

Harmonic *C**-Categories of Longitudinal Pseudo Differential Operators over Flag Variety

Safa Ahmed Babikir Alsid*

Mathematics PhD Omdurman Islamic university, 002499, Khartoum, Sudan, DOI: 0000-0002-6653-8423 Email: alsafsaf.23660@yahoo.com

Abstract

Let K = SU(3) be the special unitary group and maximal compact subgroup of the special linear group $SL(3; \mathbb{C})$.by depending on order *n*, The main aim of this paper is to use Gelfand-Tsetlin bases to show that the set of longitudinal pseudodifferential operators $\psi_{\mathcal{F}_i}^n$ on K – homogeneous vector bundles E, E^* is the subset of simultaneous multiplier category $\mathcal{A} = \bigcap_{s \subseteq \Sigma} \mathcal{A}_s$, for C^* -categories \mathcal{A}_s and \mathcal{K}_s operators between K – spaces, with simple roots α_1, α_2 of Lie group $SL(3; \mathbb{C})$ by using the Lie algebra $sl(3; \mathbb{C})$ and weight $s \subseteq \Sigma = \{\alpha_1, \alpha_2\}$.

Keywords: Gelfand-Tsetlin pattern; harmonic analysis on flag variety; longitudinal psudodifferential operators; Lie algebras and Lie group.

1. Introduction

In this paper we show that the set of longitudinal psudodifferential operators of n, (n is positive integer) on K – homogeneous vector bundles over flag variety X is the subset of simultaneous multiplier category. This problem requires some lengthy computations in noncommutative harmonic analysis. The approach is connected to the idea of the harmonic C^* -categories and with Bernstein- Gelfand- complex and Kasparov theory for the action of the group $SL(3; \mathbb{C})$ [1]. As in [22] the key computation will be made using Gelfand-Tsetline (GT) bases It is possible to relate each (GT) pattern of integers array with a vector in the irreducible representation with highest weight.

^{*} Corresponding author.

These vectors form an orthogonal basis for this representation and our work depends on the expository paper [17] together with some remarks in [22]. We specialize the case of $sl(3; \mathbb{C})$. Furthermore, in [22] another construction of regarding harmonic analysis on flag manifolds for $SL(n; \mathbb{C})$ has been done. We are particularly interested in the case where n = 3. For the definition and basic properties of longitudinal psudodifferential operators, we refer the reader to [18]. For $SL(3; \mathbb{C}) = G$, the simple roots α_i (i = 1,2) are *G*-equivariant fibrations $\mathbb{X} \to \mathbb{X}_i$ where \mathbb{X}_i is the Grassmannians of lines and planes in the complex Bernstein, Gelfand and Gelfand made a homological complex by assembling interwiners between Verma modules. Refer to [6] for details. The C^* - algebra \mathbb{K}_{α_i} of operators on the L^2 -section space of any homogenous line bundle over flag variety \mathbb{X} associated to each of these fibration. The-fibration is tangent to the longitudinal pseudodifferential operators. The intersection of C^* - algebras \mathbb{K}_{α_i} of compact operators is the important property. For more information, see [1].

2. Notations and Preliminaries

First, we introduce some notation. Let K = SU(3) be the maximal compact subgroup of Lie group $SL(3; \mathbb{C})$. We denote the set of longitudinal pseudodifferential operators of order at most P by $\psi_{\mathcal{F}_i}^p$ and \mathcal{A} is the simultaneous multiplier category of C^* -algebra \mathcal{K}_{α_i} (i = 1, 2) of operators on the L^2 - section space of any homogenous vector bundles over \mathcal{X} [1]. We are only interested in p = 0 and for $i \neq j$ we will answer the question that: $\psi_{\mathcal{F}_i}^0(E, E^*) \subset \mathcal{A}_j$.

Let $n: \begin{bmatrix} t_1 & 0 & 0 \\ 0 & t_2 & 0 \\ 0 & 0 & t_3 \end{bmatrix} \rightarrow \sum_i n_i t_i$ be a map and the weights for $gl(3, \mathbb{C})$ match the $n = (n_1, n_2, n_3)$ via the-map.

The triples $n_1 \ge n_2 \ge n_3$ correspond to the dominant weights. We have a triangular array of integers with conditions:

$$\mu_{(k+1,j)} \ge \mu_{(k,j)} \text{ and } \mu_{(k,j)} \ge \mu_{(k+1,j+1)}$$
 (1)

which is the Gelfand-Tsetline pattern (or GT-pattern)

There are vectors ξ_{Λ} form an orthogonal basis for the irreducible representation π_{n} with highest weight n= ($\mu_{31}, \mu_{32}, \mu_{33}$), such that to each GT-pattern there is associated a vector ξ_{Λ} in π_{n} . ξ_{Λ} is a weight vector, with weight ($s_{1} - s_{0}, s_{1} - s_{2}, s_{3} - s_{2}$) and the sum of the entries of the **k**th row is $s_{k} = \sum_{j=1}^{k} \mu_{kj}$; we obtain the GT-pattern $l_{kj} = \mu_{kj} - j + 1$; and $\Lambda \mp \delta_{kj}$ from Λ by adding ∓ 1 to the (k, j)-entry.

$$\pi(X_1)\xi_{\Lambda} = -(l_{11} - l_{21})(l_{11} - l_{22})\,\xi_{\Lambda+}\delta_{11}.$$

We switch the longest element $\omega_{\rho} \in W$ to the element

$$\omega_{\rho} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \in K$$
(2)

Conjugation by ω_{ρ} interchanges the subgroups K_1 and K_2 . We define vectors form as an alternative orthogonal basis for π_m with related properties $\eta_{\Lambda} = \pi_m(\omega_{\rho})\xi_{\Lambda}$. Equations and formulae should be typed and numbered consecutively with Arabic numerals in parentheses on the right hand side of the page (if referred to explicitly in the text).

