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Abstract

Browser extensions are popular to enhance users’ browsing experi-
ence. By design, they have access to security- and privacy-critical
APIs to perform tasks that web applications cannot traditionally do.
Even though web pages and extensions are isolated, they can com-
municate through messages. Specifically, a vulnerable extension
can receive messages from another extension or web page, under
the control of an attacker. Thus, these communication channels
are a way for a malicious actor to elevate their privileges to the
capabilities of an extension, which can lead to, e.g., universal cross-
site scripting or sensitive user data exfiltration. To automatically
detect such security and privacy threats in benign-but-buggy exten-
sions, we propose our static analyzer DoubleX. DoubleX defines
an Extension Dependence Graph (EDG), which abstracts extension
code with control and data flows, pointer analysis, and models the
message interactions within and outside of an extension. This way,
we can leverage this graph to track and detect suspicious data flows
between external actors and sensitive APIs in browser extensions.

We evaluated DoubleX on 154,484 Chrome extensions, where it
flags 278 extensions as having a suspicious data flow. Overall, we
could verify that 89% of these flows can be influenced by external
actors (i.e., an attacker). Based on our threat model, we subsequently
demonstrate exploitability for 184 extensions. Finally, we evaluated
DoubleX on a labeled vulnerable extension set, where it accurately
detects almost 93% of known flaws.
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1 Introduction

The Web has become a popular ecosystem used by billions of peo-
ple every day. To extend their browser functionality, users install
browser extensions. For the most popular desktop browser Chrome
(with a market share of 67% [78]), there are almost 200,000 ex-
tensions, totaling over 1.2 billion installs [26]. While some ex-
tensions merely customize user browser interface, others serve
more security- and privacy-critical tasks, e.g., to be effective, an
ad-blocker needs to modify web page content or intercept network
requests. To achieve this, and contrary to regular JavaScript in web
pages, extensions have privileged capabilities, such as downloading
arbitrary files or accessing arbitrary cross-domain data.

Given their elevated privileges, extensions attract the interest
of attackers [1, 35, 39, 81, 82]. Still, Google engineers are actively
working on detecting such malicious extensions in their store. In
February 2020, they removed 500 extensions that were exfiltrating
user data [41]; in April 2020, 49 additional extensions that were
hijacking users’ cryptocurrency wallets [42]; in June 2020, an ex-
tra 70 spying extensions [48]; and, in December 2020, extensions
redirecting to phishing websites [43]. In addition, before being pub-
lished, extensions are reviewed by Chrome’s vetting system to flag
extensions requiring many or powerful privileges for further analy-
ses [16] and to directly detect the ones that may contain or spread
malicious software. This process makes it harder to have malicious
extensions in the store today.

Still, malicious extensions represent only a fraction of the ex-
tensions that may lead to security or privacy issues. In fact, an
attacker can also abuse vulnerable extensions to elevate its priv-
ileges through the capabilities of an extension. To this end, an
attacker can leverage an extension’s communication channels to
send payloads to this extension, tailored to exploit its vulnerabilities.
Such vulnerabilities can lead to, e.g., universal cross-site scripting
(XSS) (i.e., the ability to execute code in every website even without
a vulnerability in the site itself) or sensitive user data exfiltration.
Due to their inherently benign intent, these vulnerable extensions
are more challenging to detect than malicious ones, e.g., as they are
not doing anything suspicious. Furthermore, even though they do
require powerful privileges, their benign nature allows them to pass
the review process. While some previous works have focussed on
vulnerable extensions, they were either purely formal [7], specific
to the deprecated Firefox XPCOM [52] infrastructure [5, 6], or based
on primarily manual analysis [8]. To the best of our knowledge,
only EmPoWeb from Somé [72] focuses on analyzing extensions’
susceptibility to attacks through external messages at scale. In prac-
tice, though, his work is based on a lightweight call graph analysis
and yields an extremely high number of reported extensions to
manually vet: of the 66k Chrome extensions analyzed, it flagged
3.3k as suspicious, and 95% of them were false alarms. In fact, we
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currently lack a precise analyzer to perform an analysis at scale
and limit the number of extensions falsely reported as vulnerable
so as to cut down the manual effort.

In this paper, we introduce our static analyzer DoubleX, which
relies on an advanced data flow analysis to accurately track data
from and toward security- and privacy-critical APIs in extensions.
In particular, due to its entirely static character, DoubleX has com-
plete coverage of the available code. Specifically, we propose a
semantic abstraction of extension code, including control and data
flows, and pointer analysis. In addition, DoubleX models inter-
actions between extension components with a message flow. We
refer to the resulting structure as the Extension Dependence Graph
(EDG). DoubleX then leverages the EDG to detect external mes-
sages coming from web pages or extensions and flags them as
attacker-controllable. At the same time, it collects security- and
privacy-critical APIs in browser extensions. Finally, DoubleX per-
forms a data flow analysis to identify any path between external
actors (i.e., an attacker) and these sensitive APIs. DoubleX summa-
rizes its findings in fine-grained data flow reports.

We analyzed 154,484 Chrome extensions, 278 of whichwe flagged
as having externally controllable data flows or exfiltrating sensitive
user information. For those, we could verify that 89% of the data
flows can be influenced by an attacker, which highlights DoubleX
precision. In addition, we detected 184 extensions (with 209 vul-
nerabilities) that are exploitable under our threat model, leading
to, e.g., arbitrary code execution in any website. Also, we evalu-
ated DoubleX recall on a ground-truth vulnerable extension set,
where it accurately flags 92.64% of known vulnerabilities. Finally,
DoubleX is fast and can analyze 93% of our extension set in less
than 20s per extension, with a median time of 2.5s, highlighting its
practicability for an accurate analysis at scale.

To sum up, our paper makes the following contributions:
• We introduce our static analyzer DoubleX to analyze browser
extensions at scale. Specifically, we define an Extension Depen-
dence Graph (EDG), which provides a semantic abstraction of
extension code (including control and data flows, and pointer
analysis) and models message interactions within and outside of
an extension.
• We leverage the EDG to perform a data flow analysis to track data
from and toward security- and privacy-critical APIs in browser
extensions.
• We perform a large-scale analysis of Chrome extensions and
identify 184 vulnerable extensions. In addition, we highlight
DoubleX precision (89% verified dangerous data flows) and recall
(detection of 92.64% of known vulnerabilities).
• For reproducibility, follow-up work, and practical detection of
suspicious external data flows in specific APIs of browser exten-
sions, we make DoubleX publicly available [27].

2 Browser Extensions

Browser extensions are third-party programs, which users can
install to extend browser functionality, e.g., by adding ad-blocking
capabilities or better integration with shopping sites. In this section,
we first present the extension architecture with a highlight on
security mechanisms extensions implement. Then, we focus on the
message-passing APIs they use to communicate.

Figure 1: Extension architecture

2.1 Architecture and Security Considerations

By design, extensions have access to privileged APIs and features.
Contrary to JavaScript inweb pages, which is restricted by the Same-
Origin Policy (SOP) [59], extensions can access arbitrary cross-
domain in the logged-in context of the user’s browser and inject
code into any document. Due to their elevated privileges, extensions
may introduce security and privacy threats and put their user base
at risk. To limit those risks, extensions only have access to the
permissions explicitly declared in their manifest.json [14, 57]. Such
permissions include the possibility for an extension to read/write
user data on any or specific web pages (host), to store/retrieve data
from the extension storage (storage), to download arbitrary files
(downloads), or to access users’ browsing history (history).

As represented in Figure 1, an extension is divided into four
main components. The core logic of an extension is implemented
through a background page (or background scripts),1 which runs
independently of the lifetime of any particular web page or browser
window. Through the background page, or if defined in the mani-
fest, an extension can inject content scripts to run along with web
applications. These content scripts can use the standard DOM APIs
to read and modify web pages and have access to localStorage,
similarly to the scripts loaded by web pages. UI pages enable users
to customize an extension’s behavior, e.g., over different options,
settings, or pop-ups. Finally, through definition in the manifest,
an extension can expose Web Accessible Resources (WARs), e.g.,
scripts to be executed on every page. While the highly privileged
background page, UI pages, and WARs have access to the full ex-
tension’s capabilities, the less privileged content scripts only have
access to the host2 and storage permissions.

