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The Schmidt number, defined as the ratio of scalar to momentum diffusivity, varies by multiple orders of magni-
tude in real world flows, with large differences in scalar diffusivity between temperature, solute, and sediment driven
flows. This is especially crucial in gravity currents, where the flow dynamics may be driven by differences in tem-
perature, solute, or sediment, and yet the effect of Schmidt number on the structure and dynamics of gravity currents
is poorly understood. Existing numerical work has typically assumed a Schmidt number near unity, despite the im-
pact of Schmidt number on the development of fine-scale flow structure. The few numerical investigations considering
high Schmidt number gravity currents have relied heavily on two-dimensional simulations when discussing Schmidt
number effects, leaving the effect of high Schmidt number on three-dimensional flow features unknown. In this paper,
three-dimensional direct numerical simulations of constant-influx solute-based gravity currents with Reynolds num-
bers 100 ≤ Re ≤ 3000 and Schmidt number 1 are presented, with the effect of Schmidt number considered in cases
with (Re,Sc) = (100,10), (100,100), and (500,10). This data is used to establish the effect of Schmidt number on
different properties of gravity currents, such as density distribution and interface stability. It is shown that increasing
Schmidt number from 1 leads to substantial structural changes not seen with increased Reynolds number in the range
considered here. Recommendations are made regarding lower Schmidt number assumptions, usually made to reduce
computational cost.

I. BACKGROUND

Gravity currents are primarily horizontal flows arising from
a density difference between the current and surrounding
ambient fluids. This density difference occurs with varia-
tion in concentration of solutes or suspended sediments, or
temperature difference between the current and the ambient
fluid1,2. Gravity currents are a common class of flow, with
examples including thunderstorm outflows and powder snow
avalanches1,3, and are one of the primary mechanism of sedi-
ment transport in oceans4,5. There exists extensive research
into the dynamics of gravity currents, including numerical
investigations6–13. The typical structure of gravity current
flows as described by Kneller and Buckee 14 is presented in
Figure 1, and consists of a head region followed by a body.
This body can be divided into a dense lower layer overlaid
by a less dense layer of mixed current and ambient fluids.
Despite the body typically forming by far the largest part of
gravity current flows15–17, the existing research has primarily
focused on the head of the flow. Additionally, numerical work
has typically assumed a Schmidt number of 1 to investigate
flows with Sc = O(1000)6,9,11–13,18–24. Therefore, character-
istics such as the effect of Schmidt number on the flow, and
the nature of large-scale structures within the body, remain
poorly understood.
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FIG. 1: Flow visualisation from the work presented in
Marshall et al. 25 , overlaid by a gravity current structure as

described by Kneller and Buckee 14 .

Gravity current properties are characterised using a small
number of dimensionless parameters14: the Reynolds, densi-
metric Froude (affected by the bed slope26), gradient Richard-
son, and Schmidt numbers. The Reynolds number is defined
as the ratio of inertia to viscous forces (Re = UcLc

ν
, where Uc

and Lc are velocity and length scales that are characteristic of
the flow, and ν is the kinematic viscosity of the fluid), and
increasing Reynolds number reduces the size of the small-
est length scales within the flow that must be resolved while
conducting direct numerical simulations (DNS)27. Decreasing
Reynolds number, below the point of similarity (Re≈ 1000)1,
also changes the nature of the current head including the for-
mation of Kelvin-Helmholtz billows and the over-riding of
ambient fluid leading to lobe-and-cleft structures1,28,29. Re
significantly affects rates of mixing and entrainment, with in-
creasing Re dictating whether the primary mixing mechanism
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is Holmboe waves, Kelvin-Helmholtz vortex rolls, or Kelvin-
Helmholtz billows30,31. The Schmidt number, analogous to
the Prandtl number, is defined as the ratio of momentum and
mass diffusivities (Sc = ν/D, where D is mass diffusivity),
and is a key parameter in understanding mixing on the molec-
ular level32,33. As Schmidt number increases, diffusion de-
creases and momentum becomes the dominant mass transfer
mechanism.

Increasing the Schmidt number from 1 reduces the length
scales associated with mixing within the flow, reducing the
smallest lengths that must be captured from the Kolmogorov
scale (ηK) to the Batchelor scale (ηB = ηKSc−1/2)34,35, and
mixing is expected to decrease32,36. It has been demon-
strated that the finer-scale structures that develop with in-
creasing Schmidt number may cause larger scale structural
changes in the flow, such as increased plume length in tur-
bulent jets32, and stronger three-dimensional motions result-
ing from changes to density profiles and stronger density
gradients36–38.

The value of Schmidt number varies dramatically depend-
ing on the source of the density difference, for example be-
ing O(1) for temperature driven flows, O(1000) for solutes
in water, and being strongly dependent on grain size but of-
ten much larger for sediment in water (for example being
O(109) for 100µm sand)8,33,34,39–41. Despite this, existing nu-
merical investigations into gravity current structure typically
assume Sc = 16–10,33,42,43. The large computational cost in-
volved in resolving the Batchelor scale (the cost of direct nu-
merical simulation scaling with Re3Sc2)27,34 means that few
works have so far considered the effect of Schmidt number
on gravity current flows. Birman, Martin, and Meiburg 42 and
Necker et al. 43 justify their use of Sc = 1 through test cal-
culations that suggest Schmidt number has little influence on
gravity current structure for Sc= 0.2→ 5, while Härtel, Carls-
son, and Thunblom 44 claim that Schmidt number dependence
is weak unless Sc is very small (� 1). Ooi, Constantinescu,
and Weber 45 use comparison of two two-dimensional large-
eddy simulations of lock-exchange type flows, with a simi-
lar comparison of two three-dimensional large-eddy simula-
tions in Ooi, Constantinescu, and Weber 46 , to conclude that
Schmidt number has only a small effect on properties such
as current front velocity and shape. The effect of Schmidt
number on other flow features is not considered, nor the com-
bined effects of Reynolds and Schmidt number. Deepwell and
Stastna 47 , in their study of flows consisting of a gravity cur-
rent travelling along a pycnocline(s), conclude that the mass
transport capability of internal solitary-like waves increases as
Schmidt number is increased between 1 and 20, but does not
continue to change when Schmidt number is further increased
to 40 (suggesting that exact Schmidt number matching may
not be required to capture flow dynamics). To date, the only
research including a parametric study investigating the effect
of Schmidt number on gravity current flows is the work of
Bonometti and Balachandar 33 .

