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ABSTRACT 

Online product reviews are a significant component affecting transactions in business-to-

consumer (B2C) e-commerce. The sheer volume of online reviews makes it virtually impossible 

for buyers to systematically process all reviews available. Drawing on the elaboration likelihood 

model (ELM) and web assurance seals (AS) literature, we investigate the association between 

two trust-building proxies included in reviews: verified buyer flag (VBF) and reviewer’s 

technical understanding (TU), and topics discussed in online product reviews. Our results 

indicate that both VBF and TU affect review content. From a practical perspective, we provide a 

means of content filtering that can be implemented at a recommender system level to reduce 

information overload prospective buyers are subjected to. From a theoretical perspective our 

results indicate there is an identifiable shift that has occurred in the e-commerce environment. 

More specifically, the evolution of the web has brought elements of consumer-to-consumer 

(C2C) interactions into the space typically reserved for B2C landscape, where sellers also act as 

intermediaries facilitating information exchange between buyers. 

Keywords: trust, online reviews, topic modeling, source credibility, assurance seals, 

security software, antivirus.  
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INTRODUCTION 

Online reviews are the most influential factor affecting purchasing decisions of online 

shoppers and is more influential than advertising or friends and family recommendations 

(BigCommerce 2017). With reviews being different in terms of content, emotional load, or 

intended audience, and their increasing volume, it becomes increasingly difficult to distinguish 

the signal from the noise, as most buyers will not read all available reviews (Shrestha 2018). So, 

the question remains which reviews are to be trusted. 

Sellers often implement measures intending to increase trustworthiness of reviews posted 

on their portals. In this study, we investigate two of such measures: verified buyer flag (VBF) 

and self-reported reviewer level of technical understanding (TU). VBF symbolizes a seller issued 

AS certifying if an author of a review purchased the product, that way increasing legitimacy of a 

review. TU epitomizes reviewer’s self-reported level of technical expertise with intention to 

legitimize reviews based on the assumption that subject matter experts can be trusted more than 

novices. The primary goal of the present study is to examine if there exists any association 

between the two trust-building proxies and topics discussed in product reviews. 

We collected online reviews of security software from Newegg.com, a popular online 

seller. We then extracted the topics of the reviews using Latent Dirichlet Allocation (LDA) and 

performed loglinear analysis to assess the association between the three variables: topics, VBF, 

and TU. Our results indicate that both trust-related variables affect the topics being discussed in 

the reviews. 

THEORETICAL BACKGROUND 

AS have roots in research founded on the premise that individuals tend to place their trust 

in settings that increase their feeling of safety (Mcknight et al. 2004). Their purpose is to increase 
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buyers’ trust in the seller’s platform given the uncertainty of the e-commerce environment. AS 

are usually associated with using third-party services, which act as certifying entities. The 

organizations typically have a set of standards developed, with which online sellers must comply 

(and periodically verify) to obtain a specific institution’s AS to be used on the seller’s website. 

The purpose of these seals is to instill trust in buyers reassuring them that the seller’s privacy 

practices, safety of transactions and records have met the highest standards (Kim et al. 2008).  

Several studies confirm AS effectiveness with their positive effect on willingness to buy 

(Kovar et al. 2000; Mauldin and Arunachalam 2002; Nöteberg et al. 2003), while simultaneously 

generating higher expectations towards transactions (Rifon et al. 2005). Similar findings were 

reported by Park et al. (2010) who found that customers elicited higher expectations towards 

vendors with seals, but in case of their absence they would shift their focus towards sellers’ 

service performance. Additionally, Nöteberg et al. (2003) noticed that presence of AS decreases 

buyers’ privacy concerns, regardless of who the provider of the seal was. In contrast, Odom et al. 

(2002) discovered seals issued by different providers addressed different types of customer 

concerns other than privacy (e.g., security, legitimacy, documentation, quality, etc.). AS that 

perform multiple functions are not more efficient than those focusing on one only (Hu et al. 

2010). There are also studies that find no effects of AS on trust (Kimery and McCord 2002; 

Mcknight et al. 2004; Wang et al. 2004). The exact reasons for these inconclusive findings are 

not fully understood.  