2.2 Message Passing in Extensions

To communicate with web pages and other extensions, an extension
relies on message passing. In this section, we present the communi-
cation channels between a web page and each extension component,
within an extension, and between two extensions. Figure 2 shows
an overview of the message-passing APIs.
Web Page - Content Script — Web pages and content scripts
communicate over regular postMessages [62] (similarly to the com-
munication between two web pages). Likewise, to receive messages,
they use the addEventListener or onmessage API [55, 61], as shown

1Replaced with service workers, for Chrome Manifest V3 [19]
2Starting with Chrome Manifest V3, content scripts are subject to the same request
rules as the page they are running within [23]
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Figure 2: Extension message-passing APIs

in Listing 1 (orange and blue refer to receiving and sending mes-
sages, respectively). By default, content scripts receive all messages
sent toward the window in which they are injected. Thus, if a web
page running a content script receives a postMessage from another
page, the content script’s handler is also invoked.
Content Script - Background Page — There are two types of
APIs to exchange messages between a content script and a back-
ground page. The one-time requests API aims at sending a single
message and receiving a response. In contrast, long-lived connec-
tions leverage an established message port and stay open to ex-
change multiple messages [18]. As shown in Figure 2, the con-
tent script uses runtime.sendMessage (one-time) or runtime.connect
(long-lived) to send messages.3 Similarly, the background page
sends requests with tabs.sendMessage (one-time) or tabs.connect
(long-lived). In both cases, the last parameter of these APIs can be
a callback to access the response sent by the other component (for
Firefox, these APIs can return a Promise [58] instead of invoking a
callback). As for receiving messages (and responding), both compo-
nents register a listener: runtime.onMessage.addListener (one-time)
or runtime.onConnect.addListener (long-lived). Listing 2 illustrates
Chrome one-time requests.
Web Page - Background Page — For Chromium-based exten-
sions, a web application and a background page can directly com-
municate under two assumptions [18]. First, the extension should
fill the externally_connectable field in its manifest with specific
URLs, to allow the communication with the corresponding web
pages only. Second, the communication can only be initiated by the
web application. As presented in Figure 2, the web application sends
requests (and gets a response) with runtime.sendMessage (one-time)
or runtime.connect (long-lived). The background page receives mes-
sages (and responds) with runtime.onMessageExternal.addListener

(one-time) or runtime.onConnectExternal.addListener (long-lived).
We give an example in Listing 6 in the Appendix.

3For legibility reasons, we omit browser/chrome from the APIs, which would be,
e.g., chrome.runtime.sendMessage or browser.runtime.sendMessage

1 / / Web page code
2 window.postMessage ( " Hi CS " , " ∗ " ) ; / / Sends
3
4 / / Content s c r i p t code
5 window.onmessage = f un c t i o n ( even t ) {
6 r e c e i v e d = e v e n t . d a t a ; / / r e c e i v e d = " Hi CS "
7 }

Listing 1: Messages: web page - content script

1 / / Content s c r i p t code
2 chrome . run t ime . s endMessage ( " Hi BP " , f u n c t i o n ( r e sponse ) {
3 c sRe c e i v ed = r e s p o n s e . f a r ew e l l ; / / c sR e c e i v ed = " Bye CS "
4 } ) ;
5
6 / / Background page code
7 ch r ome . r un t ime . onMe s s a g e . a ddL i s t e n e r (
8 f u n c t i o n ( r eque s t , sender , sendResponse ) {
9 bpRece ived = r e qu e s t ; / / bpRece ived = " Hi BP "
10 sendResponse ( { f a r ew e l l : " Bye CS " } ) ;
11 } ) ;

Listing 2: Messages: content script - background page

Case of UI Pages and WARs — Like the background page, UI
pages and WARs are part of the extension core. To exchange mes-
sages with the content scripts or with a web page, they use the
same APIs as those used by the background page, respectively. As
WARs can be injected as iframes in web pages, WARs also lever-
age the same APIs as the content scripts to interact with a web
page. Figure 1 summarizes the three sorts of messages used by the
extension components, while Figure 2 presents the specific APIs.
Extension A - Extension B — Finally, two extensions can com-
municate. In this case, the message-passing APIs are the same as
those for the communication between a background page and a web
application. Still, contrary to the communication with a web page,
communication is enabled by default with all extensions [15]. To
interact with specific extensions only, an extension must explicitly
declare the IDs of allowed extensions in its manifest.

3 Threat Model

Browser extensions can interact with web pages and other exten-
sions. By design, malicious actors can send specific messages to a
vulnerable extension, tailored to exploit its flaws. Given extensions’
elevated privileges, attackers could gain the following capabilities:
• Code execution: attackers can execute arbitrary code in the ex-
tension (or content script) context. For example, through eval, they
could exploit all the extension’s permissions. Through tabs.execute-

Script, they may gain a universal XSS, i.e., execute arbitrary code
in every web page even without a vulnerability in the page itself;
• Triggering downloads: they can download and save arbitrary
files on users’ machines without prior notice;
• Cross-origin requests: they can bypass the Same-Origin Policy;
• Data exfiltration: they can access sensitive user information
such as cookies, browsing history, or most visited websites, leading
to, e.g., session hijacking, tracking, or fingerprinting.

In this paper, we focus on two attacker scenarios: aWeb Attacker
and an attacker abusing a Confused Deputy through an unprivileged
extension. In the first scenario, an attacker can trick a user into
visiting a web page that can communicate with an extension. This
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page, which can be either malicious or compromised, can subse-
quently send messages to exploit a vulnerable extension. While a
compromised web page is in itself troublesome, a compromised ex-
tension is much more powerful, as a Web attacker can leverage the
extension’s privileges to attack unrelated sites or exfiltrate sensitive
user data to arbitrary sites. In the second scenario, an attacker can
trick a user into installing a specific extension under their control.
As previously, this extension would send the payload to exploit a
vulnerable extension (i.e., the confused deputy). A malicious exten-
sion using this technique would be harder to detect than a classical
malicious one: as it does not need any permission nor uses any
sensitive API, its maliciousness stays hidden [6]. The only aim of
such a malicious extension would be to exploit the privileges of
vulnerable ones. As a cover, it could implement innocuous func-
tionality that does not require any privilege, making it easy to pass
through the review process [16]. To evaluate the feasibility of an
attack through an unprivileged extension, we uploaded such an
extension to the Chrome Web Store. Under the pretense of cus-
tomizing the default new tab page in Chrome, our extension was
sending malicious payloads to exploit two vulnerable extensions
reported by DoubleX. Our extension was reviewed, and we were
notified of its acceptance one day later. Once accepted, we installed
the extension along with the two vulnerable ones. We confirm that
we could exploit their vulnerabilities against ourselves. Similarly to
CrossFire [6], we stress that our extension was designed as a case
study. Specifically, we did not test it against real users, nor harm
anyone; we set the extension visibility to unlisted (i.e., only people
with the link could see it), we did not advertise it, and we confirm
that it was downloaded only once (by us, to test it), and then we
promptly removed it. Hence, we are confident that neither users
were harmed nor details of the vulnerable extensions made public.

Naturally, for attackers to exploit a vulnerable extension, the
victim should have the extension installed. An attacker can either
detect the extensions installed by a given user (e.g., by leveraging
DOM changes [75, 77], style changes [44], WARs [40, 70], or timing-
channels [69]) to send tailored payloads or simply try to exploit
a victim by firing all their malicious payloads. In this paper, we
consider an extension to be vulnerable when at least another exten-
sion or web page can exploit its privileges to lead to the security or
privacy issues we presented. This is motivated by the fact that any
website could be compromised: even high-profile sites like Google
had an XSS vulnerability (2019) [63].

4 DoubleX

DoubleX performs a fully static data flow analysis of browser
extensions to detect those with suspicious external flows. We chose
to conduct a static analysis due to its speed and code coverage. This
section first provides a high-level overview of our system before
presenting its three main components in more detail.

4.1 Conceptual Overview

As illustrated by Figure 3, DoubleX abstracts the source code of an
extension with semantic information and models the interactions
within and outside of an extension. This way, we can perform a
data flow analysis to identify any path between an attacker and
sensitive APIs. In its core, we implemented DoubleX in Python.
First, we build an Abstract Syntax Tree (AST [2]) for each extension

Figure 3: Architecture of DoubleX

component, which we enhance with control and data flows, and
pointer analysis information. We refer to the resulting graph as a
Program Dependence Graph (PDG) (Figure 3 stage 1). We adopt a
definition of the PDG that slightly differs from Ferrante et al. [31],
as we chose to add control and data flow edges to the AST. This
way, we retain information regarding statement order and have a
fine-grained representation of the data flows directly at variable
level (Section 4.2). Next, we define a new graph structure, namely
the Extension Dependence Graph (EDG), which models messages
exchanged within and outside of an extension. (Figure 3 stage 2).
For this purpose, we traverse each extension component’s PDG and
collect all messaging APIs. Based on the component and the API
used, we can infer with whom it is exchanging messages. For inter-
nal messages, DoubleX links, e.g., the message sent by component
A to the message received by B (for all components) with amessage
flow, to represent the interactions between the components. For
external messages, DoubleX flags them as attacker controllable
(Section 4.3). Overall, our EDG is a joint structure that includes
control flows, data flows, and pointer analysis information at ex-
tension level and models interactions within an extension and with
a web page/another extension (i.e., an attacker). Finally, we lever-
age our EDG to perform a data flow analysis targeting security-
and privacy-critical APIs in extensions (Figure 3 stage 3). In par-
ticular, we consider integrity (attacker-controllable data enters a
sink) and confidentiality (user sensitive data is exfiltrated) threats
in tracking relevant data flows. DoubleX summarizes its findings
in a fine-grained data flow report (Section 4.4).