Bonometti and Balachandar 33 use a combination of a
pseudo-spectral method and a finite-volume/volume of fluid
interface capturing method to investigate the parameter space
1 ≤ Sc ≤ ∞ and 100 ≤ Re ≤ 10000. For Re = 10000, they

conclude that neither the front velocity nor the level of mix-
ing are strongly dependent on Sc, though decreasing Sc does
increase the thickness of the layer of mixed ambient and cur-
rent fluids. For the lower Reynolds number flows, they ob-
serve that increasing Sc changes head shape, with a depres-
sion separating head from body appearing as Sc increases,
and that the effect of Sc on front velocity in these flows is
highly dependent on the density contour chosen to define the
front. They also claim that while the pattern of lobe-and-cleft
structures is not strongly dependent on the Schmidt number,
the formation of vortices along the body is. A scatter plot
based on a table from Bonometti and Balachandar 33 is pre-
sented in Figure 2, showing the distribution of stable/unstable
interfaces between the current and ambient fluids based on a
bulk Richardson number for their work and a few other in-
vestigations. This suggests that the interface stability is only
weakly dependent on Schmidt number, with the interface be-
coming slightly more stable with increased Sc. However, this
data is based almost entirely on two-dimensional direct nu-
merical simulation (DNS) data sets. The flow structure re-
sulting from two- and three-dimensional simulation of grav-
ity currents with Reynolds numbers 317 and 104 from the
work of Bonometti and Balachandar 33 is presented in Figure
3. While the two-dimensional work captures some features
well, others require consideration of three-dimensional flow.
Two-dimensional DNS of gravity currents is not able to repro-
duce large-scale coherent motions and three-dimensional flow
features, such as the formation of lobe-and-cleft structures and
the breakdown of interfacial billows, capture the spanwise dis-
sipation of energy, or accurately estimate the energy budget
of the flow8,9,20,22,48–50. Therefore, three-dimensional simula-
tions are needed to establish the effect of Schmidt number on
three-dimensional flow features, and to confirm the relation-
ship between interface stability and Schmidt number.

In this work, three-dimensional direct numerical simula-
tion (DNS) is used to investigate the structure and dynamics
of constant-influx solute-based gravity current flows by pro-
viding the instantaneous density and velocity fields. As well
as considering the effect of Reynolds number, the impact of
varying the Schmidt number on both the head and body of
gravity current flows will be investigated. The work addresses
some of the remaining questions regarding how reasonable an
assumption of Sc = 1 is for such flows, specifically the key
aims are to discuss: i) how Reynolds and Schmidt numbers
affect the structure of the head, in particular the formation of
lobe-and-cleft structures, ii) how Reynolds and Schmidt num-
bers affect the structure of flow behind the head, in particular
the stability of the current-ambient interface, iii) which of the
changes observed with increased Schmidt number also occur
with increased Reynolds number, and iv) when assuming a
low Schmidt number to reduce the computational cost of nu-
merical investigations may be justified.

II. METHODOLOGY

The spectral element solver Nek500051 is used to simulate
three-dimensional gravity current in the domain illustrated in
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FIG. 2: Scatter plot showing the distribution of stable/unstable interfaces based on a bulk Richardson number as a function of
Sc and Re. Data from the work of Bonometti and Balachandar 33 .
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FIG. 3: Contours of density from (a, c) two- and (b, d, e) three-dimensional simulation of gravity current flows with (a, b)
Re = 317 and (c, d, e) Re = 104 from Bonometti and Balachandar 33 . (b) and (d) show span-wise averaged data from

three-dimensional investigations. Reproduced with permission from Theoretical and Computational Fluid Dynamics, 22, 341
(2008). Copyright 2008, Springer-Verlag.

Figure 4. This domain is designed to closely reproduce the ex-
perimental domain presented in Marshall et al. 25 , Marshall 52 ,
with a simplified outlet. The governing equations are the
non-dimensional, incompressible, Boussinesq Navier-Stokes,
salinity, and continuity equations,

∂ Ũ

∂ t̃
+ Ũ ·∇Ũ =−∇P̃+

1
Re

∇.τ̃ +
1

Fr2
d

∆S̃ĝ,

∂ S̃
∂ t̃

+ Ũ ·∇S̃ =
1

ReSc
∇ ·∇S̃,

∇ · Ũ = 0,

(1)

where U is the velocity vector, t time, P = p + ρagY
where P is the kinematic pressure field, τ the stress ten-
sor, Re = UcLc/ν the Reynolds number, ν the kinematic
viscosity, Frd = Uc/

√
g′Lc the densimetric Froude number,

Sc = ν/D the Schmidt number, D the mass diffusivity, g
and ĝ = (sinθ ,cosθ ,0) the magnitude and direction of the
gravitational acceleration, θ bed slope, S salinity (with ∆S =
(S− Sa)). (·)a indicates a property of the ambient fluid,
and ˜(·) indicates a dimensionless variable. As described in