3. Harmonic analysis for longitudinal-pseudodifferential operators

Let m = (m, 0, -m) be the π_m representation with highest weight such that $m \in \mathbb{N}$.

The Gelfand-Tsetlin vectors span the **0**-weight space of $V^{(m,0,-m)}$

$$\xi_{m,j} = \xi_{\Lambda}$$
, with $\Lambda = \begin{bmatrix} m & 0 & -m \\ j & -j \\ 0 \end{bmatrix}$, for $j = 0, ..., m$. The vectors span the $(0, -1, 1)$ -weight space

 $\xi'_{m,j} = \xi_{\Lambda}$, for $\Lambda = \begin{bmatrix} m & 0 & -m \\ (j-1) & -j \\ 0 \end{bmatrix}$, j = 1, ..., m. Via the Gelfand-Tsetlin formulas-mentioned above

$$\pi_m(X_2^*)\xi_{m,j} = \frac{j}{2j+1}\xi'_{m,j} + \frac{j+1}{2j+1}\xi'_{m,j+1}$$
(3)

$$\pi_m = (X_2)\xi'_{m,j} = \frac{1}{2}((m+1)^2 - j^2)\xi_{m,j-1} + \frac{1}{2}((m+1)^2 - j^2)\xi_{m,j} \quad (4)$$

$$\pi_{m} = (X_{2})\pi_{m}(X_{2}^{*})\xi_{m,j} = \frac{j}{2(2j+1)}((m+1)^{2} - j^{2})\xi_{m,j-1} + \frac{1}{2}\Big((m+1)^{2} - (j^{2} + j + 1)\Big)\xi_{m,j} + \frac{j+1}{2(2j+1)}((m+1)^{2} - (j^{2} + j +$$

$$\pi_m(X_1^*)\pi_m(X_1)\xi_{m,j} = j(j+1)\xi_{m,j} \tag{6}$$

The vectors norms are

$$\left\|\xi_{m,j}\right\|^2 = \frac{1}{2j+1}m!^2 (2m+1)! \tag{7}$$

$$\left\| \xi'_{m,j} \right\|^2 = \frac{1}{2j} \left((m+1)^2 - j^2 \right) m!^2 \left(2m+1 \right)! \tag{8}$$

We define vectors

$$\eta_{m,j} = \pi_m(\omega_\rho) \, \xi_{m,j} \quad (0 \leq j \leq m), \qquad \eta'_{m,j} = \pi_m(\omega_\rho) \, {\xi'}_{m,j} \quad (1 \leq j \leq m).$$

with weights

 $\boldsymbol{\omega}_{\rho}$. $\mathbf{0} = \mathbf{0}$ has norm $\|\boldsymbol{\eta}_{m,j}\| = \|\boldsymbol{\xi}_{m,j}\|$ and

$$\boldsymbol{\omega}_{\rho}.\left(\mathbf{0},-\mathbf{1},\mathbf{1}\right)=(\mathbf{1},-\mathbf{1},\mathbf{0})=\boldsymbol{\alpha}_{1}\text{ has norm }\left\|\boldsymbol{\eta}'_{m,j}\right\|=\left\|\boldsymbol{\xi}'_{m,j}\right\|.$$

"Eq. (3)" and "Eq. (6)" yield

$$\pi_m(X_1^*)\eta'_{m,j} = \frac{1}{2}((m+1)^2 - j^2)\eta_{m,j-1} + \frac{1}{2}((m+1)^2 - j^2)\eta_j \tag{9}$$

$$\pi_m(X_1^*)\pi_m(X_1)\eta_{m,j}$$

$$= \frac{1}{1(2j+1)} ((m+1)^2 - j^2)_{\eta_{m,j-1}} + \frac{1}{2} ((m+1)^2 - (j^2 + j + 1))_{\eta_{m,j}}$$

$$+ \frac{j+1}{2(2j+1)} ((m+1)^2 - (j+1)^2)_{\eta_{m,j+1}}$$
(10)

We define

$$a_{m,j,k} = \frac{(-1)^j \overline{\omega_m}}{m!^2 (2m+1)!} \langle \xi_{m,j}, \eta_{m,k} \rangle. \tag{11}$$

If $0 \le j, k \le m$ does not hold we write $a_{m,j,k} = 0$.

Lemma 3.1 [1] For any $m \in \mathbb{N}$, $\eta_{m,0} = \omega_m \sum_{j=0}^m (-1)^j \frac{2j+1}{m+1} \xi_{m,j}$, $|\omega_m| = 1$, where $\omega_m \in \mathbb{C}$ is some phase factor.