We focus on a seller issued VBF that is placed next to each individual review, so that 

prospective buyers can easily notice it. We propose that the role of VBF is the same as any other  

AS, including those that are issued by third parties – to instill trust. However, this time, the issuer 

of the seal is shifted, whereas the recipient remains unchanged. Concurrently, seller-issued AS 
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(like VBF) will only work as intended, if the seller has a reputation of being solid, which – 

paradoxically – may often be influenced by AS issued by third parties to the seller. 

Initial trust in online reviews relates to cases where buyers do not have reliable means to 

determine if reviews they read can be depended upon (McKnight et al. 2002). It is formed in 

short period of time during the first encounter with the trustee (McKnight et al. 1998) and may 

affect purchasing decision. The level of trust that a trustee can raise in the trustor is tied to the 

effectiveness of their persuasion. Drawing on the elaboration likelihood model (Chen and 

Chaiken 1999; Petty and Cacioppo 1986), individuals can process information either in a 

systematic or heuristic mode, both of which can affect their attitudes. The former requires careful 

evaluation of the arguments presented, while the latter often depends on peripheral cues which 

can affect the attitude in the absence of systematic information processing. 

The major determinants of persuasion include personal relevance, argument quality, and 

source expertise (Pornpitakpan 2004; Yi et al. 2013). Petty & Cacioppo (1986) determined that 

persuasion methods are more effective when arguments presented were of high quality and their 

source demonstrated high levels of expertise. We propose that when buyers are exposed to a 

large volume of reviews, they will first engage their peripheral cue-based heuristic processing to 

identify reviews relevant to them, and then read those to obtain further information. One type of 

peripheral cues based on source credibility is reviewer’s TU. Based on prior studies, prospective 

buyers will trust reviews written by experts more than they will those written by novices. From 

this perspective, both VBF and the reviewer’s TU can be described as a form of peripheral cues 

attached to an online review, whose underlying goal is to increase trustworthiness of reviews. 

The goal of the present study is to investigate the interplay between these two cues and the 

argument presented in a body of a review. 



Hanus & George Trust-Based Content Filtering 

 

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, December 15, 2019. 5

METHODOLOGY 

We collected online reviews from Newegg.com, a seller with long market presence 

(founded in 2001) and high ratings among buyers (ResellerRatings 2019) and third-parties 

(Better Business Bureau 2019). We focused on antivirus and internet security software. We 

extracted product reviews using a custom-built scraper, yielding a sample of 6622 unique 

reviews. For each, we collected product id, product name, manufacturer, reviewer name/id, TU, 

length of ownership, and VBF) and review components (i.e., the body, including pros, cons, and 

other thoughts sections, product rating assigned, and review date). VBF is represented with a 

Boolean variable. TU is reported optionally by reviewers and described on a five-point scale, 

ranging between low and high or set to unknown (if not reported). Pros, cons, and other thoughts 

were merged into single documents. We then conducted additional text preprocessing: 

tokenization, lower-case transformation, and stop words removal. Next, we filtered out tokens 

shorter than three and longer than thirty characters and then generated bigrams. Lastly, we 

pruned tokens appearing in less than one percent or in more than ten percent of documents. We 

then applied LDA, a method which assumes a fixed number of topics with each document in a 

corpus representing a combination of the above topics. LDA operates by creating a posterior 

structure representing a summary that can be used to explore the underlying corpus of text. It 

generates relative topic proportions and topic assignment for each document (Blei et al. 2010). 

Determining the “optimal” number of topics with LDA is not well-documented. While 

several alternatives exist (Arun et al. 2010; Cao et al. 2009; Griffiths and Steyvers 2004), we 

took an approach based on LDA’s close links to principal component analysis (PCA) (Blei et al. 

2010). We first ran LDA with a large number of topics and using the scree test we determined 

that the number of topics extracted was six. To check for association between VBF, TU, and 
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topics we implemented loglinear analysis. LDA in addition to generating topic proportions also 

provided us with topic assignment for each document. Thus, each review had one primary topic 

assigned to it (used as a categorical variable in our model). Finally, we calculated frequencies for 

each combination of topic assignment, TU, and VBF.  

