
29TH INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS DEVELOPMENT (ISD2021 VALENCIA, SPAIN)

Supporting Sustainability and Technical Debt-Driven Design
Decisions in Software Architectures

Daniel Guamán1,2
1Universidad Politécnica de Madrid
Madrid, Spain da.guaman@alumnos.upm.es
2Universidad Técnica Particular de Loja
Loja, Ecuador daguaman@utpl.edu.ec

Jennifer Pérez1
1Universidad Politécnica de Madrid
Madrid, Spain jenifer.perez@upm.es

Abstract
Degraded software usually incurs higher energy consumption, therefore suboptimal
decisions in software architectures may lead to higher technical debt and less sustainable
software products. There are metrics and tools to calculate technical debt and energy
consumption of software, but it is required to provide mechanisms to store their relationship
and how they change depending on the design decisions. In addition, there are different
models for calculating the same metric and different metrics to measure technical debt and
power consumption, and software engineers require selecting the most suitable model and
metric depending on the software product context. This work presents a metamodel called
ARCMEL to provide the required base of knowledge for supporting green-aware design
decisions and to flexibly configure and select metrics and their models. ARCMEL has been
implemented as part of the ARCMEL SCAT tool. Its validation is also presented in terms
of completeness and flexibility.

Keywords: Green Metrics, Technical Debt, Software Architecture, Design Decisions,
Metamodel.

1. Introduction
Everyday sustainability increases its criticism in our society, which has led companies to
be aware on their social, economic, environmental, technical and individual dimensions
[3]. The technical dimension addresses Green IT [19] by improving the energy efficiency
of both, software and hardware. Traditionally, energy efficiency research has focused on
reducing power consumption at the hardware level. But currently, the Green IT and
software sustainability development have become fundamental to encourage an efficient
use of technological resources in order to reduce environmental impact [14]. Green IT and
Green Software [19] include practices and criteria in the design, development,
implementation, and use of the software, which allow to identify and evaluate metrics
associated with sustainability, reduction in the consumption of technological resources,
and energy efficiency of software [7]. In fact, the technical dimension of the sustainability
manifesto [3] refers to the longevity of information, systems, and infrastructure and their
adequate evolution with changing surrounding conditions. It includes maintenance,
innovation, obsolescence, data integrity, etc.

Venters et al. [41] and Villa et al. [43] state that maintainability is a quality attribute
that influences software sustainability. In particular, Technical debt (TD) is a critical factor
in software maintainability [7], because it is a concept that studies the economic
consequences due to the increase or decrease in the quality of the software generated by
design and code decisions to prioritize certain aspects of the business [39]. Maintenance
changes may generate technical debt [22], considered as the debt that originates from
problems or anomalies in the code. Several studies have highlighted the negative effects of
uncontrolled technical debt on software development [39]. As a result, it is necessary to
provide mechanisms, methods and tools to build sustainable software products that
improve technical debt and energy efficiency by improving quality and reducing

mailto:jenifer.perez@upm.
mailto:jenifer.perez@upm.

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

complexity [19].
At the code level, these TD and sustainability problems are classified as code smells