4.2 Per-Component PDG Generation

To analyze a browser extension, we first abstract the code of each
component independently. In particular, we model each component
with a separate PDG, which includes AST edges, control and data
flow edges, and pointer analysis information.

4.2.1 Syntactic Analysis First, DoubleX builds the AST of each
component with Esprima [33]. We chose to rely on Esprima given
its thorough set of test cases [34] and widespread use by prior
work [6, 28, 29, 32, 45, 50, 65, 67, 73, 74, 80]. Esprima takes a valid
JavaScript sample as input and produces an ordered tree (the AST)
representing the program syntactic structure (i.e., the nesting of
programming constructs). Next, to detect whether an extension
executes attacker-controllable data or exfiltrates sensitive user in-
formation, we need a more complex abstraction of the code that
goes beyond its syntactic order. Specifically, DoubleX gives more
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1 b = 1;
2 if (b === 1) {
3 a = 2;
4 } else {
5 a = 3;
6 }
7 var c = a*a;

Listing 3: JavaScript code example

semantics to the AST nodes by (1) generating and storing their con-
trol flows, (2) their data flows, and (3) computing variable values.

4.2.2 Control Flow Analysis To reason about the conditions that
should be met for a specific execution path to be taken, DoubleX
extends the AST with control flows. To do so, we use the CFG
(Control Flow Graph) implementation of Fass et al. [28, 29]. Flows
of control are represented on statement nodes, which are connected
with labeled and directed edges. Edges originating from predicates
are labeled with a boolean, representing the value the predicate
should evaluate to for its descendants in the graph to be executed.
Furthermore, non-predicate statement nodes are connected with an
ϵ edge. For example, Figure 4 (considering the blue dotted control
flow edges) presents an execution path difference when the if

condition is true vs. false. Still, the CFG does not enable us to infer
whether the condition is true or not.

4.2.3 Data Flow Analysis To reason about variable dependencies
and compute variable values, DoubleX adds data flow edges to the
CFG, which becomes a PDG. In this paper, we did not use the data
flow implementation from Fass et al., which did not fit our needs
(e.g., no function argument passing nor pointer analysis). In the
following, we describe our approach. Even though data flow and
pointer analyses are interlinked and we perform them in the same
CFG traversal, we present them in two sections, for clarity reasons.

To ease the value computation process, we represent data flows
between Identifier nodes. In particular, we connect Identifier
nodes (referencing, e.g., variables, functions, or objects) with a
directed data flow edge if and only if they are defined or modified
at the source node and used (or called) at the destination node, with
respect to the scoping rules. If a variable is defined with the window
object, directly assigned, or defined outside of any function, it is
in the global scope. Otherwise, the variables can only be accessed
in specific parts of the code (the local scope). To keep track of
the variables currently defined and accessible in a given scope,
DoubleX defines a list of Scope objects. In particular, we leverage
CFG information to build different and independent Scope objects
to handle variables from branches triggered by exclusive predicates
(e.g., a true vs. false if branch) separately, to avoid impossible data
flows. When exiting such a conditional node, we merge all variables
defined or modified in the different branches to their corresponding
scope (i.e., global or specific local scope) so that these variables are
all known if further used. This way,DoubleX traverses the CFG and
links the encountered variables to their definition or modification
sites with a data flow edge. For example, the orange dashed data
flow edges in Figure 4 represent variable dependencies. Specifically,
we link variable b from its definition site (Listing 3 line 1) to its usage
(line 2). The same applies to a (defined line 3 and used two times
line 7). As our analysis is path sensitive for simple constraints (see
Section 4.2.4), there is no data flow coming from a’s definition line 5.

ExpressionStatement

AssignmentExpression

IdentifierLiteral

Identifier

data

b

b

1

IfStatement

BinaryExpressionBlockStatement

True

BlockStatement

False

Literal

1

ExpressionStatement

e

AssignmentExpression

IdentifierLiteral

Identifier

data

Identifier

data

a

a a

2

ExpressionStatement

e

AssignmentExpression

Identifier Literal

a 3

VariableDeclaration

VariableDeclarator

IdentifierBinaryExpression

c

Figure 4: AST of Listing 3 extendedwith control & data flows

As far as functions are concerned, we hoist FunctionDeclaration
nodes at the top of the current scope (as they may be first used then
defined [25]) and distinguish them from (Arrow)FunctionExpression

nodes (which have to be defined before usage) [56]. In addition,
DoubleX respects function scoping rules, e.g., closures and lexical
scoping. Also, we define a parameter flow to link function param-
eters at the call sites to their definition site, and we keep track of
the returned values. This way, our analysis is inter-procedural, and
we define our PDG at program level.

We chose to build the PDG by traversing the CFG one time (vs.
iterating until we reach a fixed point), for performance reasons.
While this may lead to under-approximations, our analysis stays
accurate (low false-positive and low false-negative rates, cf. Sec-
tions 5.2.1 and 5.4) and is able to scale (cf. Section 5). We discuss
drawbacks of our static approach in Section 6.2.

4.2.4 Pointer Analysis To determine variable values we follow four
main principles: (1) if we already computed a node value, we fetch
it from its value attribute, (2) we know the value of Literal nodes,
which Esprima stores as a node attribute, (3) whenever there is a
data flow between two Identifier nodes (from source to destina-
tion), the destination has the same value as the source, and (4) we
define different rules to compute the values of variables, which
undergo specific operations. Specifically, we handle assignment,
arithmetic, string, comparison, and logical operators. We illustrate
these principles in Algorithm 1, which is a simplified extract of our
pointer analysis module. We call this script for specific nodes while
we traverse the graph to perform the data flow analysis.

For example, in Figure 4, there is an AssignmentExpression (Algo-
rithm 1 lines 11-17). Here, the Identifier b is declared. To compute
its value, we determine the value of its symmetric node (line 15): as
the Literal value is 1 (lines 3-4), so is b (line 16). Next, there is an
IfStatement, whose condition is a BinaryExpression (lines 18-22).
By following the data flow from b backward, we get its value 1 (lines
19 and 5-7). As the condition always evaluates to true (lines 20-22),
DoubleX solely focuses on this branch (meaning that Listing 3 line
5 is never analyzed, hence no data flow from here, which limits
over-approximations due to impossible cases). Finally, DoubleX
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Data: node object n
Result: n computed value

1 if n.value is not None then
2 return n.value;
3 else if n.name == ’Literal’ then
4 value ← n.attributes[’value’];
5 else if n.name == ’Identifier’ then
6 if n is the destination of a data flow from source then

7 value ← source .value;
8 else

9 value ← n.attributes[’name’];
10 end

11 else if n.name in (’VariableDeclaration’, ’AssignmentExpression’) then
12 value ← None;
13 find the defined/assigned Identifier nodes; // variable names
14 for each Identifier node i do
15 p ← calculate the symmetric path to i ;

// + some refinements for Array, Object nodes etc.
16 i .value← call compute_value(p)
17 end

18 else if n.name == ’BinaryExpression’ then
19 operand1← compute_value(n.children[0]);
20 operand2← compute_value(n.children[1]);
21 operator ← n.attributes[’operator’];
22 value ← operand1 operator operand2;
23 else if ... then
24 ...
25 n.value← value ;
26 return value

Algorithm 1: Pointer analysis extract: compute_value

fetches the value 2 from a’s symmetric node and computes the
operation to get the value 4 for c.

For clarity reasons, we chose a simplistic example. In particu-
lar, DoubleX also analyzes asymmetric variable declarations, e.g.,
in cases of arrays, objects, or functions, and destructuring assign-
ments. Regarding objects and arrays, we store a handler to their
definition site. This way, whenever a specific property is used or
modified, we can follow the data flows to access the definition site,
traverse the corresponding sub-AST to find the property/index, and
compute its value. If the object or array is defined on the fly, we
store its components in a dictionary, which becomes the handler to
the object/array. Finally, whenever a function is called, we follow
the data flows to find the function definition site. DoubleX then
passes the function parameters at the call site(s) to the definition
site by leveraging the parameter flows (cf. Section 4.2.3), before
retraversing the function. For reproducibility and reviewing pur-
poses, we make our source code available [27]. Overall, our pointer
analysis enables us to add more semantic information to our data
flow analysis. Specifically, it enables us to handle aliased variables
and detect sensitive or messaging APIs not written in plaintext, as
highlighted and discussed in Sections 4.3.1 and 4.4.2.

4.3 Generating the EDG

In the previous step,DoubleX generated the PDG of each extension
component independently. Still, to detect suspicious data flows in
an extension, we also need to understand the intricate relations be-
tween its components and detect external messages. To this end, we
collect all messages sent and received by each component and order
them per messaging API. This way, DoubleX leverages the APIs to
know (for a given message) which components are communicating
(or if the message is coming from a web page/another extension).

Content script Background page

message1 sent: "Hi BP" received: request
message2 got-response: response responded: {farewell: "Bye CS"}

Table 1: Message collection entry for the extension of List-

ing 2 (channel: one-time, deprecated APIs: no)

In the case of internal messages, we subsequently link the message
sent by componentA to the message received by component B with
a message flow. Our EDG summarizes all this information.