McWilliams 53 , here a simplified linear dependence of density
on salinity has been employed,

ρ ≈ ρa(1+β∆S), (2)

where ρ is density, and β = 1
ρ

∂ρ

∂S the haline contraction coef-
ficient. The dimensionless variables are defined relative to the
characteristic length, velocity, and time scales as shown in Ta-
ble I. Time advancement is performed using a semi-implicit
scheme that combines the implicit 3rd-order backward differ-
ence and the explicit 3rd-order extrapolation schemes, as de-
scribed in Mittal, Dutta, and Fischer 54 . Spatial discretisation
is based on the high-order spectral element method55–57. To
ensure sufficient resolution, the wall y+, x+, and z+ values
(defined as y+ = uwy/ν where y is the distance to the nearest
wall, and uw the wall friction velocity with equivalent state-
ments for the other spatial dimensions) are kept below 0.05
for the nearest grid point to the wall, and the first 10 points
are within y+ < 1058,59. Additionally, decay of several or-
ders of magnitude is observed in the energy spectrum for all
variables6,60.
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FIG. 4: The experimental setup of Marshall et al. 25 , Marshall 52 , used to investigate the structure of the gravity current body,
here used to define the DNS domain.

Parameter Non-Dimensionalisation
Length X̃ = X/Lc

Velocity Ũ =U/Uc

Time t̃ = (Uc/Lc)t = t/tc
Pressure ∇P̃ = (Lc/ρaU2

c )∇P
Stress tensor ∇ · τ̃ = (L2

c/Ucνρa)∇ · τ
Salinity ∆S̃ = (S−Sa)/(SI −Sa) = ∆S/∆SI

TABLE I: Definition of non-dimensionalisations used in this
work, where X is position, t is time, tc = Lc/Uc a

characteristic time, ∆S = S−Sa, and ∆SI = SI−Sa.

The characteristic length Lc, velocity Uc, and time tc scales
are defined a priori. The characteristic length scale for all
cases is chosen to be the the height of the internal fitting to
limit initial flow height, Lc = 0.05m (refer to figure 4). For
the highest Reynolds number case, the viscosity is chosen to
match that of the experimental work in Marshall et al. 25 , Mar-
shall 52 , ν = 1.09×10−6 m2 s−1, and the characteristic ve-
locity, Uc = 0.065ms−1, is chosen to give the desired input
Reynolds number ReI = 3000. This represents an average
velocity under the initial internal fitting. The characteristic
time scale Tc = Lc/Uc = 0.77s. To reduce the Reynolds num-
ber, the characteristic velocity scale is kept constant and the
fluid viscosity varied. Schmidt number is varied by chang-
ing mass diffusivity, D. The input densimetric Froude num-
ber, FrD,I = Uc/

√
g′Lc = 0.54, is the same for all cases, as

is the source Froude number calculated using the inlet veloc-
ity (UI = 0.22ms−1) and inlet diameter (LI = 0.0254m) as
characteristic velocity and length scales, FrD,S =UI/

√
g′LI =

2.54. The input parameters for each case are shown in Table
II.

The inlet flow is matched to Marshall et al. 25 , Marshall 52 .
The maximum inlet velocity in this work, UI , is approximated
by dividing the lowest influx value from Marshall et al. 25

(7×10−5 m3 s−1) by the inlet area (3.34×10−4 m2). The inlet
has dimensionless radius 0.254, and is covered with a coarse
mesh with holes of dimensionless radius 0.078. These holes

are centred at locations

(Ỹ , Z̃) =(0.350,1.000),(0.531,1.000),(0.169,1.000),
(0.441,1.150),(0.260,1.150),(0.441,0.850),
(0.260,0.850)

(3)

with the inlet velocity approximated by

Ũ = ŨI

√
sin((0.5+0.5r2)π), (4)

(where r varies from 0 to 1 from the centre to the edge of each
small circle). Where the velocity on the inlet is non-zero the
salinity S̃ = 1.03, compared to S̃ = 1.00 in the rest of the do-
main, and therefore ∆SI = 0.03 with a haline contraction coef-
ficient of β = 1 to achieve a density difference of 3% between
the current and ambient fluids. The outlet is approximated by
a square outlet placed in the bottom right corner of the do-
main, with a special boundary condition implementation that
matches the total outflow to the net inflow into the domain.
In this work, X , Y , and Z correspond to downstream, vertical,
and cross-stream directions with corresponding downstream,
vertical, and cross-stream velocities U , V , and W .

III. THE EFFECT OF REYNOLDS AND SCHMIDT
NUMBERS

A. Density

The effect of Schmidt number on the density structure of
the flow can be established by considering contours of pro-
portional excess density (∆S̃). Figure 5 shows contours of ∆S̃
at t̃ = 23.4 at a central cross-stream location. The right-most
column of this figure shows two contours for each case – that
with density just above the ambient density, ∆S̃ = 0.03, and
that with density halfway between the densities of the ambient
fluid and that pumped in at the inlet, ∆ ˜0.48. The contour with
∆S̃ = 0.03 is considered to be the current boundary. Increas-
ing Schmidt number has little impact on current front velocity
over the short time frame considered here, though increasing
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ReI Sc Pe Lc (m) ν (m2 s−1) Uc (ms−1) FrD,I UI (ms−1) tc (s) D (m2 s−1)