[15] and energy smells [42] that also increase the software energy consumption. The term
code smells are manifestations of poor implementation and design flaws that can degrade
code and difficult the software maintainability [9],[11]. Energy Smell is an implementation
that appears at the source code level (code patterns), design, or architectural level that
makes a sub-optimal usage of the hardware resources. Consequently, it provokes an energy
debt [11], which is considered as the amount of unnecessary energy that a software system
uses over time, due to maintaining energy code smells for periods. There are different
models for calculating these metrics and different metrics to measure technical debt and
power consumption, and software engineers require mechanisms for selecting the most
suitable model and metric depending on the software product context. A good practice to
reduce code smells, energy smells and the energy consumption is to use models that
calculate energy consumption from technical debt implemented by tools, and techniques
that allow findings errors and evaluate code metrics to carry out refactoring and
maintainability activities of the software to improve code and energy smells. However,
currently, to use only one approach and model to evaluate the software and build decisions
in terms of the relationship between technical debt and sustainability is not feasible [40].
This problem is due to the existing models and the tools that support them do not store all
the required information to support these TD green decisions or are specific to the domain
or application context. Therefore, it is necessary a domain-independent model to manage
the knowledge of software architectures, design decisions, and the TD and green metrics
in order to estimate TD and energy consumption and support the design decision-making
process. In this work, we present the metamodel ARCMEL to support these needs. This
solution has been constructed using the Model-Based Engineering approach (MBE) [4],
since models automate development tasks and stimulate learning and reasoning
capabilities, which are essential for decision-making support. Specifically, this work
presents the abstract syntax that defines the ARCMEL metamodel, as well as its concrete
syntax based on a web graphic language implemented as part of the automated static
analysis tool SCAT (Source Code Analysis Tool) of ARCMEL[17], called ARCMEL
SCAT. In addition, this work illustrates how the concrete syntax of the metamodel allows
to carry out efficiently the load, extraction, and analysis of software applications in
technical debt and energy consumption contexts. Finally, the paper presents an evaluation
of the metamodel and its tool support in terms of (i) completeness to provide the knowledge
derived from architecture, design decisions, and code and energy smells, and (ii) flexibility
to customize the calculation models of metrics.

The paper is organized as follows: the works related to modelling, technical debt, and
energy consumptions are presented in Section 2. The ARCMEL metamodel is described in
Section 3. Section 4 presents the concrete syntax through the tool ARCMEL SCAT.
Section 5 details the experimental validation that has been performed to validate the
metamodel. Section 6 presents the threats to validity, and finally, the conclusions and future
work are presented in Section 7.

2. Related Work
Model Based Engineering (MBE) [6] uses models raising the abstraction level of
applications to apply generation and automation techniques for the analysis and
development of software systems. This higher level of abstraction is supported by Meta-
Object Facility (MOF) [26] through the definition and manipulation of metamodels. These
models help us to understand complex problems and their potential solutions and stimulate
learning and reasoning. Understanding the architectural decisions made during the design
of an architectural solution is critical. As a result, the software architecture community has
worked in providing metamodels, formal representations and tools for supporting the
design rationale; i.e. the Architectural Knowledge (AK) [37].

AK aims to maintain knowledge and documentation of the fundamentals, assumptions,
and other factors that together determine the significant design and implementation
decisions of software [36]. The standard ISO/IEC/IEEE 42010 [35] defines the reference

ISD2021 SPAIN

AK model [8], which provides a model to characterize the constructors for documenting,
describing and representing software architectural decisions. This metamodel mainly
focuses on architectural elements and design decisions as model constructors. There are
other AK models that also store knowledge extracted from the code. From these models,
the metamodel of Stevanetic et al. [34] takes a step forward introducing tactics to address
design decisions driven by quality attributes. In addition, the work of Venters et al. [40,
41], states that the quality attributes influence in software architecture sustainability, and
therefore, it is necessary to have metamodels that address both sustainability and other
quality attributes. In addition, Villa et al. [43] established maintainability as one of the
quality attributes that influence software architecture sustainability. Therefore, since
technical debt is a critical factor in software maintainability, metamodels to support the
architectural knowledge of technical debt and sustainability are required.

Regarding sustainability, the work of Carrillo et. al [9] takes a step forward in the area
by presenting a model where green design decisions are considered, however although that
they emphasize the relevance of technical debt, it is provided by external components
without being modelled as part of their metamodel and the relationships between them.
The positive and negative impacts of sustainability in the software development life cycle
can be determined using a model proposed by [1] wherein the design, as one of the phases
of the model, suggests using design principles such as (modularization, abstraction,
cohesion, coupling) because energy consumption is reduced. At the development level, in
the model it is recommended to take into account data structures and algorithms, avoid
duplicate code and uncontrolled data flow derived from the unnecessary use of control
statements, thereby improving the maintainability and reducing complexity, technical debt,
and energy consumption.