4.3.1 CollectingMessages To collect themessages exchangedwithin
and outside of an extension, we traverse the PDG of each compo-
nent and look for specific messaging APIs. We consider all APIs pre-
sented in Section 2.2 (both for the Chromium-based browsers and
Firefox), as well as deprecated APIs, which Chromium still supports
(at least until Manifest V3 [19]), e.g., chrome.extension.sendMessage
[11, 13]. Since we compute node values with DoubleX pointer
analysis, we can also detect messaging APIs not written in plain text,
e.g., string concatenation or referred to over aliases. Once we found
a message-passing API, we look for the specific message that is sent
(with a distinction between an initial message, sent, and a response,
responded) or received (similarly, getting a message, received, or a
response, got-response). For this purpose, we created an abstract
representation of each API (based on the official documentation
from Chrome and Mozilla) to know, depending on the number of
arguments, which parameter corresponds to the message. For exam-
ple, in Listing 2, the first parameter of chrome.runtime.sendMessage
is the message sent by the content script, while the second one is a
callback to receive the response from the background or WAR [12]
(the API used also indicates which components are communicat-
ing). Once we know the message position, we collect the message.
It can either be directly accessible (e.g., "Hi BP" Listing 2 line 2),
or accessible only after callback resolution, which DoubleX per-
forms by following the data and parameter flows (e.g., the callback
sendResponse is defined Listing 2 line 8 and called line 10 with
the message as first parameter). In addition, DoubleX analyzes
Promise, such as calls to .then or .resolve, which Firefox can use
instead of callbacks like Chromium. Finally, we store the collected
messages. For internal messages, we order them per pair of compo-
nents, one-time vs. long-lived channels, and deprecated API usage
or not. Table 1 sums up the messages that DoubleX collected. As
indicated in Listing 2, the content script sends one message and
gets a response, while the background page gets a message and
responds. For external messages, we keep track of which extension
component received (or sent) a message, at which line in the code,
and store the corresponding node object for future analyses (cf. Sec-
tion 4.4.3). For example, in Listing 4, DoubleX reports the external
message event, received line 1 in the content script.

4.3.2 Linking Messages Next, for internal messages, we link the
messages sent (sent, responded) by a component to the messages
received (received, got-response) by the other component, i.e., we
connect a sender node to the corresponding receiver node. This
way, DoubleX joins the individual component PDGs with a mes-
sage flow. We give a graphical example in Figure 6 in the Appendix.
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Besides, to keep track of variable values, we update the values of
the receiver nodes (and those depending on it) with the sender node
values. For the example of Table 1, we now know the following
values: request = "Hi BP" and response = {farewell: "Bye CS"}. Thus,
we can compute the value of csReceived (Listing 2 line 3) by leverag-
ing the ObjectExpression {farewell: "Bye CS"} with the key farewell,
getting "Bye CS" (cf. pointer analysis from Section 4.2.4). Similarly,
the value of bpReceived (line 9) is "Hi BP". Overall, DoubleX stati-
cally produces a graph structure, which gives an abstract semantic
meaning to the extension code (including control and data flows,
and pointer analysis) and models interactions within and outside
of an extension. We refer to this graph as the EDG.

4.4 Detecting Suspicious Data Flows

Finally, DoubleX leverages the EDG to detect and analyze suspi-
cious data flows. First, and for each extension, we prefilter sensitive
APIs (i.e., that an attacker could exploit to gain access to an exten-
sion’s privileged capabilities) based on an extension’s permissions.
Then, we traverse the EDG to collect any prefiltered sensitive APIs.
As we flagged external messages in Section 4.3.1, we can finally
perform a data flow analysis (from source to sink) to detect if these
sensitive APIs are executed with attacker-controllable data or could
exfiltrate sensitive user data.

4.4.1 Permission Filtering Given that an extension cannot be ex-
ploited without the corresponding permissions, DoubleX parses
the manifests to automatically generate, for each extension, a list
of sensitive APIs that the extension is allowed to access. We list the
sensitive APIs we consider in Table 5 in the Appendix. In practice,
for XMLHttpRequest and its derivatives (such as fetch), we only con-
sider extensions that are allowed to make requests to arbitrary hosts
(e.g., through the <all_urls> permission). For the exfiltration APIs,
such as bookmarks.getTree and history.search, we ensure that the
extensions are allowed to access them (i.e., bookmarks and history
permission). Finally, for tabs.executeScript, we verify that the ex-
tensions either have host or activeTab permission [21], to execute
code in the active tab. In addition, for the code execution APIs (e.g.,
eval or tabs.executeScript) in high-privilege components, we ver-
ify that the extensions define a Content Security Policy (CSP) [53]
that allows their invocations. We also take into account some speci-
ficities of Chrome manifest V3 (such extensions are accepted in the
Chrome Web Store since January 2021 [20]), e.g., host permissions
are stored separately from other permissions or XMLHttpRequest is
not defined in service workers [19].

4.4.2 Sensitive API Collection To perform its intended function-
ality, an extension may use specific APIs, which lead to security
or privacy issues when attackers can exploit them. The extension
component presenting the vulnerability will determine the attack
surface. While background page and WARs are highly privileged,
content scripts have less capabilities. For this reason, we consider
different sensitive APIs, depending on the components we are an-
alyzing (as specified in Table 5 in the Appendix). As explained in
Section 4.4.1, we only consider APIs that have relevant permissions.

We detect these APIs by traversing the EDG and computing
node values. Whenever DoubleX reports a sensitive API, we store
the API name, the node object, and its corresponding value for
further analyses (cf. following section). Besides, we keep track of

the extension component, which uses the sensitive API and the cor-
responding line number. For example, DoubleX accurately reports
the call to eval in Listing 4 line 2. Even though it is not written in
plain text and is dynamically invoked, our pointer analysis module
computes the correct value (i.e., string concatenation, recognizes
the access of the eval function property of the window object with
the bracket notation, recognizes the call to the sensitive API eval).
We also report eval line 4. Both reports are stored as sensitive APIs
for the content script.

4.4.3 Data Flow Tracking After collecting external messages, i.e.,
messages exchanged with an attacker (Section 4.3.1) and detecting
relevant sensitive API invocations (Section 4.4.2), DoubleX per-
forms a data flow analysis (from source to sink). Here, we aim at find-
ing any path between dangerous or sensitive data and security- or
privacy-critical APIs. Based on the way they operate, we distinguish
three categories of sensitive APIs (which we refer to as danger):
• Direct dangers can directly leverage attacker-controllable data
as parameter to perform malicious activities. Such APIs include
downloads.download and tabs.executeScript, knowing that only
the high-privilege components can call them (while eval can also
be used by the content scripts). To handle such APIs, DoubleX
extracts their parameters so that it can verify if they depend on
data coming from an attacker. To limit false positives, we only
extract the relevant parameters. For example, it is dangerous to
have an attacker-controllable input in the second parameter of
tabs.executeScript (or the first parameter if the tab ID is not indi-
cated), provided it contains the code to be executed [60]. The first
parameter, though, only allows to choose the tab to execute a script
in, which is worthless for attackers if they cannot control the code.
• Indirect dangers work in two steps: first, they have to be called
with attacker-controllable data; second, they need to send the re-
sults back to the attacker. For example, to perform cross-origin
requests, all components can use fetch or ajax. We analyze these
APIs in two steps: first, we verify if an attacker can control the
relevant API parameters and if it is the case; second, we verify
whether the data sent back to a web page or extension (i.e., the
attacker) depends on data the extension received.
• Exfiltration dangers directly exfiltrate sensitive user data and
do not necessarily need any input from an attacker. Such APIs
can only be used by the high-privilege components and include
cookies.getAll, bookmarks.getTree, and history.search. DoubleX
extracts the sensitive API callback parameters and analyzes if they
are sent back to an attacker.

As the EDG models interactions between extension components,
we can handle cases where messages with attacker-controlled data
(or data to be exfiltrated) are forwarded back and forth between
the extension components before being exploited. Finally, Dou-
bleX summarizes its findings in a data flow report. Specifically,
it indicates the sensitive APIs it found per extension component
(including API name, line number, and computed value) and if it
detected a suspicious data flow. When it is the case, the report
indicates if data was received from or sent to an attacker (including
in which extension component, the line number, API value, etc.).

For example, Listing 5 is a simplified extract of the data flow re-
port for Listing 4 (the full report is in Listing 7 in the Appendix). In
particular, the value entry line 2 indicates that DoubleX accurately
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1 addEventListener('message ', function(event) {
2 window['e' + 'v' + '' + 'al']( event.data);
3 event = {'data': 42};
4 eval(event.data);
5 })

Listing 4: Vulnerable content script example

1 {"direct -danger1": "eval",
2 "value": "window.eval(event.data)",
3 "line": "2 - 2",
4 "dataflow": true ,
5 "param1": {
6 "received": "event",
7 "line": "1 - 1"}},
8 {"direct -danger2": "eval",
9 "value": "eval (42)",
10 "line": "4 - 4",
11 "dataflow": false}

Listing 5: Extract of the data flow report for Listing 4

computes the first call to eval, despite string concatenation and dy-
namic invocation. Lines 2-7 show that it detects a data flow between
the first parameter of eval Listing 4 line 2 and the message event
received Listing 4 line 1, from a web page. Thus, we report here that
the sensitive API eval can be called with attacker-controllable data.
The second danger entry (lines 8-11) revolves around the second
call to eval(event.data) (Listing 4 line 4). DoubleX detects that the
event object has been redefined, as it computes the value 42 for
event.data (line 9) and labels the danger as not having an externally
controllable data flow (line 11). This way, the combination of our
data flow and pointer analyses enables us to accurately label the
first call to eval(event.data) as vulnerable without misclassifying
the second one.