100 1 100 0.05 3.26×10−5 0.065 0.54 0.22 0.77 3.26×10−5

100 10 1000 0.05 3.26×10−5 0.065 0.54 0.22 0.77 3.26×10−6

100 100 10000 0.05 3.26×10−5 0.065 0.54 0.22 0.77 3.26×10−7

500 1 500 0.05 6.53×10−6 0.065 0.54 0.22 0.77 6.53×10−6

500 10 5000 0.05 6.53×10−6 0.065 0.54 0.22 0.77 6.53×10−7

1000 1 1000 0.05 3.26×10−6 0.065 0.54 0.22 0.77 3.26×10−6

3000 1 3000 0.05 1.09×10−6 0.065 0.54 0.22 0.77 1.09×10−6

TABLE II: Parameters for the various simulations conducted in this work, along with a bed slope of θ = 0.1°, and a haline
contraction coefficient of β = 1 and SI−Sa = 0.03 to achieve a 3% density difference.
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FIG. 5: Contours of ∆S̃ on a central cross-stream slice within the domain at t̃ = 23.4. From top to bottom, the inlet Reynolds
number ReI = 100, 500, 1000, 3000 and from left to right Sc = 1, 10, 100 with the rightmost column showing density

contours at ∆S̃ = 0.03 and ∆S̃ = 0.48 for each case.
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FIG. 6: Scatter plots showing the effect of Reynolds number on (left) current height (where h̃ is the dimensionless current
height) and (right) mixed layer size as a percentage of current height, determined by (left) the height of the ∆S̃ = 0.03 contour,

and (right) the difference in the heights of the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours at the left-most point of Figure 5.
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Reynolds number increases front velocity as expected. In-
creasing either Reynolds number or Schmidt number leads to
a depression behind the head, angled towards the current front.

For each case, the current height (defined as the height of
the ∆S̃ = 0.03 contour at the left-most point in Figure 5), the
thickness of the mixed region (defined as the difference in
height of the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours at the left-
most point of the figure), and the difference in front positions
of the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours are estimated by
inspecting Figure 5, and listed in Table III. The height of
the head is approximately constant across cases with constant
Schmidt number. For Sc = 1 the head height is Ỹ ≈ 1.1, re-
ducing to Ỹ ≈ 0.8 for Sc = 10. Increasing Schmidt number
consistently reduces body height, the thickness of the mixed
layer as a proportion of total flow height (Figure 6), and the
difference in front position of the two contours (illustrating
that increasing Schmidt number leads to dense fluid reaching
closer to the front of the flow).

The height of the ∆S̃ = 0.48 contour, however, is not
strongly affected by increasing Schmidt number, suggesting
that evidence of the effect of Schmidt number on quanti-
ties such as current height or front velocity is highly de-
pendent on the contour chosen to define the current bound-
ary. In fact, the height of this contour is the same across
all cases except ReI = 3000, suggesting a greater degree of
mixing in this case. This is likely an artefact of relatively
short simulation duration. Longer simulation time will result
in changes in contours further from the interface. Increas-
ing Schmidt number reduces current height, with a 33% de-
crease between the (ReI ,Sc) = (100,1) and (100,10) cases
(with a further decrease of 25% between (ReI ,Sc) = (100,10)
and (100,100)), though this decrease is reduced to 25% be-
tween (ReI ,Sc) = (500,1) and (500,10). Similarly increasing
Schmidt number reduces the percentage of the current height
taken up by the mixed layer, from 67% to 38% between the
(ReI ,Sc) = (100,1) and (100,10) cases (to only 17% in the
(ReI ,Sc) = (100,100) case), and from 50% to 33% between
(ReI ,Sc) = (500,1) and (500,10). Dense fluid reaches closer
to the front of the flow as Schmidt number is increased, with
the percentage of the flow covered by the ∆S̃ = 0.48 contour
increasing from 58% to 88% between the (ReI ,Sc) = (100,1)
and (ReI ,Sc) = (100,10) cases (further increasing to 100%
in the (100,100) case) and from 80% to 88% between the
(ReI ,Sc) = (500,1) and (500,10) cases. This demonstrates
that increasing Reynolds number reduces the influence of in-
creased Schmidt number on some flow features, with increas-
ing Schmidt number beyond 10 having less impact than in-
creasing from 1 to 10. Additionally, this Sc = 100 case has
dense fluid reaching the very front of the flow. This suggests
that a further increase to Sc = O(1000) to match real-world
solute based flows would likely result in only minor changes
in these parameters.

The effect of Reynolds number is more complex (see Fig-
ure 6). While increasing Reynolds number consistently re-
duces current height (in this case, the decrease at Sc = 1 is
proportional to Re−0.5) and increases the percentage of flow
length, the distance between inlet and flow front, covered by
the ∆S̃ = 0.48 contour, the percentage of current height cov-

(ReI ,Sc) ∆S̃height
0.03 ∆S̃height

0.48
∆S̃height

0.03 −∆S̃height
0.48

∆S̃height
0.03

∆S̃ f ront
0.48

∆S̃ f ront
0.03

(100,1) 1.20 0.40 67% 58%
(100,10) 0.77 (36%) 0.48 38% 88%
(100,100) 0.60 (50%/22%) 0.48 17% 100%
(500,1) 0.77 (36%) 0.39 50% 80%
(500,10) 0.60 (22%/22%) 0.40 33% 88%
(1000,1) 0.67 (44%) 0.39 43% 81%
(3000,1) 0.63 (48%) 0.21 67% 83%

TABLE III: Estimates of the current height (determined by
the ∆S̃ = 0.03 contour), the mixed layer thickness as a

percentage of current height (defined as the difference in
heights of the ∆S̃ = 0.03 and ∆S̃ = 0.48 contours) and the

percentage of flow length covered by the ∆S̃ = 0.48 contours.
These are based on inspection of Figure 5. (Brown text

indicates the % decrease from the Sc = 1 case with the same
ReI , magenta text the % decrease from the Sc = 10 case with

the same ReI , and cyan text the % decrease from the
ReI = 100 case with the same Sc).

ered by the mixed layer increases in the ReI = 3000 case com-
pared with ReI = 1000, perhaps a result of increased mixing
by the Kelvin-Helmholtz structures that form with increased
Reynolds number (see Figure 7). These structures are also
present in the ReI = 1000 case, and may be emerging in the
(ReI ,Sc) = (500,10) case, in which the mixed layer thick-
ness decreases as a proportion of current height compared
with the lower ReI cases. However, the rate of decrease be-
tween ReI = 500 and ReI = 1000 is slower than that between
ReI = 100 and ReI = 500, which may also be a result of the
Kelvin-Helmholtz structures.