Regarding Technical Debt, the models work of Li et al. [25] recover technical debt
information applying Knowledge Extraction from Source Code (KNESC) [2], an approach
that aims to extract and analyse the knowledge embedded in the source code through
automated reverse engineering processes. However, these models do not address
sustainability.

Quality-aware AK Metamodels specify quality metrics as part of them and play an
important role since they help to estimate and evaluate software quality in a quantitative
way. Regarding green quality metrics, Welter et al. [44] expose that green metrics help to
monitor and evaluate software in an ecological context, where the evaluation depends on
the structure of the application and the IT infrastructure. As result, there are already works
that affirm that there are code metrics, whose value impacts energy consumption [3], [10],
[13], [28, 29], [24]. In fact, although software power consumption refers to the runtime
execution of software applications and requires a dynamic analysis, there already are green
metrics to estimate the energy consumption of a software application without the need of
being executed. The metrics Executed Instruction Count Measure (EIC), and Memory
Access Count Measure (MAC) use techniques and automated static analysis (ASA) tools
to compute and quantify values that allow estimating the Software Energy Metric (SEM)
[10]. In the same static analysis context, the metric Energy Wasting Rate [29] is used to
identify the classes, attributes, methods, or interfaces that in a software application should
be refactored to reduce the energy consumption. Although these metrics require the
computation of ASA tools, they also need to run the application for a while to obtain the
corresponding energy consumption values using tools for measuring power consumption.
Therefore, the relationships that these metrics define between the code and energy
consumption are the knowledge base for sustainability decisions. In addition, the SOLID
Object-Oriented Design Principles help reduce energy consumption, and a set of metrics
that help analyse the pillars of OOP (abstraction, encapsulation, inheritance, and
polymorphism) [24].

Metrics can be simple or complex. Simple metrics can be calculated using the compiler
or open-source libraries such as the number of packages, classes, lines of code, etc.
Complex metrics measure characteristics at a higher level of abstraction through equations
calculation models based on a set of simple metrics or other complex metrics. The metrics
that evaluate quality attributes and estimate energy consumption are usually compound-

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

complex metrics that can be calculated by applying different equations models, for
example, Cognitive Weighted Method Hiding Factor Complexity (CWMHF)[38],
Cognitive weighted attribute hiding factor complexity metric [38], Catch area average
Exception in a class [32], among others. However, currently, there are no tools that allow
the customization of the calculation model depending on the context and needs. The current
TD measurement tools as SonarQube, and energy consumption estimation tools such as
JouleMeter [21], RAPL [12], and PowerAPI [5], support the extraction or calculation of
metrics and their values storage, but they are not able to address both TD and green [18],
and they do not allow customization of calculation models.

From this related work analysis, this work takes a step forward by presenting the
ARCMEL metamodel to support the green and TD design decision-making. ARCMEL
defines a set of model packages that properly related allow managing the architectural
knowledge and metrics of both technical debt and estimation energy consumption. In
addition, this metamodel allows the customization, management, and storage of calculation
equations configured by simple and complex metrics according to the context and needs
of each software engineer.

3. ARCMEL Metamodel: Abstract syntax
This section presents ARCMEL as a metamodel to specify not only the design decisions of
software architectures but also the metrics that support them to be technical debt and
sustainable-aware. This metamodel is also characterized by providing flexibility to customize
the equation models applied by each metric and to store them. This metamodel is composed of
four packages: ArchitectureModel, ClassModel, MetricModel, and SmellModel (see Fig. 1).
The packages ArchitectureModel and ClassModel define the software system at different levels
of abstraction, specifically from source code to software architecture, and their design and
rationale. On the other hand, the MetricModel and the SmellModel are related to quality
attributes measurement, specially they allow to store knowledge among the relationships
between code smells and green metrics. Each package is described in detail in the following
subsections.