5 Large-Scale Analysis of Chrome Extensions

To evaluate the precision and recall of DoubleX regarding suspi-
cious data flows detected, we apply it to Chrome extensions. In
the following, we first outline how we collected 154,484 exten-
sions and extracted their components. Subsequently, we describe
our large-scale data flow analysis results with a focus on the vul-
nerable extensions we found. Furthermore, we compare DoubleX
to directly related work and evaluate our approach on a labeled
vulnerable extension set. Finally, we discuss DoubleX run-time
performance and summarize our main findings.

5.1 Extension Collection and Setup

We designed DoubleX to analyze both Chromium-based and Fire-
fox extensions. In this section, we focus solely on Chrome, while we
discuss and analyze Firefox extensions in Section 6.3. We first report
on our extension set before discussing the number of extensions
we could analyze.

5.1.1 Collecting Extensions To collect extensions, we leveraged the
Chrome Web Store sitemap [10], which contains links to all exten-
sions. Out of the 195,265 listed extensions, we could successfully
download 174,112 of them on March 16, 2021. The remaining ones
were either not available for download for an OS X user agent, or
only available for sale. Also, 19,628 downloaded extensions were
themes, i.e., had no JavaScript component [22]. Thus, we retain
154,484 extensions for further consideration.

#Analyzed #Parsing errors #Timeouts/Crashes

Extensions 154,484 3,674 9,500
- Content scripts 65,047 1,871 5,586
- Background page 98,974 1,847 4,227
- WARs 7,668 597 1,454

Table 2: Analyzed Chrome extensions

For each extension, we parsed its manifest.json [17] to extract
the source code of its components. Even though DoubleX can ana-
lyze UI pages, they are not part of our threat model, as they cannot
be forcefully opened (i.e., an attacker cannot deliver their messages
to them). In the following, we consider content scripts, background
page, andWARs. Specifically, we combined all content scripts into a
single JavaScript file. For the background page, we considered both
the content of the HTML background page and the scripts listed
in the manifest background section. As for WARs, we collected
all HTML files flagged as accessible and extracted both inline and
external scripts. We chose to remove jQuery files (based on the
output of retire.js [64] and file names such a jquery-3.5.1.js), to
not analyze the well-known library to avoid running into timeouts.
To limit potential false negatives, we consider that if a parameter
of an unknown function is attacker controllable, so is the output
of the function. In practice, we do not have any false negatives
due to the absence of jQuery (cf. Section 5.4), and this approxima-
tion leads to less than 3.3% false positives (cf. Section 5.2.1), which
we deem acceptable. Finally, to ease the manual verification of
our data flow reports, we leveraged js-beautify [46] to produce a
human-readable version of each extracted file.

5.1.2 Running DoubleX To analyze the considered Chrome exten-
sions, we ran DoubleX with pairwise combined content scripts/
background page and content scripts/WARs. This allows us to rea-
son about the capabilities of a Web attacker (which either requires
communication through external messaging APIs or via the content
scripts) as well as the ability of other extensions to send messages
(since for background page and WARs, we also analyze external
messages). For performance reasons, we set a timeout of 40 min-
utes to analyze two components of an extension (in particular, we
set four 10-minute timeouts for specific steps of our analysis). We
discuss DoubleX throughput into more details in Section 5.5.

As indicated in Table 2, we could analyze 91.5% of the extensions
completely. For 2.4%, Esprima reported errors (mostly related to
syntax errors in the code or usage of the unsupported spread syn-
tax), while 6.1% ran into a timeout or the resulting EDG crashed
the Python interpreter. Nevertheless, DoubleX could analyze such
extensions partially. While the parsing errors are specific to some
extensions, the timeouts concern independent components. For ex-
ample, even if the PDG generation of an extension’s content script
timed out, we could analyze the background page independently for
vulnerabilities. While DoubleX analyzed between 88.5 and 93.9%
of the content scripts and background page completely, Esprima
encountered more parsing errors for WARs (7.8%), which also timed
out more often (19%). By checking the size of the WARs, we no-
ticed that they are larger than the other components as numerous
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Sensitive API #Reports #DF #1-way DF #Exploitable

Code Execution 113 102 - 63
- eval 38 34 - 30
- setInterval 1 1 - 0
- setTimeout 18 15 - 1
- tabs.executeScript 56 52 - 32

Triggering Downloads 21 21 - 21

Cross-Origin Requests 95 75 11 49
- ajax 6 6 0 5
- fetch 4 4 0 3
- get 4 4 0 3
- post 1 1 0 1
- XMLHttpRequest.open 80 60 11 37

Data Exfiltration 80 77 - 76
- bookmarks.getTree 31 29 - 29
- cookies.getAll 23 23 - 22
- history.search 23 22 - 22
- topSites.get 3 3 - 3

Sum 309 275 11 209

Table 3: DoubleX findings on Chrome extensions

HTML files are exposed due to extensions allowing all files to be
web-accessible.

5.2 Analyzing DoubleX Reports

Overall, and out of our 154,484 extension set, DoubleX reported
278 extensions as suspicious, which sums up to 309 suspicious
data flows. In this section, we report on the exploitability of these
flows and present case studies. Subsequently, we discuss the evolu-
tion of vulnerable extensions between 2020 and 2021 and discuss
vulnerability disclosure.

5.2.1 Suspicious Data Flows Our main findings regarding suspi-
cious and exploitable data flows are summarized in Table 3. For
each sensitive API (with a subtotal per flaw category), we first
indicate the number of data flow reports generated by DoubleX
(#Reports). Subsequently, we present the results of our manual anal-
ysis, regarding the number of reports with a data flow between an
attacker and a sensitive API (#DF), the number of reports with a
data flow between an attacker and a sensitive API but not back to
the attacker (#1-way DF),4 and, finally, the number of reports that
an attacker could exploit based on our threat model (#Exploitable).
In particular, to assess the exploitability of the reported flows, two
experts with 5+ years of JavaScript experience first went through
the reports and extensions. As mentioned in Section 4.4.3,DoubleX
produces fine-grained data flow reports. In particular, they contain
precise information about extension components, line numbers,
and corresponding computed values, where a potentially danger-
ous data flow was detected. Thus, we could directly look for the
code logic at precise line numbers to verify what happens in prac-
tice with data from/to an attacker. For the flows that were trivially
exploitable (e.g., an attacker-controlled message directly flows into
a sink) or clearly wrong, we flagged the reports accordingly. For

4Only relevant for cross-origin request APIs, where an attacker aims at requesting
arbitrary URLs and getting the response back from the server

more complicated cases (e.g., multiple data flows or sanitization
functions), we installed the extension and built a payload to exploit
the extension locally.

For the code executionAPIs, themajority of the reports (102 / 113)
contains an attacker-controllable flow to a sink, and 63 can be con-
firmed as vulnerable. Regarding download triggering, all of our 21
reports have a verified dangerous data flow and could be exploited
to download arbitrary files. For cross-origin requests, we can ex-
ploit 49 / 95 flaws, even though 75 have a confirmed dangerous data
flow (both from and back to an attacker). In such cases, the attacker
could only control a part of the URL (hence the data flow), while we
aim at making arbitrary requests. We also observe 11 reports where
an attacker could make any request but did not receive the response
(but a status code, for example). Finally, regarding data exfiltration,
we can exploit almost all dangerous data flows reported (76 / 80).

Overall, out of 309 reports, 275 (89%) have a confirmed full data
flow between a sensitive API and an attacker. Of those, 209 are
exploitable under our threat model. Regarding the 66 remaining
reports with a verified, yet unexploitable, dangerous data flow, we
could not build an exploit mostly for one of the following reasons.
For 24 cases, exploitation was prevented by a sanitization function
(e.g., JSON.stringify or escape) or additional checks (e.g., checking
that a payload is a number or checking that a payload matches a spe-
cific value). For 20 reports (cross-origin requests), only a part of the
URL was attacker controllable, while we aim at making arbitrary re-
quests. For 12 cases, only predefined functions could be called with
an attacker-controllable parameter, e.g., eval(predefined(attacker)).
Since 11 cross-origin requests have a data flow from an attacker to
the sink but not back to the attacker, we only have 23 reports with-
out dangerous data flow. In such cases, we observe two common
limitations. For 10 cases, we over-approximate data flows, e.g., we
handle data flows at object level and not at property level or propa-
gate a suspicious function parameter flow to its returned value (as
discussed in Section 5.1.1). Second, for 6 cases, there is a confusion
regarding the sender of a message labeled as attacker-controllable,
e.g., a service worker or a WebSocket object instead of a web page
or another extension. While our static analysis is neither sound
nor complete, in the spirit of soundiness [47], we chose a trade-off
between accuracy and run-time performance. Also, our approach
is more oriented toward detecting suspicious data flows and less
toward proving the absence of vulnerability.