Lemma 3.2 For $0 \le j, k \le m$, we have the recurrence relation in k with initial condition $a_{m,j,0} = \frac{1}{(m+1)}$.

$$k((m+1)^2 - k^2)_{a_{m,j,k-1}} + (2k+1)\Big((m+1)^2 - (k^2 + k + 1) - 2j(j+1)\Big)_{a_{m,j,k}} + (k+1)((m+1)^2 - (k+1)^2)_{a_{m,j,k+1}} = 0$$
(12)

Proof Apply "Eq. (6)" and "Eq. (10)"

to the equality

$$\langle \pi_m(X_1^*)\pi_m(X_1)\xi_{m,j,\eta_{m,k}} \rangle = \langle \xi_{m,j,\pi_m} (X_1^*)\pi_m(X_1)\eta_{m,k} \rangle$$

to obtain

$$j(j+1)\langle \xi_{mj}, \eta_{m,k} \rangle = \frac{k}{2(2k+1)} ((m+1)^2 - k^2)\langle \xi_{mj}, \eta_{m,k-1} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1}{2} ((m+1)^2 - (k^2 + k + 1)) \langle \xi_{mj}, \eta_{m,k} \rangle + \frac{1$$

$$rac{k+1}{2(2k+1)}((m+1)^2-(k+1)^2)ig\langle\xi_{m,j}\,,\eta_{m,k+1}\,ig
angle,$$

which reduces to (12). Lemma (3.1) gives

$$a_{m,j,0} = (-1)^j \frac{2j+1}{m+1} \frac{1}{m!^2(2m+1)!} \left\| \xi_{m,j} \right\|^2 = \frac{(-1)^j}{(m+1)!}$$

Corollary 3.3 For $0 \le m - 2 \in m, (m - 2 \in) < (m - \epsilon)$, we have the recurrence relation in $m - \epsilon$ with respect to the initial condition $a_{m,m-2\epsilon,0} = \frac{1}{(m+1)}$,

$$(m-\epsilon)((m+1)^2-(m-\epsilon)^2)a_{m,m-2\epsilon,m-\epsilon-1}+$$

$$(2(m-\epsilon)+1)\Big((m+1)^2 - ((m-\epsilon)^2 + m - \epsilon + 1) - 2(m-2\epsilon)(m-2\epsilon+1)\Big)_{a_{m,m-2\epsilon,m-\epsilon}} + (m-\epsilon) + (m-\epsilon)\Big)_{a_{m,m-2\epsilon,m-\epsilon}} + (m-\epsilon)\Big)_{$$

Proof From "Eq. (6)" and "Eq. (10)" we obtain $\langle \pi_m(X_1^*)\pi_m(X_1)\xi_{m,m-2\epsilon}, \eta_{m,m-\epsilon} \rangle = \langle \xi_{m,m-2\epsilon,\pi_m} (X_1^*)\pi_m(X_1)\eta_{m,m-\epsilon} \rangle$

$$(m-2 \in)(m-2 \in +1)\langle \xi_{m,m-2 \in}, \eta_{m,m-\epsilon} \rangle$$

= $\frac{m-\epsilon}{2(2(m-\epsilon)+1)}((m+1)^2 - (m-\epsilon)^2)\langle \xi_{m,m-2 \in}, \eta_{m,m-\epsilon-1} \rangle +$
 $\frac{1}{2}((m+1)^2 - ((m-\epsilon)^2 + m-\epsilon+1))\langle \xi_{m,m-2 \in}, \eta_{m,m-\epsilon} \rangle +$
 $\frac{m-\epsilon+1}{2(2(m-\epsilon)+1)}((m+1)^2 - (m-\epsilon+1)^2)\langle \xi_{m,m-2 \in}, \eta_{m,m-\epsilon+1} \rangle,$

which reduces to "Eq. (12)". Lemma (3.1) gives

$$a_{m,m-2\in,0} = (-1)^{(m-2\in)} \frac{2(m-2\in)+1}{m+1} \frac{1}{m!^2(2m+1)!} \left\| \xi_{m,m-2\in} \right\|^2 = \frac{(-1)^{(m-2\in)}}{(m+1)}.$$

For j > 0, and $(phX_1)\xi_{m,j} = 0$, we obtain the next equation from "Eq. (6)"

$$(X_1)\xi_{m,j} = X_1 \cdot (X_1^*X_1)^{-\frac{1}{2}}\xi_{m,j} = \frac{1}{\sqrt{j(j+1)}}X_1\xi_{m,j}$$
(14)

We suppose that $y_{m,j}$ and $y'_{m,j}$ are the corresponding orthonormal bases,

$$y_{m,j} = \eta_{m,j} / \left\| \eta_{m,j} \right\| = \frac{1}{m!(2m+1)!^{\frac{1}{2}}} \eta_{m,j}$$
(15)

and

$$y'_{m,j} = \eta'_{m,j} / \left\| \eta'_{m,j} \right\| = \frac{1}{m!(2m+1)!^{\frac{1}{2}}} \left(\frac{2j}{(m+1)^2 - j^2} \right)^{\frac{1}{2}} \eta_{m,j}$$
(16)

Lemma 3.4

$$\lim_{m\to\infty} \left\| \left\langle (X_1) y_{m,0}, y'_{m,k} \right\rangle \right\| = \sqrt{2k} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right), \text{ for each fixed } k \in \mathbb{N}.$$