Fig. 1. ARCMEL Metamodel

3.1. Package Architecture Model

The package ArchitectureModel is based on the standard ISO/IEC/IEEE 42010 to define
the software architecture and its design decisions to store and analyse architecture
knowledge. ArchitectureViews commonly organize the software architecture design into
the different points of view that represent the software system (see Fig. 2). In addition,
software architectures are structurally implemented by using architectural styles,
architectural patterns, and design patterns, that can be applied in a unified or combined
way. These patterns and styles are defined with the ArchitecturePatternStyle metaclass (see

ISD2021 SPAIN

Fig. 2). In addition, the Constraints that architectures must fulfil have to be taken into
account (see Fig. 2). Regarding ArchitectureElements, they are the fundamental pieces to
build software systems and can be Components and Connectors depending on their role of
data processing or connection orchestration, respectively. At the same time, these
architectural elements can be composed into more complex Subsystems (see Fig. 2).
Finally, the architectural knowledge is described in terms of DesignDecisions, which are
complemented with the associated rationale that made to take the decision
(DecisionRational metaclass) and their corresponding DecisionCriteria (see Fig. 2).

Fig. 2. Package: Architecture Model

3.2. Package Class Model
The ClassModel package has been defined to store source code characteristics (reserved
words, lexical rules, syntactic rules, and tokens) of software architectures (see the
relationship between the metaclasses Class and ArchitecturelElement Fig. 1) to be used
as input for the configuration, parameterization, and calculation of simple and complex
metrics used to analyse technical debt and estimate energy consumption. This package has
been defined using the class diagram metamodel presented by Paige et al. [27] as a
reference model. This package describes all metadata of a Class and its Interfaces and
Relationships, i.e. Generalizations and Associations to describe their different properties
and relationship semantics (see Fig. 3). In addition, ARCMEL stores the Attributes and
Operations of classes as well as their corresponding Parameters, Visibility, and Datatypes,
which are required to calculate the values of some metrics types (see Fig. 3).

Fig. 3. Package: Class Model

3.3. Package Smell Model

The consequences of TD are known as smells, which have a negative effect on energy
consumption or quality attributes that affects the current or future functionality of the
software, and must be corrected during the software maintenance or evolution. The Smell
Model Package is in charge of modelling this knowledge, the Smell and its Causes (see
Fig. 4). But also, ARCMEL requires to know what generates technical debt, i.e design
decisions, actions (or lack of actions), or events that trigger the existence of that element
of debt, to learn and generate new knowledge about TD that may improve the architectural
design-decision process. This information is recovered thanks to the relationships between
the metaclasses Smell and DesignDecision, and Smell and Class (see Fig. 1). The
SmellModel Package can store the SmellRules of a Smell, which defines the bug,
vulnerability, and severity properties (see Fig. 4). The Smells affect negatively the
QualityAttributes, especially when existing code smells, design smells, or energy smells

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

(dtSmellTypes). This negative influence can be minimized if our model can provide this
information and relationship after these smells were identified and stored in our metamodel
using reverse engineering processes. ARCMEL is also aware of the existing variability of
TD and Energy Smells CalculationModels. As a result, the model also stores the equations
used for calculating and Smell with the CalculationModel metaclass (see Fig. 4).

Fig. 4. Package: Smell Model

3.4. Package Metric Model

The MetricModel package defines the Equations, Operators, and FunctionIdentifiers that
allow obtaining quantitative values of Metrics to estimate the energy consumption and
architectural sustainability from a TD perspective (see Fig. 5). This relationship is achieved
thanks to the relationship between the CalculationModel metaclass and the Equation
Metaclass and the Metric metaclass and ClassModel (see Fig. 1). However, despite the fact
this MetricModel has been conceived for a sustainability purpose, its structure is generic
enough to be used for any kind of Metric. In addition, the MetricModel thanks to the
decomposition of complex Metrics into simple Metrics (see the reflexive relationship, Fig.
5) and the simple Metrics into Equations, Operators, and FunctionIdentifiers provides the
required flexibility to configure the CalculationModels storing the applied calculation
Equation for each Metric. Thanks to this detailed information decomposition, the
MetricModel can answer questions such as what metric is defined for evaluating a specific
architectonical design decision context? What are the simple metrics that constitute a
complex metric? or What is the measurement and unit of measurement that is obtained as
a result? This last question is feasible thanks to the information stored by the Measure
metaclass and the attributes of the Metric metaclass: name, description, unit of
measurement, and metric type. In addition, it is required to define the context and purpose
where the metric will be applied, which is recovered by the defined enumerations (see Fig.
5).