Specifically, we could detect 184 vulnerable extensions, totaling
209 vulnerable data flows, and impacting between 2.4 and 2.9million
users. Notably, almost 40% of these extensions can be exploited by
any website or extension. Overall, 172 extensions are susceptible
to a Web attacker, and 12 extensions are exploitable through an
unprivileged extension. In addition, we could confirm 89% of the
suspicious data flows reported by DoubleX, which highlights its
high precision. Regarding vulnerable extensions DoubleX may
have missed, we discuss DoubleX recall on a labeled vulnerable
extension set in Section 5.4.

5.2.2 Case Studies Based on our data flow reports and findings,
we now describe five case studies regarding vulnerable extensions
that DoubleX detected. In doing so, we highlight the versatility of
our tool in detecting non-obvious vulnerabilities.
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Arbitrary Downloads with a Confused Deputy — The exten-
sion eflehphffapiajamoknfnpfapdgaeffk (10k+ users) registers an
external message handler but does not specify the externally_-

connectable field in its manifest. Therefore, the handler accepts mes-
sages from any extension. The messages are then forwarded to sev-
eral functions before ending in the url property of the downloads.-

download API, which allows an attacker to download arbitrary files.
This example highlights the dangers of implicitly allowing any
extension in externally connectable message handlers.
Arbitrary Code Execution — The extension cdighkgkcaadmon-
mbocgpcnenffjjdfc (4k+ users) can be exploited by any website
to execute arbitrary code in the extension context. In fact, the
content script, which can receive messages from any website, for-
wards all messages to the background page. In the background
page, the messages subsequently flow into the code property of
tabs.executeScript, without any sanitization. This example high-
lights the dangers of trusting input data which can be provided by
an attacker.
Cross-Origin Requests from WARs — The extension kohfgcg-
bkjodfcfkcackpagifgbcmimk (200k+ users) registers an external mes-
sage handler in its WARs to communicate with naturalreaders.com
and its subdomains. By sending messages to the WARs, this website
can make arbitrary requests and leak their content. While this may
be an intended functionality of the extension, as discussed in Sec-
tion 3, if this website gets compromised, an attacker could leverage
the extension’s elevated privileges to make arbitrary requests to
any website and leak their content. This example highlights the
dangers of authorizing a website to make arbitrary cross-origin re-
quests instead of preferring the more secure CORS [54] alternative,
which would limit the resources that can be accessed.
Most Visited Website Exfiltration — The content script of the
extension lklfbkdigihjaaeamncibechhgalldgl (700k+ users) is in-
jected into web pages from msn.com and its subdomains. Similarly
to kohfgcgbkjodfcfkcackpagifgbcmimk, if this website gets compro-
mised, an attacker could send a specific payload to the content
script. This payload triggers the sending of a message to the back-
ground page, asking for information regarding a user’s most visited
websites. The background subsequently sends this information to
the content script, which forwards it to the attacker. This example
highlights the fact that an XSS in a website can be used by an at-
tacker to leverage the extension’s elevated privileges to access user
sensitive information from other and unrelated sites.
ArbitraryCross-OriginRequests via eval and $.post— The ex-
tension ecnobkadlbkbcdmaidnhigklogkidlhf (100+ users) was flagged
by DoubleX for having a data flow to eval in its content script.
Inspecting the extension, we find that there is no direct data flow
from an attacker to the sink, but a data flow from an attacker to the
URL of a $.post request, for which the response is then sent to eval.
Since the extension has the host permission *://*/*, the call to
eval can be abused to conduct arbitrary cross-origin requests. This
way, an attacker can provide a link to their site to select the code to
be executed, and in turn, can use that code to then conduct cross-
origin requests against arbitrary other hosts, thereby allowing a
cross-origin read of any resource of their choosing. Furthermore,
since the content script is injected into all visited pages, an attacker

can simply lure the victim to their site and send a postMessage to
trigger the chain reaction.

5.2.3 Comparison Between 2020 and 2021 In this section, we discuss
the evolution of vulnerable extensions between 2020 and 2021.
Specifically, we focus on the life cycle of vulnerable extensions, i.e.,
whether vulnerable extensions from 2020 are still in the store in
2021 and, if so, whether they are still vulnerable. To perform these
analyses, we crawled the Chrome Web Store also on June 19, 2020.
Of the 166,513 extensions we could extract, 132,231 (79%) were still
present in the store on March 16, 2021 (and 65,546 had not been
updated in this nine-month time frame).

Similarly to Section 5.2.1, we ran DoubleX on our 2020 exten-
sion set. Specifically, our tool flags 279 extensions (0.17%) as having
a suspicious data flow, which is similar to our results from 2021
(278 / 154,484 extensions). These 279 suspicious extensions expand
to 317 suspicious data flows. As previously, we manually reviewed
all reports from 2020, and we confirm that 286 (90%) have a verified
dangerous data flow between an attacker and the sensitive APIs we
consider. As already highlighted for our 2021 extension set, Dou-
bleX has a very high precision regarding flagged data flows. Besides,
we could exploit 219 of these flows, which leads to 193 vulnerable
extensions. While we found 184 vulnerable extensions in 2021, the
overall number of extensions in the Chrome Web Store slightly
decreased in 2021, so that the proportion of vulnerable extensions
did not change between 2020 and 2021 (0.12% of extensions). Still,
30 extensions that were vulnerable in 2020 are not in the store any-
more, and, as of March 2021, only 3 have been fixed (by removing
permissions or the vulnerable API call; we discuss disclosure in the
following section). While there are 19 new vulnerable extensions,
which were not in the store in 2020, 5 extensions existed before
but turned vulnerable in 2021 (3 due to permission changes, 1 due
to the addition of a vulnerable API call, and 1 due to allowing the
communication with web pages directly in the background page).

Overall, we observe that 87% of the extensions that are vulnerable
in 2021 were already vulnerable in 2020 (even though half of them
were updated in between). Thus, we need a system like DoubleX
to prevent vulnerable extensions from entering the store in the
first place (we discuss integrating DoubleX in Chrome’s vetting
process in Section 6.1), especially as they tend to stay in the store.
This is confirmed by the fact that the majority of developers we
contacted did not take any action after our disclosure, as discussed
in the next section.

5.2.4 Disclosure to Extension Developers Finally, we disclosed our
findings to the corresponding extension developers. Due to the
impact of the flaws, we focussed on the extensions that can be
exploited by any website or extension, leading to, e.g., universal
XSS or sensitive user data exfiltration to any website.

We first reported our findings, including PoC exploits, regarding
vulnerable extensions from 2020. In October 2020, we contacted 22
developers via emails, 4 over contact forms, and reported 9 issues
directly to Google when we did not have any contact information.
Similarly, in May 2021, we reported 13 additional vulnerable exten-
sions (we contacted 9 developers via emails and reported 4 issues
directly to Google). As of July 2021, of the 48 vulnerable exten-
sions we reported, 45 are still in the store. Of those, 13 have been
updated since our disclosure, but only 5 have been fixed (300k+
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users, 50k+ users, 3k+ users, 2k+ users, and 35 users). For example,
one extension (300k+ users) was updated to remove the <all_urls>

permission to only allow the sites related to the extension, thus
limiting the damage to third parties).

5.3 Comparative Analysis

The only related work that leverages a similar threat model and
conducted a large-scale analysis on Chrome extensions is EmPoWeb
from Somé (2019) [72]. Hence, we contrast our results against Em-
PoWeb’s here and defer discussion of additional related work to
Section 7. To analyze extensions’ susceptibility to attacks through
external messages, EmPoWeb is based on a lightweight call graph
analysis. In practice, it yields an extremely high number of reports
to manually vet: of the 66k Chrome extensions analyzed, it flagged
3.3k as suspicious, and only 5% were confirmed to be vulnerable
(after Somé’s huge manual effort).

In this section, we compareDoubleX’s findings with EmPoWeb’s
on our 154,484 extension set. To this end, we ran the open-source
version of EmPoWeb [71], which we slightly patched to match our
attacker model, i.e., so that EmPoWeb considers the same sensitive
APIs as DoubleX and with the same permissions (e.g., we consider
arbitrary cross-origin requests whereas, in its original version, Em-
PoWeb considered even unauthorized access to a single cross-origin
URL). Similarly, we excluded our WARs reports from this analysis
(hence this section’s results may slightly differ from Section 5.2.1),
as EmPoWeb does not consider WARs.