DATA ANALYSIS 

Table 1 includes typical summary diagnostics for the six topics extracted using LDA 

(McCallum 2002). The tokens row provides the number of word tokens allotted to each topic, 

giving the proportion of the corpus assigned to each topic. These range between 29,202 for topic 

2 and 242,244 for topic 1. These numbers should not be small or large relatively to other topics. 

Document entropy ranges between 6.8578 (topic 5) and 8.3442 (topic 1) and does not indicate 

any reasons for concern. Some variation is present in document coherence (if terms in a topic 

tend to co-occur together). Large negative values represent less coherent topic, while those closer 

to zero indicate more coherent one. Topics 1 and 0 are the most coherent, while topics 2 and 5 

are the least. In terms of uniform and corpus distributions, topic 1 stands out the most. Corpus 

distribution is correlated with the number of tokens with the assumption that topic that 

incorporates a relatively large fraction of tokens in the document collection will be more like the 

overall corpus distribution (i.e., topic 1). Based on the effective number of words metric, topics 

2, 3, and 5 are characterized by high specificity, while topics 1, 0, and 4 are its lower range. 

Token/Document discrepancy examines how many times a given term occurs in a specific topic 

in comparison to the number of documents that the term occurs in as part of the topic. This 

metric is somewhat related to coherence, with topic 5 demonstrating the highest discrepancy. 

Rank 1 documents metric evaluates the number the instances where a specific topic is the most 

frequent topic in the document. In other words, it indicates whether topics are “main” topics 
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(higher values) or “background” topics (lower values). As such, topics 1, 0, and 4 appear to be 

the main topics, while topics 2, 5, and 3 can be of lesser significance (they represent a distinct 

discourse in a document but are not necessarily the focus of that document).  

Table 1. LDA Topic Model Diagnostics 
Topic Topic_0 Topic_1 Topic_2 Topic_3 Topic_4 Topic_5 

Coherence -66.68 -64.20 -154.76 -118.46 -88.81 -141.60 

Rank 1 Documents 0.297 0.745 0.034 0.05 0.211 0.039 

Average Word Length 6.0 5.8 8.8 3.7 6.3 7.5 

Exclusivity 0.8576 0.8346 0.7264 0.6962 0.7751 0.7424 

Document Entropy 6.8962 8.3442 6.9003 6.8438 7.2587 6.8578 

Effective Number of Words 936.5480 727.5651 9913.2408 7988.2533 1146.1534 5546.9356 

Tokens 55465 242244 29202 30152 59765 31194 

Uniform Dist. 2.8254 3.4847 2.1151 2.1573 2.6645 2.1969 

Corpus Dist. 1.5839 0.4691 2.4523 2.4091 1.5613 2.3664 

Token/Document Discrepancy 0.0023 0.0013 0.0060 0.0002 0.0019 0.0105 

Allocation Count 0.3511 0.8750 0.1743 0.1859 0.3354 0.1870 

 

Table 2 includes the list of top ten terms for each of the six topics identified. We have 

also provided a label for each topic that describes the area that the topic is discussing. We labeled 

topic 0 “Data recovery”. The reviews falling in this category primarily discuss data backup 

solutions, which are usually bundled with most modern consumer-oriented computer security 

suites. One of the terms – “Acronis” refers a software vendor whose primary area of expertise is 

data protection. Reviews assigned to topic 1 “General functionality” usually describe the users’ 

general experience with the software package and the main purpose for which it was designed – 

keeping the system free of viruses and malware. The product name “Norton” is also one of the 

major terms characterizing topic 1. Nearly 22% of all reviews were about Symantec products. 