Proof We use "Eq. (14)" and "Eq. (15)", lemma (3.1), "Eq. (13)", "Eq. (10)", and "Eq. (11)", to compute

$$\langle (phX_1)y_{m,0}, y'_{m,k} \rangle = \frac{1}{m!^2 (2m+1)!} \sqrt{\frac{2k}{(m+1)^2 - k^2}} \langle (phX_1)\eta_{m,0}, \eta'_{m,k} \rangle$$

$$=\frac{\omega_m}{m!^2(2m+1)!}\sqrt{\frac{2k}{(m+1)^2-k^2}}\sum_{j=0}^m(-1)^j\frac{2j+1}{m+1}\langle (phX_1)\xi_{m,j},\eta'_{m,k}\rangle$$

$$=\frac{\omega_m}{m!^2(2m+1)!}\sqrt{\frac{2k}{(m+1)^2-k^2}}\sum_{j=0}^m(-1)^j\frac{2j+1}{m+1}\left(\frac{1}{\sqrt{j(j+1)}}X_1\xi_{m,j},\eta'_{m,k}\right)$$

$$=\frac{\omega_m}{m!^2(2m+1)!}\sqrt{\frac{2k}{(m+1)^2-k^2}}\sum_{j=0}^m(-1)^j\frac{2j+1}{m+1}\frac{1}{\sqrt{j(j+1)}}\langle X_1\xi_{m,j},\eta'_{m,k}\rangle$$

$$=\frac{\omega_m}{m!^2(2m+1)!}\frac{1}{m+1}\sqrt{\frac{2k}{(m+1)^2-k^2}}\sum_{j=0}^m(-1)^j\frac{2j+1}{\sqrt{j(j+1)}}\langle\xi_{m,j},X_1^*\eta'_{m,k}\rangle$$

$$=\frac{\omega_m}{m!^2(2m+1)!}\frac{\sqrt{2k(m+1)^2-k^2}}{m+1}\sum_{j=0}^m(-1)^j\frac{2j+1}{2\sqrt{j(j+1)}}\langle\xi_{m,j},\eta_{m,k-1}+\eta_{m,k}\rangle$$

$$=\omega_m \sqrt{2k(1-\frac{k^2}{(m+1)^2}} \sum_{j=0}^m \frac{j+\frac{1}{2}}{\sqrt{j(j+1)}} (a_{m,j,k-1}+a_{m,j,k})$$
(17)

$$\sum_{j=0}^{m} \frac{j + \frac{1}{2}}{\sqrt{j(j+1)}} \left(a_{m,j,k-1} + a_{m,j,k} \right)$$
(18)

$$= \sum_{j=0}^{m} \left(\frac{j + \frac{1}{2}}{\sqrt{j(j+1)}} - 1 \right) \left(a_{m,j,k-1} + a_{m,j,k} \right)$$
(19)

$$= \sum_{j=0}^{m} \left(a_{m,j,k-1} b_{m,j,k-1} \right) + \left(a_{m,j,k} - b_{m,j,k} \right)$$
(20)

$$=\sum_{j=0}^{m} (b_{m,j,k-1} + b_{m,j,k}).$$
(21)

In "Eq. (18)"

$$\left(rac{j+rac{1}{2}}{\sqrt{j(j+1)}}-1
ight)=\sqrt{rac{j^2+j+rac{1}{4}}{j^2+j}}-1\leqrac{1}{8j^2},$$

Fix k, and by remark[1,(A.6], $a_{m,j,k-1}$ and $a_{m,j,k}$ are both $O(m^{-1})$, so (18) goes to **0** as $m \to \infty$. From [1,(A.5)], $(m+1)[C(k-1) + C(k)](m+1)^{-2}$ bounds the equation (19), as $m \to \infty$ also this equation approaches-**0**.

The Riemann sum of the integral $(-1^j) \int_{t=0}^1 P_k (2t^2 - 1) dt$ is

$$\sum_{j=0}^{m} b_{m,j,k} = \frac{1}{m+1} P_k \left(2 \left(\frac{j}{m+1} \right)^2 - 1 \right)$$
(22)

We substitute $(2t^2 - 1) = v$, "Eq. (21)" converges to

$$\left(2^{-\frac{3}{2}}\right)\int_{-1}^{1}(1-v)^{-\frac{1}{2}}P_{k}(-v)dv=\frac{(-1)^{k}}{2k+1}$$

As $m \to \infty$, "Eq. (18)" converges to $(-1)^{k-1}(\frac{1}{2k-1} - \frac{1}{2k+1})$. to complete our proof We put this into "Eq. (17)" to obtain

$$\langle (phX_1)y_{m,0}, y'_{m,k} \rangle = \omega_m \sqrt{2k(1 - \frac{k^2}{(m+1)^2}} \left((-1)^{k-1} (\frac{1}{2k-1} - \frac{1}{2k+1}) \right).$$

Corollary 3.5 ,

 $\left\langle (phX_1)y_{m,0}, y'_{m,(1+\epsilon)} \right\rangle$

$$\lim_{m\to\infty} \left\| \left\langle (phX_i) y_{m,0}, {y'}_{m,(1+\epsilon)} \right\rangle \right\| = \sqrt{2(1+\epsilon)} \left(\frac{1}{2(1+\epsilon)-1} - \frac{1}{2(1+\epsilon)+1} \right), \text{ for each fixed } (1+\epsilon)\epsilon\mathbb{N}, \epsilon \ge 0.$$