The three-dimensional density isosurfaces (Figure 7) indi-
cate that these trends extend across the width of the tank.
These isosurfaces show signs of structural change with in-
creasing Reynolds and Schmidt numbers. At ReI = 100, the
isosurfaces from the cases with Sc = 1 and Sc = 10 are com-
pletely smooth. At Sc = 100, ridges appear in the highest
density isosurface. In the (ReI ,Sc) = (1000,1) case the low-
est density isosurface has oscillations behind the head. By
(ReI ,Sc) = (3000,1), all isosurfaces have lost the smooth-
ness of the (ReI ,Sc) = (100,1) case, as expected owing to
the increase in turbulence. Therefore, depending on the flow
Reynolds and Schmidt numbers, perturbations may be visi-
ble in the highest and / or lowest density isosurfaces. Addi-
tionally, with increasing Reynolds number the perturbations
in the density isosurfaces are most pronounced near the head,
while for increasing Schmidt number the perturbations be-
come more pronounced with increasing distance from the
head. This suggests that there are at least two distinct mecha-
nisms influencing the flow structure.

To investigate the mechanisms responsible for these
changes, pseudocolour plots of density both in an X̃− Z̃ plane
at Ỹ = 0.1 and in a Z̃− Ỹ plane near the current front (Figure
8) can be inspected. These plots show that cases (ReI ,Sc) =
(100,100),(500,10), and (3000,1) contain regions of less-
dense fluid surrounded by the denser fluid of the head. The
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FIG. 7: Three-dimensional isosurfaces of ∆S̃ at t̃ = 23.4 for cases with inlet Reynolds numbers (a,b,c) ReI = 100, (d,e)
ReI = 500, (f) ReI = 1000, and (g) ReI = 3000, and with Schmidt numbers (a,d,f,g) Sc = 1, (b,e) Sc = 10, and (c) Sc = 100.

The isosurfaces shown are (blue to red) ∆S̃ = 0.02, ∆S̃ = 0.25, ∆S̃ = 0.48 and ∆S̃ = 0.71.

Z̃−Ỹ plane illustrates that this fluid is absorbed upwards, orig-
inating from the over-running of ambient by the raised nose
of the flow. Therefore, as well as causing dense fluid to reach
closer to the front of the flow, increasing Schmidt number at
fixed Reynolds number leads to the formation of lobe-and-
cleft structures within the head. These structures also form
with increasing Reynolds number.

B. Velocity

In order to obtain a thorough understanding of the flow
structure, the velocity structures are inspected. Pseudocolour
plots of all three velocity components for each case are shown
on an X̃− Z̃ slice close to the bottom boundary (Figure 9) and
on X̃ − Ỹ slices (Figures 10 and 11). In addition to Figures 7
and 8, Figure 9 highlights a strong symmetry about the cen-
tral Z̃-plane in all but the (ReI ,Sc) = (3000,1) case. Only in

this case does the increase in non-linearity owing to higher
Reynolds number cause this symmetry to break. Excepting
this highest Reynolds number case, the cross-stream velocity
for all cases has negligible magnitude on the central Z̃ = 0
plane (Figure 10), indicating a symmetric solution. However,
away from this central plane the magnitude of cross-stream
and vertical velocities have equivalent magnitude in all cases
(for example the plane at Z̃ = 0.5 shown in Figure 11). This
suggests that the flow is not two-dimensional as commonly
assumed1,8. Downstream velocity on the two X̃ − Ỹ planes
has the same structure and magnitude in all cases, as does
cross-stream velocity in the ReI = 3000 case.

The vertical velocity plots confirm the over-riding of ambi-
ent fluid, with Figure 9 showing areas of large positive vertical
velocity close to the bottom boundary and near the front of the
current for the (ReI ,Sc) = (100,100), (500,10), and (3000,1)
cases, corresponding to the rising buoyant fluid over-ridden by
the current front. Additionally, as expected from the density
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FIG. 8: Pseudocolour plots of ∆S̃ at t̃ = 23.4 on an X̃− Z̃ plane at Ỹ = 0.1 and a Z̃− Ỹ plane X̃ = 2 behind the current front for
(top to bottom) increasing Reynolds number and (left to right) increasing Schmidt number.

contours, increasing Reynolds number increases downstream
velocity within the flow. Increasing Reynolds number also
increases variation in all components of velocity within the
body, including alternating positive and negative vertical ve-
locity near the side walls in the ReI = 1000,3000 cases. Vis-
ible in both Figures 9 and 10, increasing Schmidt number re-
sults in a regular alternating pattern of positive and negative
vertical velocity at a central cross-stream location, and cor-
responding positive and negative cross-stream velocity either
side of the centre, behind the head of the current. The regular
alternating vertical velocity pattern established by increasing
Schmidt number is localised to the cross-stream centre of the
flow, though increasing Reynolds number increases the width
of the motions (Figures 9 and 11).