Topic 1 is also the main topic in our collection based on rank 1 metric, which confirms our 

expectations as the reviews falling in this category describe the primary functionality of this type 

of software. Topic 2 “Virus detection” involves the reviewers’ experience with false alarm 

detection, a problem that has been nagging the industry for years. This primarily occurs when 
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detection signatures or detection algorithm employed by an antivirus package when scanning the 

system are not finely tuned. Topic 3 “Hardware resource” discusses what hardware software was 

used on, running scan at boot time, and the application’s impact on system performance. It is 

usually one of the metrics that antivirus software is evaluated on, with the expectation that it 

should be running in the background without consuming a significant proportion of the system’s 

resources. Topic 4 “Product support” includes items that are related to either the vendor support 

or the seller support from Newegg. Finally, topic 5 “Configurability” includes the discussion of 

additional functionality of a given package. For instance, these could include setting up parental 

controls, optimizing and cleaning Windows registry, setting up firewall, etc. Some of these items 

might be configured right out of the box, some may require user intervention first.  

Table 2. Top 10 Terms per Topic 
Topic Label Top 10 Terms 
0 Disk recovery drive, backup, acronis, image, disk, restore, windows, software, ghost, drives 

1 
General 
functionality 

software, norton, product, computer, use, system, virus, good, version, free 

2 Virus detection 
false, positives, false_positives, nav, infections, response, infected, manufacturer, 
comparatives, please 

3 Hardware resources core, cpu, ram, ghz, dual, amd, gig, boot, blue, laptop 
4 Product support support, product, rebate, customer, tech, newegg, tech_support, get, service, key 

5 Configurability 
webroot, devices, settings, registry, parental, options, device, unlimited, control, 
firewall 

 

When calculating frequencies of each combination of VBF, TU, and Topic, we filtered 

the cells for which the count was less than five and did not include them in subsequent analyses 

to avoid potential threats to validity (Allison 2012). We then fitted a loglinear model to evaluate 

the association between the three categorical variables. We initially fitted a saturated model only 

to find out that the 3-way interaction between the categorical variables was not significant. We 

then fitted a more parsimonious, homogenous association model with the highest order 

interaction removed. Table 3 includes the reduced model’s goodness of fit statistics. Both 

deviance and Pearson chi-square have values to df ratios close to 1, indicating good fit (Allison 
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2012). Homogeneous association model assumes that all partial odds are resulting from two-way 

interaction terms. The analysis of those is presented in Table 4. All three two-way interactions 

are significant. To further investigate the current model’s fit, we also analyzed its residuals. The 

largest value was less than 2.4, providing sufficient evidence for our model’s good fit. 

Table 3. Goodness of Fit Assessment – Homogeneous Association Loglinear Model 
Criterion DF Value Value/DF 

Deviance 11 11.7117 1.0647 

Scaled Deviance 11 11.7117 1.0647 

Pearson Chi-Square 11 11.9802 1.0891 

Scaled Pearson X2 11 11.9802 1.0891 

Log Likelihood   27917.5866   

Full Log Likelihood   -133.0179   

AIC (smaller is better)   340.0358   

AICC (smaller is better)   621.2358   

BIC (smaller is better)   409.2702   

 

Table 4. Likelihood Ratio Statistics for Type 3 Analysis 
Source DF Chi-Square Pr > ChiSq 

VBF 1 12.22 0.0005 

TU 5 543.60 <.0001 

Topic 5 1223.53 <.0001 

VBF * TU 5 110.45 <.0001 

VBF * Topic 5 11.45 0.0431 

TU * Topic 15 125.21 <.0001 

 

Detailed list of maximum likelihood parameter estimates is included in Appendix A. If 

there are significant interaction terms found in the model, then lower-order terms are omitted 

from interpretation, as well as the intercept which is a normalizing constant. The main effects for 

VBF, TU, and topic provide us with little meaningful insight and are difficult to interpret. The 

estimates included in Appendix A represent conditional log odds ratios. Those that are of interest 

to us are the estimates representing two-way associations identified as significant in Appendix A 

(i.e., VBF * TU and TU * Topic). 
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First, reviewers who are verified buyers are less likely to report their TU levels with 

extreme cases of high, somewhat high, and average TU levels. These negative associations are 

independent of the topics discussed in the body of the reviews. Second, independent of VBF, 

there are associations between their levels of TU and topics in their reviews, including the 

following: (1) negative association between low TU and topic 1, (2) positive association between 

“average” TU and topics 0 and 1, (3) positive association between “somewhat high” TU and 

topics 0, 1, and 4, (4) positive association between “high” TU and topics 0 and 1. Finally, 

independent of TU, as far as the VBF and topic association is concerned, verified buyers tend to 

discuss topic 1 and, perhaps topics 4 and 0 more frequently than other topics. 