Proof Use "Eq. (15)" and "Eq. (16)", lemma (3.1), "Eq. (14)", "Eq. (11)", and "Eq. (12)", to compute

$$= \frac{1}{m!^2 (2m+1)!} \sqrt{\frac{2(1+\epsilon)}{(m+1)^2 - (1+\epsilon)^2}} \left\langle (phX_1)\eta_{m,0}, \eta'_{m,(1+\epsilon)} \right\rangle$$
$$= \frac{\omega_m}{m!^2 (2m+1)!} \sqrt{\frac{2(1+\epsilon)}{(m+1)^2 - (1+\epsilon)^2}} \sum_{(1+\epsilon)=0}^m (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{m+1} \left\langle (phX_1)\xi_{m,(1+\epsilon)}, \eta'_{m,(1+\epsilon)} \right\rangle$$

$$\begin{split} &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \sqrt{\frac{2(1+\epsilon)}{(m+1)^{2} - (1+\epsilon)^{2}}} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{m+1} \left(\frac{1}{\sqrt{(1+\epsilon)(2+\epsilon)}} X_{1} \xi_{m,(1+\epsilon)}, \eta'_{m,(1+\epsilon)} \right) \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \sqrt{\frac{2(1+\epsilon)}{(m+1)^{2} - (1+\epsilon)^{2}}} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{m+1} \frac{1}{\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle X_{1} \xi_{m,(1+\epsilon)}, \eta'_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{1}{m+1} \sqrt{\frac{2(1+\epsilon)}{(m+1)^{2} - (1+\epsilon)^{2}}} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, X_{1}^{*} \eta'_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{\sqrt{2(1+\epsilon)(m+1)^{2} - (1+\epsilon)^{2}}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(3+2\epsilon)}{2\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{(1+\epsilon)^{2}}{m+1} \sum_{(1+\epsilon)=0}^{m} (-1)^{(1+\epsilon)} \frac{(1+\epsilon)^{2}}{2\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \frac{(1+\epsilon)^{2}}{m+1} \sum_{(1+\epsilon)=0}^{m} \frac{(1+\epsilon)^{2}}{\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle \\ &= \frac{\omega_{m}}{m!^{2} (2m+1)!} \sum_{(1+\epsilon)=0}^{m} \frac{(1+\epsilon)^{2}}{\sqrt{(1+\epsilon)(2+\epsilon)}} \left\langle \xi_{m,(1+\epsilon)}, \eta_{m,\epsilon} + \eta_{m,(1+\epsilon)} \right\rangle$$

$$\sum_{(1+\epsilon)=0}^{m} \frac{(\epsilon+\frac{3}{2})}{\sqrt{(1+\epsilon)(2+\epsilon)}} \left(a_{m,(1+\epsilon),\epsilon} + a_{m,(1+\epsilon),(1+\epsilon)} \right)$$
(24)

$$= \sum_{(1+\epsilon)=0}^{m} \left(\frac{(\epsilon+\frac{3}{2})}{\sqrt{(1+\epsilon)(2+\epsilon)}} - 1 \right) \left(a_{m,(1+\epsilon),\epsilon} + a_{m,(1+\epsilon),(1+\epsilon)} \right)$$
(25)

$$= \sum_{(1+\epsilon)=0}^{m} \left(a_{m,(1+\epsilon),\epsilon} \, b_{m,(1+\epsilon),\epsilon} \right) + \left(a_{m,(1+\epsilon),(1+\epsilon)} - b_{m,(1+\epsilon),(1+\epsilon)} \right) \tag{26}$$

$$= \sum_{(1+\epsilon)=0}^{m} (b_{m,(1+\epsilon),\epsilon} + b_{m,(1+\epsilon),(1+\epsilon)}).$$
(27)

In "Eq. (24)"

$$\left(\frac{(\epsilon + \frac{3}{2})}{\sqrt{(1+\epsilon)((2+\epsilon)}} - 1\right) = \sqrt{\frac{(1+\epsilon)^2 + \epsilon + \frac{5}{4}}{(1+\epsilon)^2 + (1+\epsilon)}} - 1 \le \frac{1}{8(1+\epsilon)^2},$$

Fix $(1+\epsilon)$, and by remark[1,(A.6], $a_{m,(1+\epsilon),\epsilon}$ and $a_{m,(1+\epsilon),(1+\epsilon)}$ are both $O(m^{-1})$, so "Eq. (25)" goes to **0** as $m \to \infty$. From [1,(A.5)], $(m+1)[C(\epsilon) + C((1+\epsilon))](m+1)^{-2}$ bounds "Eq. (26)", as $m \to \infty$ also this equation approaches to **0**.

The Riemann sum of the integral $(-1^{(1+\epsilon)}) \int_{t=0}^{1} P_{(1+\epsilon)} (2t^2 - 1) dt$ is

$$\sum_{(1+\epsilon)=0}^{m} b_{m,(1+\epsilon),(1+\epsilon)} = \frac{1}{m+1} P_{(1+\epsilon)} \left(2\left(\frac{(1+\epsilon)}{m+1}\right)^2 - 1\right)$$
(28)

We substitute $(2t^2 - 1) = v$, "Eq. (27)" converges to

$$\left(2^{-\frac{3}{2}}\right)\int_{-1}^{1}(1-v)^{-\frac{1}{2}}P_{(1+\epsilon)}(-v)dv = \frac{(-1)^{(1+\epsilon)}}{2(1+\epsilon)+1} = \frac{(-1)^{(1+\epsilon)}}{3+2\epsilon}$$

As $m \to \infty$, "Eq. (23)" converges to $(-1)^{\epsilon} (\frac{1}{1+2\epsilon} - \frac{1}{3+2\epsilon})$. to complete our proof. We put this into "Eq. (22)":

$$\left\langle (phX_1)y_{m,0}, y'_{m,(1+\epsilon)} \right\rangle = = \omega_m \sqrt{2(1+\epsilon)(1-\frac{(1+\epsilon)^2}{(m+1)^2}} \left((-1)^{\epsilon} (\frac{1}{1+2\epsilon}-\frac{1}{3+2\epsilon}) \right).$$