Fig. 5. Package: Metric Model

4. ARCMEL SCAT (Source Code Analysis Tool): Concrete syntax
The smells affect negatively the QualityAttributes, especially when existing code smells,
design smells, or energy smells. This negative influence can be minimized when using
reverse engineering processes and tools first we identify smells and then apply good
practices and specific refactoring techniques to solve them. The ARCMEL SCAT allows
both: to apply the reverse engineering process to identify the information and smells [17],
and to store them in the ARCMEL metamodel to support the rational and learning process
that and TD and green aware architectural design decision process requires.

ARCMEL SCAT implements the concrete syntax of the ARCMEL metamodel as a web
domain-specific language to avoid the learning curve and providing a friendly tool that
could be easily integrated in the software engineer’s framework following the guidance of

ISD2021 SPAIN

Capilla et al. [8], who suggest that any custom tool should be lightweight and descriptive
instead of prescriptive, otherwise it will never be adopted by software engineers.

To extract and calculate the value of the metrics in a flexible and customizable way (see
Fig. 6). ARCMEL SCAT, through the web concrete syntax language, provides the metric
customization at two levels of abstraction: value and definition. The value customization
allows the software engineer to establish the positive and negatives values of a metric
depending on the product and the requirements for both TD and Green (see Fig. 7.a). This
flexibility is required because the same value may be bad or good depending on the
software product and also can be different for measuring TD or Green. The definition
customization allows the software engineer to configure the characteristics,
measurements, metrics, and equations according to his her needs, or even, to creating
new ones (see Fig. 7.a and Configuration.Fig. 6). All this information is stored in the
MetricModel of ARCMEL. Regarding the SCAT part of ARCMEL SCAT, it implements
an automated static analysis that extracts the knowledge from the source code and validates
the grammar of the application under analysis. After this validation, the information is
automatically stored in the ClassModel of the ARCMEL metamodel (see Fig. 6).

Extraction

Source
code

Simple metric
calculation

Complex metrics
calculation

Configuration

Semantic Sintactic Lexical

Source Code Analysis Tool

Compiler

Analysis

Language grammar

Equations

Simple
metrics

Complex
metrics

Simple metric
classification

Visualization

Tables Graphs

Preprocessing Processing Result

Lexical
Analyzer

Semantic
Analyzer

Clases Attribute

Methods

Statements

RelationsVisibility

Preparation

Organize classe
into packages

Validate
programming

language

JCup JFlex Parser json xmlScriptEngineManager jtattoo jfreechartGithub Services

ARCMEL Repository

common
IOTokens Lexer

Sintactic
Analyzer

Fig. 6. Implementation of the ARCMEL SCAT process

a) Metric customization by value b) Metric customization by definition

Fig. 7. ARCMEL SCAT configuration of metrics
The extraction automated process uses the settings made through the configuration to

calculate simple metrics. Most of these metrics are calculated using basic and complex
arithmetic operators and operations, that allow the count and sum of characteristics or
lexical rules found in the code, and that are necessary to configure and calculate the values
associated with these metrics. The Measures are stored in the MetricModel (see Extraction,
Fig. 6). At this point, the analysis calculates the complex Metrics and store their values as
Measures in the MetricModel (see Analysis, Fig. 6). Finally, Measures resulting from the
extraction and analysis of simple and complex metrics are visualized by SCAT ARCMEL
using formats such as tables and/or graphs to support the software engineer interpretation
and decision-making from a technical debt and energy consumption analysis (see
Visualization, Fig. 6 and Fig. 8). Additionally, to this visualization the software
engineering introduces the architectonical information that cannot be automatically
extracted from the code to address more complex and architecture design decisions.