DISCUSSION 

The six-topic solution represents most of the typical applications of antivirus and security 

software designed for consumer market. Consumer software should work for the most part right 

out-of-the-box, while still offering some degree of customization. We believe that our six-topic 

solution reflects these properties closely. These range from general functionality (topic 1) that 

describes the overall product experience and usage without going into more specific details, 

through the service quality component (topic 4), to more detailed aspects of software. The 

service quality component includes items related to the seller (i.e., Newegg) and those associated 

with software vendors. The remaining four topics describe more specific areas. For instance, 

topic 2 “virus detection” describes the accuracy of its malware detection engine. These should be 

as accurate as possible. Most vendors promise high detection rates, but 100% is almost never 

guaranteed. In fact, software warranties offer little customer protection and limit vendor liability 

(Riedy and Hanus 2017). For consumer-oriented security suites, 99.5% detection rate is 

considered a minimum threshold (Virus Bulletin 2019), but is more of an expectation than a legal 



Hanus & George Trust-Based Content Filtering 

 

Proceedings of the 14th Pre-ICIS Workshop on Information Security and Privacy, Munich, December 15, 2019. 11

obligation. Regarding detection errors, most usually are false positives, while false negatives are 

fewer in numbers. From end-user perspective it can an inconvenience if healthy files are 

quarantined. Topic 3 “hardware resources” captures portions of reviews that are related to overall 

performance of a given product. While historically some software offered only on-demand 

scanning, modern solutions offer real-time protection service running in the background. It can 

be invoked for events like file copying, installing or removing applications, archiving files, 

browsing the web and downloading files, etc. While these may not be resource intensive, adding 

an additional layer of protection can impact system’s performance. Thus, security software 

should leave a small footprint on computer’s memory and CPU utilization. Reviewers also 

discuss configurability of software (topic 5). It may be related to the number of concurrent 

installations and whether they can be centrally managed. Most vendors have multiple licensing 

options available to cover multiple devices that consumers have. More sophisticated options may 

include setting up firewall or parental controls, or cleaning Windows registry form orphaned 

entries, allowing users to finetune the software. Lastly, topic 0 “disk recovery” is related to disk 

backup and recovery that can help avoiding data loss in case of malware infection or 

ransomware. Historically data backup packages were sold separately from antivirus software, 

whereas these days they tend to be bundled together. Overall, the six-topic solution offers a 

comprehensive view of areas buyers should consider when shopping of antivirus software.  

As shown in Appendix A, the parameter estimates for interaction terms describing the 

association between VBF and TU levels shed additional light into the interdependencies between 

these two trust proxies. Verified buyers are less likely to report high TU in comparison to non-

verified buyers, and to a lesser degree for somewhat high and average TU levels. It appears that 

verified buyers may simply not bother about indicating their TU as opposed to their non-verified 
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counterparts. A plausible explanation would be that VBF carries enough significance in the eyes 

of reviewers, so they assume no additional source credibility measures are to instill trust in 

prospective buyers. However, it is not guaranteed that every verified buyer will know how to use 

the product as intended and that they will share accurate information that could help prospective 

buyers make a purchase decision. This potentially brings the role of review helpfulness into the 

picture and could be further evaluated by future studies. The data we collected were insufficient 

with regards to this metric. It appears that non-verified buyers may require a substitute in the 

absence of VBF in order to substantiate the claims in their reviews. When reported, most 

reviewers tend to evaluate their TU as either high or somewhat high, potentially raising concerns 

on the usefulness of the metric, given that verified buyers tend to give it less consideration. 