As expected, EmPoWeb flags significantly more extensions as
suspicious than DoubleX: it reports 2,665 extensions compared
to our 268 (corresponding to 4,379 reported flaws vs. 299). Since
EmPoWeb does not rest on a data flow analysis to generate reports, it
mostly over-approximates the presence of an external message and
of a sensitive API as a potential flaw. With DoubleX, though, we
would flag such an extension only if we can find a data flow between
an attacker and a sensitive API, hence yielding significantly fewer
reports and significantly fewer false positives. Naturally, this is also
possible that EmPoWeb flags vulnerable extensions that DoubleX
does not detect. Still, given the extremely low true-positive rate of
EmPoWeb (5%) and the fact that DoubleX detects almost 93% of the
vulnerable extensions that were released with the EmPoWeb paper
(cf. Section 5.4), we are confident that the majority of EmPoWeb’s
additional reports are false positives. In an Open World model
like ours, to quantify potential false negatives, we would have to
manually review hundreds of extensions to find a few vulnerable
ones we may have missed, which would not be feasible.

In addition to being significantly more precise than EmPoWeb,
DoubleX also detects vulnerabilities that EmPoWeb misses. Specif-
ically, if we consider the 204 reports that we found vulnerable after
manual review, 27 of them (13%) are not reported by EmPoWeb.
It is especially prevalent for the cookies.getAll API, where 7 / 22
flaws are not detected and tabs.executeScript (9 / 32). While this
may appear counter-intuitive (as EmPoWeb rather flags almost all
extensions that contain an external message and a sensitive API),
EmPoWeb relies on string matching and on a fixed list of possible
ways to invoke specific APIs, so that it cannot always detect, e.g.,
aliases or dynamic sink invocations. For example, after aliasing
BPMessenger=chrome.runtime.sendMessage, EmPoWeb does not de-
tect BPMessenger as a message-passing API anymore. Contrary to

EmPoWeb, DoubleX pointer analysis can detect and handle such
aliasing cases as well as calls by reference, and APIs not written
in plain text, which leads to a higher number of vulnerabilities
found. In addition, our data flow analysis enables us to determine
if sensitive or dangerous data is being exchanged with an attacker,
which significantly limits our false positives.

5.4 Evaluation on a Labeled Dataset

To evaluateDoubleX false negatives, we consider the dataset of vul-
nerable extensions released by Somé with EmPoWeb. His paper [72]
provides a list of extension IDs and corresponding vulnerabilities.
Of the 171 Chrome extensions he reported as vulnerable in 2019, 82
still existed on March 16, 2021. We collected these extensions, and,
after manual analysis, we confirm that 73 / 82 are still vulnerable.
These 73 extensions total 163 previously reported vulnerabilities.
As Somé considered some APIs that are not part of our attacker
model (e.g., storage-related APIs5), we added them to our sensitive
API list (only for this experiment).

DoubleX detects all vulnerabilities for 62 / 73 extensions, which
corresponds to the accurate detection of 151 / 163 flaws (92.64%). For
the twelve missing flaws, four are related to dynamic arrays, such
as invocations of a function through handlers[event.message], which
we cannot statically resolve. Four other cases are data flow issues
related to circular references in objects. For the last four cases, the
handler function invokes a function that is not defined at this point
in the parsing process. While DoubleX correctly hoists function
declarations, this occurs when a function is defined as a variable
(i.e., foo = function() {...}), which should be defined before use, accord-
ing to the ECMAScript specification [25, 56]. In addition, for six
extensions, which have not been updated since Somé’s analysis, we
report (and confirm, after manual review) three XMLHttpRequest and
four storage vulnerabilities, which had not been found previously.
This way, besides accurately detecting vulnerabilities in the wild
(89% verified reported data flows, cf. Section 5.2.1), DoubleX also
correctly flags the majority of known flaws (92.64%).

5.5 Run-Time Performance

Finally, we evaluated DoubleX run-time performance on a server
with four Intel(R) Xeon(R) Platinum 8160 CPUs (each with 48 logical
cores) and a total of 1.5 TB RAM. Since DoubleX runs the analysis
of each extension on a single core, the run-time reported is for a
single CPU only. The most time-consuming step of our approach
is related to the data flow and pointer analyses. These operations
naturally highly depend on the AST size, as we traverse it to store
the variables newly declared or look for variables previously defined,
and we re-traverse functions when they are called. On average,
DoubleX needs 11 seconds to analyze an extension with content
scripts and background page; and 96.5 seconds for content scripts
and WARs (as the WARs are larger, cf. Section 5.1.2; Figure 7 in the
Appendix presents DoubleX run-time performance depending on
the extension size). Still, the corresponding median times are 2.5
and 31.8 seconds, while the maximum amount of time are 1,498 and
1,116 seconds. In practice, our average results are heavily biased
by a few extensions, whose analysis lasted a long time. Figure 5
presents the Cumulative Distribution Function (CDF) [49] for our
5Storing and extracting data from an extension storage is not part of our attacker
model, as we cannot assess to what extent this may cause damage
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Figure 5: Run-time performance of DoubleX

run-time performance. In particular, we could analyze 93% of our
extension set for content scripts and background page in less than
20 seconds and 45% for the content scripts and WARs. This way,
DoubleX can effectively analyze extensions from the wild, with an
analysis time of mostly a few seconds per extension.

5.6 Summary

To sum up, out of the 154,484 Chrome extensions DoubleX ana-
lyzed, it reported only 278 (0.18%) as having a data flow between
an attacker and the sensitive APIs we considered. These suspicious
flows expand to 309 reports, 275 (89%) of which have a verified dan-
gerous data flow. Therefore, DoubleX is highly accurate to detect
suspicious data flows. In addition, we verified that we could exploit
209 reports, according to our threat model. These 209 flaws corre-
spond to 184 vulnerable extensions, with a total of over 2.4 million
users. Regarding vulnerable extensions we may have missed, we
evaluated DoubleX on the vulnerable extension set provided by
EmPoWeb, where we accurately flag almost 93% of the flaws.

In addition, we observed that 87% of the vulnerable extensions
were already in the store and vulnerable one year ago (despite
disclosure and half of the extensions being updated in between).
As extension developers do not necessarily have any incentive to
patch vulnerable extensions, we believe that DoubleX could be
integrated into the vetting process already conducted by Google
(cf. Section 6.1). This would also delegate the responsibility of hav-
ing vulnerable extensions in the store to Google. In addition to this,
we envision that DoubleX could provide a feedback channel to
developers, e.g., regarding the execution of attacker-controllable
input or sensitive user data exfiltration, to limit having such vul-
nerabilities in the first place.

6 Discussion

In this section, we envision the option to integrate DoubleX into
Chrome’s vetting process. Then, we discuss limitations of our ap-
proach before considering its applicability to other ecosystems like
Firefox extensions.

6.1 Extension Vetting: Workflow Integration

Given the precision and recall of DoubleX, we believe that it can be
integrated into the vetting process already conducted by Google for
newly uploaded extensions [16]. Currently, this system aims at iden-
tifying extensions that request powerful permissions or are clearly
malicious, e.g., by spreading malicious software. Still, we envision
that a feedback channel to alert developers regarding potential
vulnerabilities would be relevant. It is particularly important for

extensions that have privileges such as <all_urls>, which would
allow an attacker who can exploit them to make arbitrary and
authenticated requests and leak their content. As Google readily
points out, high-privilege extensions require a more thorough anal-
ysis. Therefore, the information about vulnerabilities can also be of
interest to the auditor, to limit the number of vulnerable extensions
entering the store. This is all the more important as we noticed that
very few developers acknowledged and fixed the vulnerabilities we
reported (cf. Section 5.2.4).

6.2 Limitations

Regarding our extension set, we considered only the scripts which
are part of the extension package, and we did not take import state-
ments into account. Also, we chose not to analyze modules, as we
are looking for vulnerabilities directly in the extension components.

As for our approach, DoubleX rests on a static analysis to build
the EDG, including control, data, and message flows, and pointer
analysis. While static analysis provides complete coverage of the
available code, it is subject to the traditional flaws induced by
JavaScript dynamic character [3, 30, 36, 37, 79]. For example, we
may miss flaws due to dynamic code generation. While we can
handle dynamically invoked sink functions (e.g., window[’e’ + ’v’
+ ” + ’al’](value), cf. example in Section 4.4.2), as long as we can
statically resolve and/or compute the arguments, we may miss
dynamic function invocations (e.g., handlers[partOfMessage]), as
discussed in Section 5.4. In addition, we chose to build the PDG of
extension components by traversing the CFG one time (vs. iterating
until we reach a fixed point; cf. Section 4.2.3), which may lead to
under-approximations. We discussed the concept of soundiness
in Section 5.2.1, though. Besides, as argued in Section 5.3, in an
Open World model like ours, it would be extremely challenging to
determine the number of vulnerable extensions DoubleX misses,
as we would have to manually review hundreds of extensions to
find a few vulnerable ones. As a best-effort strategy, we evaluated
DoubleX on the vulnerable extension set released with EmPoWeb,
where we accurately detect 92.64% of the flaws (naturally, if both
DoubleX and EmPoWeb missed a vulnerable extension, there is no
way for us to tell that). In addition, our tool is very precise, with
over 89% of our reports which have a verified dangerous data flow.