Lemma 3.6 on any unitary K- representation \mathcal{H} the operators $(phX_1^*)p_{\sigma_0}$, and therefore $p_{\sigma_0}(phX_1)$, are in $\mathcal{K}_{\beta_2}(\mathcal{H})$. Proof. Let U be a unitary representation of K on \mathcal{H} . The antilinear map $J: \mathcal{H} \to \mathcal{H}^\dagger; \xi \to \langle \xi, . \rangle$ Intertwines the representations U and U^\dagger . for any X in the complexification $\iota_{\mathbb{C}}$, $J^{-1}U^\dagger(X)J = -U(X)^*$. Since J is anti-unitary, $J^{-1}ph(U^\dagger(X))J = -ph(U(X^*))$. If $\xi \in \mathcal{H}$ has K_2 -type σ , then $J\xi$ has K_2 -type σ^\dagger , so $p\sigma = J^{-1}p_{\sigma}^\dagger J$. By conjugating by J, the estimate $\|p_F^{\perp}(PhX_1)p_{\sigma_0}\| < \epsilon$ implies $\|p_{F^{\dagger}}^{\perp}(PhX_1^*)p_{\sigma_0}\| < \epsilon$, where $F^{\dagger} = \{\sigma^{\dagger}|\sigma \in F\}$. Corollary 3.7 on any unitary K- representation \mathcal{H} , the operators (phX_1^*) , are in $\mathcal{K}_{\beta_2}(\mathcal{H})$. Proof. Let U be a unitary representation of K on \mathcal{H} . The antilinear map $J: \mathcal{H} \to \mathcal{H}^\dagger; \xi \to \langle \xi, . \rangle$ intertwines the representations U for any X^* in the complexification $\iota_{\mathbb{C}}$, $J^{-1}U^{\dagger}(X)^*J = -U(X)$. Since J is anti-unitary, $J^{-1}ph(U^{\dagger}(X^*))J = -ph(U(X))$. If $\xi \in \mathcal{H}$ has K_2 -type σ^\dagger , so $p\sigma = J^{-1}p_{\sigma}^\dagger J$. By conjugating by J, the estimate $\|p_F^{\perp}(PhX_1)p_{\sigma_0}\| < \epsilon$ implies $\|p_{F^{\dagger}}^{\perp}(PhX_1)p_{\sigma_0}\| < \epsilon$ induction $\iota_{\mathbb{C}}$, $J^{-1}U^{\dagger}(X)^*J = -U(X)$. Since J is anti-unitary, $J^{-1}ph(U^{\dagger}(X^*))J = -ph(U(X))$. If $\xi \in \mathcal{H}$ has K_2 -type σ^\dagger , so $p\sigma = J^{-1}p_{\sigma}^\dagger J$. By conjugating by J, the estimate $\|p_F^{\perp}(PhX_1)p_{\sigma_0}\| < \epsilon$ implies $\|p_{F^{\dagger}}^{\perp}(PhX_1)p_{\sigma_0}\| < \epsilon$, where $F^{\dagger} = \{\sigma^{\dagger}|\sigma \in F\}$. Lemma 3.8 let v be a weight of K. For any $f \in C(K)$, $[PhX_1, M_f]pv$ and $[PhY_1, M_f]pv$ are in $\mathcal{K}_{\alpha_1}(L^2(K))$. Proof. Assume that f is a weight vector for the right regular representation, i.e, $f \in C(X; E_{-\mu})$ for some μ . Through Lemma[3.19,1] we have

$[PhX_1, M_f]: pvL^2(K) \to p_{\nu+}\mu + \propto_1 L^2(K)$

Is in \mathcal{K}_{α_1} , which implies the result. The subspace spanned by these weight vectors contains all matrix units, so is uniformly dense in C(K). A density argument completes the proof. Similarly, $[PhY_1, M_f]pv \in \mathcal{K}_{\alpha_1}$. corollary 3.9 let v be a weight of K. For any $f_j \in C(K)$, $[PhX_1, M_{\sum f_j}]pv$ and $[PhY_1, M_{\sum f_j}]pv$ are in $\mathcal{K}_{\alpha_1}(L^2(K))$. Proof. Assume that f_j is a weight vector for the right regular representation, i.e, $f_j \in C(\mathcal{X}; E_{-\mu})$ for some μ . Through Lemma[3.19,1] we have

$$\left[PhX_1, M_{\Sigma f_j}\right]: pvL^2(K) \to p_{\nu+}\mu + \alpha_1 L^2(K)$$

is in \mathcal{K}_{α_1} , which implies the result. The subspace spanned by these weight vectors contains all matrix units, so is uniformly dense in $\mathcal{C}(K)$. A density argument completes the proof. Similarly, $\left[PhY_1, M_{\Sigma f_j}\right] pv \in \mathcal{K}_{\alpha_1}$. Theorem 3.10 On any unitary K representation on \mathcal{H} , PhX_i and PhY_i are in $\mathcal{A}(\mathcal{H})$ for i = 1, 2. *Proof.* We first have $\mathcal{H} = L^2(K)$ with right regular representation, and consider PhX_1 . With respect to lemma[3.7,1], the finite multiplicity of K-types in $L^2(K)$ implies that $\mathcal{A}_{\Sigma}(L^2(K)) = \mathcal{L}(L^2(K))$, so $PhX_1 \in \mathcal{A}_{\Sigma}$ trivially. Since PhX_1 maps the μ -weight space into the $(\mu + \alpha_1)$ -weight space for each weight μ , it is *M*-harmonically proper, so in \mathcal{A}_{\emptyset} . Since X_1 in $(\iota_1)_{\mathbb{C}}$, PhX_1 preserves K_1 -types, so $PhX_1 \in \mathcal{A}_{\alpha_1}$. And eventually we are going to show that $PhX_1 \in \mathcal{A}_{\alpha_2}$. Let $\sigma \in \hat{K}_2$ and let $\psi_{1,\dots,\mu}\psi_n \in C(K)$ be as in lemma [A.10,1]. Then