As a result, ARCMEL SCAT extends the capabilities of other ASA tools such as
SonarQube [31], JDepend [20], or Structure Analysis for Java (STAN) [33] that can
customize the positive and negative values of a metric for TD. On the one hand, ARCMEL
SCAT provides this value customization capability not only for TD, but also for Green. On
the other hand, it adds the metric definition customization by the configuration of code
metrics and the definition of new ones. As a result, ARCMEL SCAT is able to introduce
metrics for providing the required information for dynamic estimation models of power
consumption of software application such as [29], [32], [38].

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

a) Green Graph Visualization b) Green Table Visualization

Fig. 8. ARCMEL SCAT Analysis Visualization
5. Validation

To validate the ARCMEL metamodel and its ARCMEL SCAT tool, we have conducted a
study to determine the completeness of the knowledge provided from the architecture,
design decisions and code and energy smells, and the flexibility to customize the
calculation models of metrics.

5.1. Research objectives and questions

To address the validation of completeness and flexibility of ARCMEL, we have defined the
following research questions:
• RQ1: Is ARCMEL SCAT able to extract and store the required architectural information,

characteristics, and metrics to support design decisions and estimation based on technical
debt and energy consumption?

• RQ2: What is the flexibility degree of ARCMEL SCAT to configure and customize the
characteristics and metrics for technical debt and energy consumption estimation?

5.2. Data Collection

To conduct the validation, we used the most extended ASA tools SonarQube, JDepend and
STAN, and a set of applications. These applications are required to demonstrate that ARCMEL
SCAT can extract characteristics and metrics from source code, to store and analyse them
thanks to the ARCMEL metamodel (see Fig. 9.b). To that end, the applications were searched
using inclusion criteria of the Java programming language and the use of different architectural
patterns or styles to avoid architectural bias. The search was carried out in a public repository
where the software code is accessible and written by different programmers to avoid
programming bias. Applying these inclusion criteria, 10 applications were selected and
downloaded from GitHub (https://github.com/) for this study. Each downloaded application
was analysed manually and compiled using NetBeans IDE 8.0. From this analysis, we obtained
the characteristics of the applications presented in (see Fig. 9.a).

a) Characteristics b) Extracting time
Fig. 9. Applications under study

5.3. Results

RQ1: Is ARCMEL SCAT able to extract and store the required architectural information,
characteristics, and metrics to support design decisions and estimation based on technical debt and
energy consumption?
RQ1 aims to analyse the completeness degree of the information that the metamodel is able to
store and manage in order to support the estimation of TD and energy consumption. To that
end, we have compared ARCMEL SCAT with SonarQube, JDepend and STAN to determine
the number of metrics that are able to currently manage. From the detailed information of Table
1 and the synthesis of the results (see Fig. 10), it is possible to conclude that ARCMEL SCAT
is currently the most complete tool providing information about metrics that impact on TD and

https://github.com/

ISD2021 SPAIN

green to take green and TD design decisions and support the estimation of energy consumption.
In addition, it is important to understand that this analysis completeness is an example of the
current information managed by the metamodel, but this can be extended thanks to the
flexibility of the model of adding and creating new metrics and estimation models. This
flexibility is feasible thanks to the completeness of the information recovered by the
metamodel. In order to illustrate the completeness of the metric information, we are going to
use as example the Cognitive Weighted Attribute Hiding Factor (CWAHF) metric [38], which
is an extension of the Attribute Hidding Factory (AHF) metric [38] that it is used to estimate
energy consumption (see Table 2). In [38], this metric is manually calculated from source code
characteristics to evaluate the architectural level complexity caused by the encapsulation of the
attributes to calculate the cognitive complexity. ARCMEL SCAT can automatically compute
the CWAHF metric. To calculate the metric, ARCMEL SCAT requires their configuration and
then extracts the required information from the application. In this case, this data are the class
information, its attributes and their corresponding type, which are instances of the metaclasses
Class and Attribute from the ClassModel package (see Fig. 3). The CWAHF metric is
configured using the package MetricModel since it requires simple metrics as the number of
classes, the number of attributes, and the number of attributes of each type required by the
formulae (see Table 2). In addition, the metric is associated with a dtContext, dtPurpose and
dtMeasurementUnit, which are SourceCode, Estimation and Percentage, respectively. This
metric is defined in ARCMEL SCAT as an Energy dtSmellType and it is associated with
Maintainability as the effect of Smell and structural Complexity as QualityAttribute [41], [43].