The interaction between VBF and topics sheds additional light on the association between 

the VBF and TU. Verified buyers tend to mostly focus on the software’s general functionality 

(topic 1), product support (topic 4) and data recovery (topic 0), and tend to be less concerned 

with more “technical” issues like virus detection (topic 2), hardware resources (topic 3), or 

configurability (topic 5). Just as they were not concerned about indicating their TU, verified 

buyers are inclined to provide more general information in their reviews, without going to 

additional details. One possible explanation is that they want to communicate to prospective 

buyers if the software works and what assistance, if any, can they expect from vendors. In 

contrast, it appears that non-verified buyers are more interested in more technical details in their 

reviews, which – to an extent – is in line with their tendency to report high TU levels. These two 

items together create an impression that non-verified buyers might simply be bragging about 

their expertise and that way try to convince prospective buyers their reviews should be trusted. 
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Lastly, interesting insights can be gained from the association between TU and topics. 

Individuals who report low TU are less likely to discuss topic 1 than topic 4. This could be 

simply because, in comparison to more experienced people, these users lack skills to operate the 

software and, thus, heavily rely on vendor support to get software installed and set up. This 

observation, however, does not apply to individuals with “somewhat low” TU, potentially 

indicating that these two groups are separated by the latter’s ability to get their software up and 

running without any external assistance. We also found that individuals reporting the two lowest 

levels of TU do not discuss the other four topics. Those who report average, somewhat high, or 

high TU levels are much more diverse in that regards. At the same time, the members of these 

three groups are more likely to discuss issues related to data recovery than they are to mention 

any other topics. 

CONCLUSION 

Overall, our results indicate there is association between VBF, TU, and topics of antivirus 

software reviews. Verified buyers tend to be more straight-to-the-point in their reviews and often 

avoid going into highly technical details behind each software package. Users with lower levels 

of technical understanding focus on product support and general software functionality. Their 

more experienced counterparts are broader in their deliberations, often touching more detailed 

subjects (i.e., data recovery). Our results also indicate that VBF and TU tend to be used, but not 

necessarily in unison. Reviewers who are verified buyers are more likely not to report TU, while 

non-verified buyers will attempt to substitute the absence of VBF with higher levels of TU. 

Our study extends the current body of knowledge by investigating trust-building proxies 

in a previously not discussed setting. Typically, as extant literature demonstrates, AS are issued 

by third parties to build-up trust for sellers. We, on the other hand, investigated the use of AS 
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issued by sellers to reviewers (i.e., VBF). In addition, we find that the use of TU as a source of 

credibility occurs in the form of customer interaction historically kept for C2C, now deployed in 

a B2C with sellers acting as intermediaries. In e-commerce, these instruments are important 

mechanisms allowing differentiating between online reviews. Future studies could investigate 

which reviews (based on topics) are determinants of purchasing intentions. 

From practical perspective, our results provide sellers with an outlet for improved content 

filtering systems available on their platform to prospective buyers that would be customized to 

reflect their level of TU. Sellers could allow searching and filtering for those reviews containing 

topics relevant to prospective buyers, allowing them to find the reviews quicker and, more 

importantly, save their time by not having to read the other reviews. 
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APPENDIX A – ANALYSIS OF MAXIMUM LIKELIHOOD PARAMETER 

ESTIMATES 

Parameter 
 

Estimate 
Standard

Error 
Likelihood Ratio 95% 

Confidence Limits 
Wald Chi-

Square 
Pr > Chi

Sq 

Intercept     1.3712 0.3330 0.6720 1.9831 16.95 <.0001 

VBF     0.8327 0.2645 0.3146 1.3549 9.91 0.0016 

TU Low   -1.0376 0.5516 -2.1677 0.0111 3.54 0.0600 

TU Somewhat Low   -1.9776 0.5952 -3.2444 -0.8821 11.04 0.0009 

TU Average   0.1611 0.4313 -0.7089 1.0038 0.14 0.7088 

TU Somewhat High   0.5199 0.4035 -0.2790 1.3203 1.66 0.1976 

TU High   1.5630 0.3429 0.9146 2.2691 20.78 <.0001 

TU Unknown   0.0000 0.0000 0.0000 0.0000 . . 