Figure 12 illustrates the flow behind the head in the
(ReI ,Sc) = (500,1), (500,10) cases at t̃ = 66.3, demonstrat-
ing that these are not short-term changes. As well as velocity
plots, this figure contains plots of density fluctuations from
cross-stream averaged density (∆S̃−∆S̃Z̃ , where ∆S̃Z̃ is den-
sity averaged in the cross-stream direction). The density fluc-
tuations in the Sc = 10 case contain a pattern of alternating
positive and negative regions correlated with those in vertical
velocity but with a 1/4−wavelength offset (characteristic of
internal gravity waves61). To understand why decreasing mass
diffusivity leads to large-scale changes in flow structure, plots
of swirling strength and gradient Richardson number will be
inspected.

Figure 13 shows plots of swirling strength ζci as defined by

Zhou et al. 62 ,

L =

 ∂U
∂X

∂U
∂Y

∂U
∂Z

∂V
∂X

∂V
∂Y

∂V
∂Z

∂W
∂X

∂W
∂Y

∂W
∂Z


= [χrχcrχci]

ζr 0 0
0 ζcr ζci
0 −ζci ζcr

 [χrχcrχci]
T ,

(5)

where L is the velocity gradient tensor, ζr and χr are the real
eigenvalue and eigenvector, and ζcr± iζci the complex conju-
gate pair of complex eigenvalues with corresponding eigen-
vectors χcr± iχci. These plots reveal that increasing Schmidt
number leads to the formation of structures in the mixed layer
between the current and the ambient in the centre of the tank
in the cross-stream direction (with the mixed layer here de-
fined as the region between the ∆S̃ = 0.03 and ∆S̃ = 0.48
contours). The placement of these structures is identical for
the (ReI ,Sc) = (100,10),(100,100) cases, and their spacing
in the downstream direction is the same for all three Sc > 1
cases. Figure 13 shows that increasing Reynolds number also
leads to the formation of structures within the body, though
they differ from those resulting from increased Schmidt num-
ber. While some of the structures resulting from increased
Reynolds number are within the mixed region, the structures
in the higher Reynolds number cases have a less regular pat-
tern (with a different physical spacing to the high Schmidt
number cases), and are not limited to the centre in the cross-
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stream direction.
Change in large-scale flow structures with Schmidt number

is not immediately anticipated, given that Schmidt number is
expected to result in changes at the small scale. Figure 14
shows the density and downstream velocity profiles on a cen-
tral cross-stream location averaged over downstream location
at the timestep illustrated in Figure 12. The change in diffu-
sivity resulting from the Schmidt number increase leads to a
change in density profile, specifically the anticipated increase
in density in the lower part of the flow and sharper transi-
tion from dense to ambient fluid. As there is a greater density
difference, there is a corresponding increase in downstream
velocity within the body. These changes may affect the sta-
bility of the interface. To illustrate this, a gradient Richardson
number can be calculated,

Ri =
g
ρc

∂ρ/∂Y
(∂U/∂Y )2

(6)

(where ρc is the density of the fluid pumped in at the inlet),
which gives a measure of the stability of density stratifica-
tion. If Ri > 0.25, then the energy produced by shear is not
sufficient to overcome the density stratification and is there-
fore dissipated63. Profiles of Ri for the cases with ReI = 500
are shown in Figure 14c. Increasing Schmidt number from
1 changes the Ri profile such that the value at the current
height moves from above to below this critical level. The same
change is seen for every case with Sc> 1, while for every case
with Sc = 1, Ri > 0.25 in this area. Therefore, changes in the
density and velocity profiles resulting from decreasing mass
diffusivity (and therefore increasing Schmidt number) lead to
the density stratification becoming less stable such that energy
produced from shear is no longer dissipated but instead leads
to large-scale structural changes in the flow.

IV. DISCUSSION

Increasing the flow Reynolds number has been shown to
result in a shorter head, with more velocity fluctuations, and
greater front and internal velocities. Excepting the highest
Reynolds number case considered in this work, a strong sym-
metry plane is present at a central cross-stream location for
all cases. Attempting to quantify such flows using exclu-
sively a central cross-stream plane could, depending on flow
Reynolds number, give a misleading impression of the overall
flow particularly in terms of the cross-stream velocity (Fig-
ures 9, 10, and 11). For most cases, W was found to be 0 on
the central cross-stream plane but elsewhere the magnitude of
cross-stream velocity was equivalent to that of vertical veloc-
ity suggesting that the flow is not two-dimensional as often
assumed1,8.

A. The Effect of Reynolds and Schmidt Numbers on Flow in
the Head

Figure 5 and Table III show that increasing either Schmidt
or Reynolds number results in a more defined head, with a

forward angled depression in the density contour behind the
head. The head height, based on the ∆S̃ = 0.03 density con-
tour, decreases slightly from Ỹ ≈ 1.2 at ReI = 100 to Ỹ = 1
at ReI = 500 with no further decrease when Reynolds number
is increased further. Increasing Schmidt number does consis-
tently reduce the head height, with a more significant change
at lower Reynolds number and when Schmidt number is in-
creased from 1 to 10 compared with 10 to 100. The differ-
ence between the right-most positions of the ∆S̃ = 0.03 and
∆S̃ = 0.48 contours as a proportion of current front position
decreases with both increased Reynolds and Schmidt num-
bers, indicating that dense fluid is reaching closer to the front
of the flow. In the (ReI , Sc) = (100, 100) case, the ∆S̃ = 0.48
contour reaches the front of the flow, suggesting that a further
increase in Schmidt number would likely have little impact.