$$(PhX_1)p\sigma = \sum_{j=1}^n (PhX_1)M_{\psi j} P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n (PhX_1) P\sigma_0 M_{\overline{\psi j}} = \sum_$$

since $P\sigma_0$ projects into the **0**-weight space, lemmas [A.8, 1], (1.6) and [3.11,1], show that $(PhX_1) p\sigma \in \mathcal{K}_{\alpha_2}$. By analogous computation lemma (1.4) illustrate that $(PhY_1)p\sigma = (PhX_1^*)p\sigma \in \mathcal{K}_{\alpha_2}$, so $p\sigma(PhX_1) \in \mathcal{K}_{\alpha_2}$. By proposition 3.6, $PhX_1 \in \mathcal{A}_{\alpha_2}$

then $PhX_1 \in \mathcal{A}$. By taking adjoints $PhY_1 \in \mathcal{A}$.

conjugation by the longest weyl group element interchanges \mathcal{A}_{α_1} and \mathcal{A}_{α_2} and fixes \mathcal{A}_{\emptyset} and \mathcal{A}_{Σ} , so fixes \mathcal{A} . It also sends X_1 and Y_1 to Y_2 and X_2 , respectively. We obtain PhY_2 , $PhX_2\epsilon\mathcal{A}$. The theorem remains true if \mathcal{H} is a direct sum of arbitrarily many copies of the regular representation. Since every unitary K-representation can be equivariantly embedded into such a direct sum, we are done. Corollary 3.11 on any unitary K_{r-1} representation on \mathcal{H} , PhX_i and PhY_i are in $\mathcal{A}(\mathcal{H})$ for i = 1, 2. *Proof.* We first have $\mathcal{H} = L^2(K_{r-1})$ with right regular representation, and consider PhX_1 . With respect to lemma[3.7,1], the finite multiplicity of K_{r-1} -types in $L^2(K_{r-1})$ implies that $\mathcal{A}_{\Sigma}(L^2(K_{r-1})) = \mathcal{L}(L^2(K_{r-1}))$, so $PhX_1 \in \mathcal{A}_{\Sigma}$ trivially. Since PhX_1 maps the μ -weight space into the $(\mu + \alpha_1)$ -weight space for each weight μ , it is *M*-harmonically proper, so in \mathcal{A}_{\emptyset} . Since X_1 in $(\iota_1)_{\mathbb{C}}$, PhX_1 preserves K_r -types, so $PhX_1 \in \mathcal{A}_{\alpha_1}$. And eventually we are going to show that $PhX_1 \in \mathcal{A}_{\alpha_2}$. Let $\sigma \in \hat{K}_{r+1}$ and let $\psi_{1,\dots,\psi_n}\psi_n \in C(K_{r-1})$ be as in lemma [A.10,1]. Then

$$(PhX_1)p\sigma = \sum_{j=1}^n (PhX_1)M_{\psi j} P\sigma_0 M_{\overline{\psi j}} = \sum_{j=1}^n M_{\psi j}(PhX_1) P\sigma_0 M_{\overline{\psi j}} + \sum_{j=1}^n [(PhX_1), M_{\psi j}] P\sigma_0 M_{\overline{\psi j}}.$$

since $P\sigma_0$ projects into the **0**-weight space, lemmas [A.8, 1], (1.6) and [3.11,1], show that $(PhX_1) p\sigma \in \mathcal{K}_{\alpha_2}$. By analogous computation lemma (1.4) illustrate that $(PhY_1)p\sigma = (PhX_1^*)p\sigma \in \mathcal{K}_{\alpha_2}$, so $p\sigma(PhX_1) \in \mathcal{K}_{\alpha_2}$. By proposition 3.6, $PhX_1 \in \mathcal{A}_{\alpha_2}$

then $PhX_1 \in \mathcal{A}$. By taking adjoints $PhY_1 \in \mathcal{A}$.

conjugation by the longest weyl group element interchanges \mathcal{A}_{α_1} and \mathcal{A}_{α_2} and fixes \mathcal{A}_{\emptyset} and \mathcal{A}_{Σ} , so fixes \mathcal{A} . It also sends X_1 and Y_1 to Y_2 and X_2 , respectively. We obtain PhY_2 , $PhX_2\epsilon\mathcal{A}$. The theorem remains true if \mathcal{H} is a direct sum of arbitrarily many copies of the regular representation. Since every unitary K_{r-1} -representation can be equivariantly embedded into such a direct sum, we are done. Theorem 3.12 Let E, E^* be K – vector bundles over flag variety X, then $\psi_{\mathcal{F}_i}^n(E, E^*) \subseteq \mathcal{A}$. Proof. It is clear

that $\overline{\psi_{\mathcal{F}_{\iota}}^{-1}}(E_n) \subseteq \mathcal{A}$. Let $E_n = E = E^* = E_{\rho} = E_{\sigma}$, the trivial line bundle over flag variety X.

$$n \to \overline{\psi_{\mathcal{F}_i}^{-1}}(E_n) \to \overline{\psi_{\mathcal{F}_i}^n}(E_n) \to \mathcal{C}(\mathcal{S}^*\mathcal{F}_i) \to n$$