6.3 Analyzing Firefox Extensions

Besides Chromium-based extensions, DoubleX can also analyze
Firefox. To collect these extensions, we visited the Firefox gallery,
which contains links to all extensions, ordered per category [51].
We used Puppeteer [68] to automatically download and unpack
the extensions. We crawled the store on April 6, 2021, and could
successfully collect 19,577 extensions. As for Chrome, we parsed the
manifest.json of each extension to extract their components and
ran DoubleX on them. Table 4 summarizes our findings. Out of 24
reports, we detected 8 that are exploitable under our threat model.
In addition, we verified the presence of 22 dangerous data flows and
2 additional data flows without a backchannel. For example, and
as previously, we consider that merely controlling a URL prefix for
an XMLHttpRequest is not exploitable. As mentioned in Section 4.3.1,
we took into account the specific message-passing APIs for Firefox
and handled responses with a Promise. For the exfiltration APIs,
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Sensitive API #Reports #DF #1-way DF #Exploitable

ajax 1 1 0 0
downloads.download 3 3 - 3
eval 2 2 - 0
fetch 4 3 1 1
setTimeout 5 5 - 0
tabs.executeScript 2 2 - 1
XMLHttpRequest.open 7 6 1 3

Sum 24 22 2 8

Table 4: DoubleX findings on Firefox extensions

though, we detect suspicious data flows based on callbacks and
leave the Promise implementation for future work.

7 Related Work

In this section, we discuss prior work related to vulnerable extension
analysis and data flow-based vulnerability detection.
Browser Extension Security — In 2010, Bandhakavi et al. intro-
duced Vex, which leverages static information flow tracking on
2,452 (now deprecated) XPCOM [52] Firefox extensions [5]. With
this XPCOM interface, though, they did not have the message-
passing API problematic. In 2012, Carlini et al. combined a network
traffic analysis of 100 Chrome extensions with a manual review to
evaluate the effectiveness of Chrome security mechanisms [8]. In
2015, Calzavara et al. proposed a purely formal security analysis of
browser extensions, looking for the privileges an attacker may esca-
late if a specific component was compromised [7]. In 2016, Salih et
al. highlighted a security issue of the XPCOM namespace [6]. With
CrossFire, they did a static data flow analysis to identify flows
between globally accessible variables from extensions and security-
sensitive XPCOM calls. In 2017, Starov et al. performed a dynamic
analysis with BrowsingFog to detect privacy leakage from 10,000
Chrome extensions, showcasing that most leakage are not inten-
tional [76]. Finally, in 2019, Somé considered message-passing APIs
to exploit browser extension capabilities [72]. Still, his analysis,
which merely relies on a lightweight call graph analysis and a fixed
list of possible ways to invoke specific APIs, yields an extremely
large number of false positives (of the 3.3k Chrome extensions he
flagged, only 171 were vulnerable). In contrast, DoubleX defines
an EDG to model the control, data, and message flows, including
pointer analysis, inside an extension (as well as external messages).
This graph then enables us to precisely reason about suspicious
data flows, with regard to, e.g., aliasing, to detect non-obvious
vulnerabilities.

While our approach targets vulnerable extensions, prior work
also focussed on detectingmalicious extensions, e.g., by monitoring
their behavior [39, 81], detecting anomalous ratings [66], or track-
ing developer reputation [35]. Such malicious behaviors include
stealing users’ credentials, tracking users [82], spying on them [1],
and voluntarily exfiltrating sensitive user information [9].
Data Flow Analysis for Vulnerability Detection — DoubleX
can also be compared to systems using control and data flow track-
ing for vulnerability detection. For PHP, Jovanovic et al. imple-
mented Pixy to perform a static data flow analysis to discover

cross-site scripting vulnerabilities [38]. Yamaguchi et al. leveraged
the AST enhanced with control and data flow information to model
templates for known vulnerabilities with graph traversals and find
similar flaws in other projects [83]. Backes et al. also used this
data structure to identify vulnerabilities in PHP application [4].
Similarly, with VulSniper, Duan et al. leveraged control flow infor-
mation to encode a program as a feature tensor and feed it to a
neural network to detect vulnerabilities [24]. Contrary to these ap-
proaches, DoubleX does not need any information about previous
vulnerabilities to operate.

8 Conclusion

In this paper, we designed and built DoubleX to detect security
and privacy threats in benign-but-buggy extensions. In particular,
we studied to what extent a web page or another extension without
any specific privilege could exploit the capabilities of a vulnerable
extension. To this end, DoubleX statically abstracts an extension
source code to its EDG and performs a data flow analysis to de-
tect suspicious flows between external actors (i.e., a web page or
another extension, under the control of an attacker) and security-
or privacy-critical APIs. The core components of DoubleX are
the following. First, we abstract the source code of each extension
component to its AST, which we enhance with control and data
flows, and pointer analysis information. Second, we model mes-
sages exchanged between extension components with a message
flow, and we collect messages exchanged outside of an extension
(i.e., with an attacker). We refer to the resulting graph structure as
the Extension Dependence Graph (EDG). Finally, we leverage this
graph to perform an in-depth data flow analysis between sensitive
APIs in browser extensions and external messages.

We analyzed 154,484 Chrome extensions and flagged 278 as
having a suspicious data flow. These suspicious flows expand to
309 reports, 89% of which have a verified dangerous data flow. This
highlights the precision of our analysis. In addition, we detected 184
extensions that are exploitable under our threat model, leading to,
e.g., arbitrary code execution in any website or sensitive user data
exfiltration. Furthermore, we evaluated the recall of DoubleX on a
ground-truth extension set, where it accurately flags almost 93%
of known flaws. Finally, to raise awareness and enable developers
and extension operators to automatically detect such threats before
large-scale deployment, we make DoubleX publicly available [27].
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A Appendix

This appendix contains some supplementary material.
In particular, Listing 6 illustrates Chrome long-lived connections,

as discussed in Section 2.2.
Listing 7 shows the full data flow report for the vulnerable con-

tent script example of Listing 4, as discussed in Section 4.4.
Table 5 lists the sensitive APIs that we considered for our large-

scale analysis of extensions (provided an extension has the corre-
sponding permissions, cf. Section 4.4.1). We indicate, in particular,
if all extension components can access the sensitive APIs or only
the high-privilege ones.

Figure 6 is a graphical representation of the EDG of the extension
from Listing 2. As discussed in Sections 4.2 and 4.3, it includes
control flows (blue dotted edges), data flows (orange dashed edges),
and message flows (green solid edges).

Finally, Figure 7 presents DoubleX run-time performance de-
pending on the extension size.

1 / / Web page code
2 var po r t = ch rome . r un t ime . c onne c t ( { name : " myport " } ) ;
3 po r t . p o s tMe s s a g e ( { g r e e t i n g : " Hi BP " } ) ;
4
5 / / Background page code
6 c h r ome . r un t ime . o nConn e c t E x t e r n a l . a d dL i s t e n e r ( f u n c t i o n ( p ) {
7 p . o nMe s s a g e . a d dL i s t e n e r ( f u n c t i o n ( message ) {
8 r e c e i v e d = me s s a g e . g r e e t i n g / / Hi BP
9 } ) ;
10 } ) ;

Listing 6:Messages: web page - background page (long-lived)

1 {
2 "extension": "vuln -extension",
3 "cs": {
4 "direct_dangers": {
5 "danger1": {
6 "danger": "eval",
7 "value": "window.eval(event.data)",
8 "sink -param1": "event.data",
9 "line": "2 - 2",
10 "filename": "vuln -extension/content -script.js",
11 "dataflow": true ,
12 "param_id0": {
13 "received_from_wa_1": {
14 "wa": "event",
15 "line": "1 - 1",
16 "filename": "vuln -extension/content -script.js",
17 "where": "event",
18 }
19 }
20 },
21 "danger2": {
22 "danger": "eval",
23 "value": "eval (42)",
24 "sink -param1": 42,
25 "line": "4 - 4",
26 "filename": "vuln -extension/content -script.js",
27 "dataflow": false ,
28 "param_id0": {}
29 }
30 },
31 "indirect_dangers": {},
32 "exfiltration_dangers": {}
33 },
34 "bp": {
35 "direct_dangers": {},
36 "indirect_dangers": {},
37 "exfiltration_dangers": {}
38 }
39 }

Listing 7: Full data flow report for Listing 4
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Flaw category All components High-privilege components

Code Execution eval, setInterval, setTimeout tabs.executeScript

Triggering Downloads downloads.download

Cross-Origin Requests

$.ajax, jQuery.ajax, fetch, $.get,

jQuery.get, $http.get, $.post,

$http.post, XMLHttpRequest().open,

jQuery.post, XMLHttpRequest.open

Data Exfiltration bookmarks.getTree, cookies.getAll,

history.search, topSites.get

Table 5: Security- and privacy-critical APIs considered depending on the extension components
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Figure 6: EDG of the extension from Listing 2 (see Table 1 for the specific messages exchanged)
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