The lobe-and-cleft structures resulting from the over-
running of ambient fluid by the current front are present
in some cases but not others (Figure 8). As lobe-and-
cleft structures are associated with some of the largest bed
shear stresses22,64, and changes in rates of mixing65, accu-
rately capturing this feature is important to understanding the
flow structure. While the (ReI ,Sc) = (100,1), (100,10) and
(500,1) cases do not exhibit over-running of ambient fluid, the
(ReI ,Sc) = (100,100) and (500,10) cases do. Therefore, for
Reynolds numbers O(100) the presence of lobes-and-clefts in
the current head is dependent on the Schmidt number (with
Figure 15b showing the phase space where these structures
are found in this work). This conflicts with the findings of
Bonometti and Balachandar 33 , who suggest that lobe-and-
cleft structures are not Schmidt number dependent. However,
varying Schmidt number in three-dimensional DNS here was
only possible at Reynolds numbers sufficiently low that these
structures were not already present at Sc = 1. As over-running
of ambient fluid is observed in the (ReI ,Sc) = (3000,1) case
(Figure 8), providing the Reynolds number of the flow is suf-
ficiently high this flow feature may be captured without in-
creasing Schmidt number above 1.

B. The Effect of Reynolds and Schmidt Numbers on Flow
Behind the Head

Considering flow behind the head, current height decreases
with both Reynolds and Schmidt numbers (Figure 5 and Table
III). However, the height of the ∆S̃ = 0.48 contour seems to be
relatively consistent regardless of the Reynolds and Schmidt
number of the flow (likely a result of the short duration of
the simulations presented). Increasing Reynolds number from
ReI = 100 to ReI = 500 leads to a smaller percentage de-
crease in current height as Schmidt number is increased. At
the Reynolds and Schmidt number range considered in this
work, the percentage change in thickness of the mixed layer
of fluid behind the head as Schmidt number is increased from
1 to 10 is equivalent in both ReI = 100 and ReI = 500 cases. A
further increase from Sc = 10 to Sc = 100, however, results in
a smaller change. Increasing Reynolds number was found to
have a more complex effect on mixed layer thickness, with the
percentage of flow height taken up by the mixed layer initially
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FIG. 9: Plots of (left) Downstream, (centre) vertical, and (right) cross-stream velocity for each case at t̃ = 23.4 on an X̃− Z̃
slice at Ỹ = 0.1.

FIG. 10: Plots of (left) Downstream, (centre) vertical, and (right) cross-stream velocity for each case at t̃ = 23.4 on an X̃− Ỹ
slice at a central cross-stream location (Z̃ = 0).
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FIG. 11: Plots of (left) downstream, (centre) vertical, and (right) cross-stream velocity for each case at t̃ = 23.4 on an X̃− Ỹ
slice at an off-centre cross-stream location (Z̃ = 0.5).

(a) (b)

FIG. 12: Comparison of the cases with (a) (ReI ,Sc) = (500,1) and (b) (ReI ,Sc) = (500,10) at t̃ = 66.3 on (left) a central
cross-stream plane and (right) a plane perpendicular to the lower boundary at Ỹ = 0.35. From top to bottom, the plots are

excess density fluctuations from the cross-stream average value (where the cross-stream average density is denoted by ∆S̃Z̃),
and downstream, vertical, and cross-stream velocities. The horizontal lines indicate the height of the downstream velocity

maximum, and vertical lines show the approximate downstream locations of ∆S̃−∆S̃Z̃ = 0.
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FIG. 13: Pseudocolour plots of swirling strength at t̃ = 23.4 for each case (left) on an X̃− Ỹ plane at a central cross-stream
location, and (right) on an X̃− Z̃ plane at Ỹ = 0.5. The blue lines illustrate the (solid) ∆S̃ = 0.03 and (dashed) ∆S̃ = 0.48 excess

density contours.

decreasing and then increasing when ReI = 3000. This may be
a result of increased mixing from the Kelvin-Helmholtz struc-
tures (visible in Figure 7) that begin to form as ReI increases.
Close examination of the density contours in Figure 5 and the
isosurfaces in Figure 7 indicates that the Kelvin-Helmholtz
structures may be emerging in the (ReI ,Sc) = (500,10) case
(but not the (ReI ,Sc) = (500,1) case). This suggests that in-
creasing Schmidt number may reduce flow stability.

Several changes resulting from increased Schmidt number

have been noted in the data from this paper. In many cases,
the impact of increasing Schmidt number beyond one is ei-
ther reduced by increasing Reynolds number (for example the
change in current height), or the same changes are observed
with increased Reynolds number (for example the presence
of lobes-and-clefts). There are, however, features that are
not captured if Sc = 1 is assumed. In particular, increasing
Schmidt number is related to the formation of structures at the
current-ambient interface behind the head. This can be seen
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FIG. 14: Comparison of (a) excess density and (b) downstream velocity averaged over downstream locations at the timestep
illustrated in Figure 12, and (c) Ri profile for the cases with (ReI ,Sc) = (500,1) and (500,10) based on the excess density and
velocity profiles shown in (a) and (b). The horizontal lines show (dashed) the height of the current based on where the average
downstream velocity profile changes from positive to negative, and (dot-dash) the average height of the maximum downstream
velocity, and the vertical line indicates the critical value of Ri = 0.25. The inset shows a magnified view of the high Schmidt

number case plot near the upper interface, illustrating where flow Ri moves from above to below the critical value.

in several of the plots presented, for example the instability of
the density contours (Figure 5), in the velocity plots (Figures
9 and 10), and in the swirling strength plots (Figure 13), in
which wave-like distortions in the density contours correlate
with peaks in swirling strength.