According to the Stone-Weierstrass theorem and since the points in different fibres of $S^*\mathcal{F}_i$ are separated by the function algebrac we prove that $C(S^*\mathcal{F}_i) = C$ by showing that it separates the points of $S^*\mathcal{F}_i$. The multiplication operator $M_f \in \psi_{\mathcal{F}_i}^n(E_n) \cap \mathcal{A}$ for any $f \in C(\mathbb{X})$. Let $\emptyset \in C(\mathbb{X}, E_{\sigma})$ be any non-zero smooth section of E_{σ} at the identity coset. $M_{\emptyset}phx_i \in \psi_{\mathcal{F}_i}^n(E_n) \cap \mathcal{A}$ and its principal symbol separates points of the fiber at the identity coset. By Lemma 2.1 $\emptyset_1, ..., \emptyset_n \in C(\mathbb{X}, E_{\mu}), \ \emptyset_1', ..., \emptyset_m' \in C(\mathbb{X}, E_v)$. For each j, μ and $k \in K, \overline{M_{\emptyset_i'}} \land M_{\emptyset k} \in \overline{\psi_{\mathcal{F}_i}^n}(E_n) \subseteq \mathcal{A}$, for $A \in \overline{\psi_{\mathcal{F}_i}^n}$.

References

- Yuncken R., The Bernstein–Gelfand–Gelfand complex and Kasparov theory for SL (3, C), Advances in Mathematics, 226(2), pp. 1474-512, 2011 Jan 30.
- [2]. M.F. Atiyah. & I.M. Singer., The index of elliptic operators. IV, Ann. of Math, 93(2), pp. 119–138, 1971.
- [3]. P. Baum, A. & Connes, N. Higson., Classifying space for proper actions and K-theory of group C*algebras, in: C*- Algebras, San Antonio, TX, in: Contemp. Math, vol. 167, pp. 1943–1993, 1993. & Amer. Math. Soc., Providence, RI, pp. 240–291, 1994.
- [4]. I. Bernstein, I. & Gel'fand, S. Gel'fand., Differential operators on the base affine space and a study of g-modules in Lie Groups and Their Representations, Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971. & Halsted, New York, pp. 21–64, 1975.
- [5]. Bruce Blackadar., K-Theory for Operator Algebras, Second Ed, Math. Sci. Res. Inst. Publ, Cambridge University Press, Cambridge, vol. 5, 1998.
- [6]. Andreas Cap, Jan Slovák & Vladimír Sou ček, Bernstein–Gelfand–Gelfand sequences, Ann. of Math,
 (2) 154 (1), 97–113, 2001.
- [7]. Michel Duflo, Représentations irréductibles des groupes semi-simples complexes, in: Analyse harmonique sur les groupes de Lie, Sém., Nancy–Strasbourg, 1973–1975, in: Lecture Notes in Math., Vol. 497, Springer, Berlin, pp. 26–88, 1975.
- [8]. I.S. Gradshteyn & I.M. Ryzhik, Table of Integrals, Series, and Products, fourth edition prepared by Ju.V. Geronimus and M.Ju. Ce⁻itlin, translated from the Russian by Scripta Technica, Inc., translation edited by Alan Jeffrey, Academic Press, New York, 1965.
- [9]. Nigel Higson, The Baum–Connes conjecture, in: Proceedings of the International Congress of Mathematicians, vol. II, Berlin, pp. 637–646, 1998.
- [10]. Pierre Julg, La conjecture de Baum–Connes à coefficients pour le groupe Sp(n, 1), C. R. Math. Acad. Sci. Paris 334 (7), 533–538, 2002.
- [11]. P. Julg & G. Kasparov, Operator K-theory for the group SU(n, 1), J. Reine Angew. Math. 463, 99–152, 1995.
- [12]. G. Kasparov& Lorentz groups: K-theory of unitary representations and crossed products, Dokl. Akad.

Nauk SSSR, 275 (3), 541-545, 1984.

- [13]. G. Kasparov, Equivariant KK-theory and the Novikov conjecture, Invent. Math, 91 (1), 147–201, 1988.
- [14]. V. Lafforgue, K-théorie bivariante pour les algèbres de Banach et conjecture de Baum–Connes, Invent. Math. 149, 1–95, 2002.
- [15]. V. Lafforgue, Un renforcement de la propriété (T), Duke Math. J. 143 (3), 559-602, 2008.
- [16]. E.C. Lance, Hilbert C*-Modules: A Toolkit for Operator Algebraists, London Math. Soc. Lecture Note Ser., vol. 210, Cambridge University Press, Cambridge, 1995.
- [17]. A.I. Molev, Gel'fand–Tsetlin bases for classical Lie algebras, Handbook of Algebra, in: M. Hazewinkel (Ed.), Elsevier, pp. 109–170, 2006.
- [18]. Calvin C. Moore & Claude L. Schochet, Global Analysis on Foliated Spaces, second ed., Math. Sci. Res. Inst. Publ., vol. 9, Cambridge University Press, New York, 2006.
- [19]. M. Puschnigg, Finitely summable Fredholm modules over higher rank groups and lattices, preprint, http://arxiv.org/ abs/0806.2759, 2008.
- [20]. Michael E. Taylor, Pseudodifferential Operators, Princeton Math. Ser., Vol. 34, Princeton University Press, Princeton, NJ, 1981.
- [21]. R. Yuncken, Analytic structures for the index theory of SL(3,C), PhD thesis, Penn State University, 2006.
- [22]. Robert Yuncken, Products of longitudinal pseudodifferential operators on flag varieties, J. Funct. Anal, 258 (4), 1140–1166, 2010.