Topic Topic_0   -1.0792 0.5617 -2.2721 -0.0263 3.69 0.0547 

Topic Topic_1   2.9500 0.3317 2.3371 3.6441 79.11 <.0001 

Topic Topic_2   0.2533 0.4640 -0.6621 1.1689 0.30 0.5852 

Topic Topic_3   0.0669 0.2807 -0.4827 0.6217 0.06 0.8115 

Topic Topic_4   1.4448 0.3522 0.7862 2.1739 16.83 <.0001 

Topic Topic_5   0.0000 0.0000 0.0000 0.0000 . . 

VBF*TU Low   -0.7123 0.4526 -1.5766 0.2229 2.48 0.1156 

VBF*TU Somewhat Low   -0.5607 0.3818 -1.2875 0.2236 2.16 0.1420 

VBF*TU Average   -0.6839 0.1355 -0.9527 -0.4210 25.47 <.0001 

VBF*TU Somewhat High   -0.8716 0.1240 -1.1186 -0.6322 49.43 <.0001 

VBF*TU High   -1.1140 0.1208 -1.3551 -0.8811 85.07 <.0001 

VBF*TU Unknown   0.0000 0.0000 0.0000 0.0000 . . 

VBF*Topic Topic_0   0.4848 0.2599 -0.0263 0.9962 3.48 0.0622 

VBF*Topic Topic_1   0.5081 0.2481 0.0198 0.9964 4.19 0.0405 

VBF*Topic Topic_2   -0.2684 0.3907 -1.0406 0.4955 0.47 0.4921 

VBF*Topic Topic_3   0.2706 0.3319 -0.3802 0.9234 0.66 0.4149 

VBF*Topic Topic_4   0.4990 0.2618 -0.0158 1.0140 3.63 0.0567 

VBF*Topic Topic_5   0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Low Topic_1 -1.2041 0.4162 -2.0147 -0.3657 8.37 0.0038 

TU*Topic Low Topic_4 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Somewhat Low Topic_1 0.0543 0.5073 -0.8635 1.1667 0.01 0.9147 

TU*Topic Somewhat Low Topic_4 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Average Topic_0 2.9185 0.6267 1.7474 4.2360 21.69 <.0001 

TU*Topic Average Topic_1 0.8841 0.4279 0.0489 1.7486 4.27 0.0388 

TU*Topic Average Topic_3 0.1842 0.4725 -0.7339 1.1333 0.15 0.6967 

TU*Topic Average Topic_4 0.4316 0.4502 -0.4472 1.3372 0.92 0.3377 

TU*Topic Average Topic_5 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Somewhat High Topic_0 3.5255 0.6035 2.3976 4.7980 34.13 <.0001 

TU*Topic Somewhat High Topic_1 1.4481 0.4002 0.6550 2.2417 13.09 0.0003 

TU*Topic Somewhat High Topic_2 -0.0453 0.6383 -1.3445 1.1829 0.01 0.9434 
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Parameter 
 

Estimate 
Standard

Error 
Likelihood Ratio 95% 

Confidence Limits 
Wald Chi-

Square 
Pr > Chi

Sq 

TU*Topic Somewhat High Topic_3 0.5222 0.4119 -0.2732 1.3502 1.61 0.2049 

TU*Topic Somewhat High Topic_4 0.8267 0.4188 -0.0015 1.6560 3.90 0.0484 

TU*Topic Somewhat High Topic_5 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic High Topic_0 3.1380 0.5636 2.0855 4.3367 31.00 <.0001 

TU*Topic High Topic_1 0.8409 0.3392 0.1426 1.4835 6.14 0.0132 

TU*Topic High Topic_2 -0.1465 0.4692 -1.0742 0.7758 0.10 0.7548 

TU*Topic High Topic_3 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic High Topic_4 0.1410 0.3599 -0.5935 0.8272 0.15 0.6952 

TU*Topic High Topic_5 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Unknown Topic_0 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Unknown Topic_1 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Unknown Topic_2 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Unknown Topic_4 0.0000 0.0000 0.0000 0.0000 . . 

TU*Topic Unknown Topic_5 0.0000 0.0000 0.0000 0.0000 . . 

Scale     1.0000 0.0000 1.0000 1.0000     
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