The stability of the interface can be quantified by a gradi-
ent Richardson number in the upper part of the flow. In all
cases with Sc = 1, even those with Kelvin-Helmholtz struc-
tures behind the head, the gradient Richardson number in the

upper part of the flow is above the critical value. As discussed
by Pelmard, Norris, and Friedrich 24 , a gradient Richardson
number below 0.25 in the head may lead to the formation of
Kelvin-Helmholtz structures that then dissipate some distance
behind the head if the value rises above the critical level in
the body. Therefore the current-ambient interface in the body
may be stable even with the presence of Kelvin-Helmholtz
structures near the head. All cases with Sc > 1 have Ri < 0.25
in the upper part of the flow, suggesting that density strat-
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FIG. 15: Scatter plots showing the Schmidt and Reynolds numbers where (a) Kelvin-Helmholtz structures, and (b)
lobe-and-cleft structures are present in Figure 7.

ification is no longer stable enough to dissipate the energy
generated through shear, and exhibit the formation of corre-
sponding structures on the current-ambient interface behind
the head. These structures are not diminished as distance from
the head increases (Figure 13), suggesting that this may be a
distinct mechanism from the formation of Kelvin-Helmholtz
vortices, the influence of which decreases with distance from
the head in this data, and which are present in some cases with
Sc = 1 (see Figure 15a). A similar change from above to be-
low the critical gradient Richardson number (with correspond-
ing structure formation) was observed by Kneller et al. 66 in
particulate flows, both with increasing bed slope and increas-
ing particle settling velocity (or larger particle sizes).

The velocity and density perturbations associated with
the structures in the cases with Ri < 0.25 (Figure 12) have
correlated patterns of alternating positive and negative re-
gions, with the 1/4−wavelength offset characteristic of inter-
nal gravity waves61, supporting the conclusions of Marshall
et al. 25 . The formation of these internal gravity waves is a re-
sult of the decrease in mass diffusivity sharpening the density
profile, leading to a change in the stability of the interface.
Crucially, unlike other characteristics, it does not appear to be
the case that this effect of increased Schmidt number is dimin-
ished by increased Reynolds number in the range considered
here. The perturbations in density field are at least as promi-
nent in the ReI = 500 case as in the ReI = 100 cases (Figure 5).
The effect is also not captured purely by increasing Reynolds
number in the range considered in this work. While peaks
in swirling strength are found in the ReI = 1000, 3000 cases,
they are missing the regularity of those in the higher Sc cases
and are not limited to the centre in the cross-stream direction,
supporting the suggestion that this is a separate mechanism to
those seen with increased Reynolds number.

V. CONCLUSIONS

Many numerical investigations of gravity current flows
have sought to mitigate the high computational cost of three-
dimensional direct numerical simulation by claiming the ef-
fect of increasing Schmidt number from 1 is negligible. How-
ever, the justifiability of this assumption has been ques-
tionable given the lack of understanding regarding the ef-
fect of Schmidt number on three-dimensional flow features.
In this work, the effects of Reynolds and Schmidt number
on constant-influx solute-based gravity current flow struc-
ture have been investigated through three-dimensional direct
numerical simulation performed using the spectral element
solver Nek5000. These results have been used to draw con-
clusions regarding when a Sc = 1 assumption is justified.

The importance of considering Schmidt number is depen-
dent on the flow property of interest, and on the flow it-
self. Some flow features appear to be independent of Schmidt
number (for example current front velocity). Additionally,
some of the effects of increased Schmidt number also oc-
cur with increased Reynolds number (such as the appear-
ance of lobe-and-cleft structures in the head) or are reduced
by increased Reynolds number (such as the change in cur-
rent height). A notable exception is the reduction in gradient
Richardson number. In flows with ReI = 100, 500, increasing
Schmidt number from 1 to 10 was found to reduce the gra-
dient Richardson number in the body of the flow from above
to below the critical value, resulting in the presence of struc-
tures in the mixed layer. When moving from ReI = 100 to
ReI = 500, this effect of increased Schmidt number was not
reduced. Further, equivalent structures were not apparent in
the ReI = 3000 case, suggesting that this feature may not be
captured purely by increasing Reynolds number. When con-
sidering the structure of the gravity current body in a high
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Schmidt number flow, assuming Sc = 1 may therefore lead
to qualitative changes in flow structure (for example to inter-
nal gravity waves). The importance of considering Schmidt
number may also depend on flow type, for example the data
presented in this work suggests that Schmidt number impact
may be greater in a more viscous flow (such as clay based
transitional flows67,68), though further work considering the
impact of Reynolds number on such flows is needed.

A Schmidt number of 1 is often assumed when perform-
ing numerical investigations of gravity current flows. This
is largely as a result of the rapidly escalating computational
cost of DNS27,34, which scales with Re3Sc2. When compu-
tational resources are limited, deciding whether to prioritise
increasing Schmidt or Reynolds number is a complex issue
dependent on several factors. There may be no benefit to pri-
oritising Schmidt number at the expense of Reynolds number
if data analysis will focus on parameters that are not Schmidt
number dependent (such as front velocity), or that are also
seen with increased Reynolds number (such as the formation
of lobe-and-cleft structures). However, it is recommended to
have Schmidt number sufficiently large to accurately capture
the body gradient Richardson number. The work presented
here suggests that assuming a Schmidt number of 1 in numer-
ical investigations leads to substantial structural differences
compared with higher Schmidt number flows. However, even
at ReI = 100 the effect of increasing Schmidt number from
10 to 100 was quantitative rather than qualitative (similar to
the findings of Deepwell and Stastna 47 for flow along a pyc-
nocline(s)), and therefore the structure of solute-based flows
(Sc =O(1000)) can likely be captured with the comparatively
minor cost of a small increase in Schmidt number rather than
the large cost of matching Schmidt number exactly.
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