": y_dataset, 

    "result": result, 

    "result_abs": result_abs, 

    "n_result": n_result, 

} 

print(data_dict.keys()) 

f_t_write = 

open('/home/mohammed/separated_pickles/preprocessed_dataset_db+6_id_04.pickle

', "wb") 

pickle.dump(data_dict, f_t_write) 

f_t_write.close() 

# return datat_dict 
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Appendix C MIMII XGB source code 

Attaching all the source codes is too bulky and not necessary to be attached. 
import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

from xgboost import plot_tree 

import pickle 

import time 

from matplotlib import dates as mpl_dates 

import sklearn 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import plot_confusion_matrix 

import sys 

import evaluator 

import hyperparameter_tuner 

from sklearn.metrics import roc_curve 

import seaborn as sns 

import xgboost as xgb 

from sklearn import metrics 

from xgboost import XGBClassifier 

 

file_to_read = 

open('/home/mohammed/pickle/preprocessed_dataset_id_00.pickle', "rb") 

loaded_object = pickle.load(file_to_read) 

file_to_read.close() 

dataset = loaded_object 

result = dataset["result"] 

n_result = dataset["n_result"] 

print("result : \n", result) 

result.to_csv('result.csv') 

print("n_result : \n", n_result) 

print("result shape : \n", result.shape) 

 

y_dataset = result.loc[:, ["label"]] 

x_dataset = result.drop(["label"], axis=1) 

n_x_dataset = n_result.drop(["label"], axis=1) 

max_min_mean_median_std = n_x_dataset.drop(['quantile1', 'quantile2', 

'quantile3'], axis=1) 

max_min_mean = n_x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'median', 'std'], axis=1) 

max_min_mean_std = n_x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'median'], axis=1) 

max_min_mean_median = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'std'], axis=1) 

 

 
 

 

 



   

  

mean_median_std = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'min', 'max'], axis=1) 

min_max = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 'median', 

'std', 'mean'], axis=1) 

mean_std = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 'median', 

'min', 'max'], axis=1) 

median_std = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 'mean', 

'min', 'max'], axis=1) 

min_max_median = x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'std', 'mean'], axis=1) 

min_max_std = n_x_dataset.drop(['quantile1', 'quantile2', 'quantile3', 

'median', 'mean'], axis=1) 

 

 

x_train, x_test, y_train, y_test = train_test_split(min_max_std, 

                                                    y_dataset, 

                                                    test_size=0.25, 

                                                    shuffle=True, 

                                                    stratify=y_dataset, 

                                                    random_state=42) 

 

clf = xgb.sklearn.XGBClassifier(n_estimators=20, 

                                max_depth=8, 

                                learning_rate=0.1, 

                                subsample=0.9, 

                                colsample_bytree=0.9, 

                                booster="gbtree", 

                                eval_metric="map", 

                                verbosity= 0, 

                                n_jobs= -1) 

# clf = xgb.sklearn.XGBClassifier(n_estimators=50) 

# params = hyperparameter_tuner.xgb_hyperparameter_tuner(clf, x_train, 

y_train) 

# clf.set_params(**params) 

clf.fit(x_train, y_train) 

# xgb_pred = clf.predict(x_test) 

 

evaluator.evaluate_preds(clf, x_train, y_train, x_test, y_test) 

 

plt.figure(figsize=(7, 4)) 

xgb.plot_importance(clf, ax=plt.gca()) 

plt.show() 

plt.show() 

 
 