Table 1. Metrics supported by ASA Tools: SonarQube, STAN, JDepend and ARCMEL SCAT

Fig. 10. Metrics support by ASA Tools

Table 2. Cognitive Weighted Attribute Hiding Factor (CWAHF) metric
𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪𝑪 =

∑ 𝑪𝑪𝒏𝒏(𝑪𝑪𝒊𝒊)𝑻𝑻𝑪𝑪
𝒊𝒊=𝟏𝟏

∑ 𝑪𝑪𝒏𝒏(𝑪𝑪𝒊𝒊) + ∑ 𝑪𝑪𝒗𝒗(𝑪𝑪𝒊𝒊)𝑻𝑻𝑪𝑪
𝒊𝒊=𝟏𝟏

𝑻𝑻𝑪𝑪
𝒊𝒊=𝟏𝟏

(𝟏𝟏)

�𝐴𝐴𝑛𝑛(𝐶𝐶𝑖𝑖) = �𝐴𝐴𝑝𝑝(𝐶𝐶𝑖𝑖)
𝑇𝑇𝑇𝑇

𝑖𝑖=1

𝑇𝑇𝑇𝑇

𝑖𝑖=1

∗ 𝐶𝐶𝐶𝐶𝑝𝑝𝑝𝑝 + 𝐴𝐴𝑑𝑑(𝐶𝐶𝑖𝑖) ∗ 𝐶𝐶𝐶𝐶𝑑𝑑𝑝𝑝 + 𝐴𝐴𝑡𝑡(𝐶𝐶𝑖𝑖) ∗ 𝐶𝐶𝐶𝐶𝑡𝑡𝑝𝑝

�𝐴𝐴𝑣𝑣(𝐶𝐶𝑖𝑖) = �𝐴𝐴𝑢𝑢

𝑇𝑇𝑇𝑇

𝑖𝑖=1

𝑇𝑇𝑇𝑇

𝑖𝑖=1

(𝐶𝐶𝑖𝑖) ∗ 𝐶𝐶𝐶𝐶𝑢𝑢𝑝𝑝

Ap(Ci) = Number of private attributes in the class
Ad(Ci) = Number of default attributes in the class
At(Ci) = Number of protected attributes in the class
Au(Ci) = Number of public attributes in the class
CWpa = Private attribute cognitive weight
CWda = Default attribute cognitive weight
CWta = Protected attribute cognitive weight
CWua = Public attribute cognitive weight
TC = Number of classes

An added value of ARCMEL is the ability to configure indicators values associated
with the metrics (see Fig. 7.a). For example, the CWAHF metric has been configured as
the cognitive weight for public attributes 1, private attributes 2, default attributes 3 and for
protected attributes 4. The results of this value configuration is illustrated in Fig. 8.a.
Finally, we have automatically extracted the information of the 10 selected applications to
determine if ARCMEL SCAT can extract, store, analyse and visualize them without
problems (see Fig. 9.b). This process also has been reproduced in SonarQube, JDepend
and STAN and it was successfully executed in all of them (see Table 1).
RQ2: What is the flexibility degree of ARCMEL SCAT to configure and customize the
characteristics and metrics for technical debt and energy consumption estimation?
The flexibility of ARCMEL is evidenced through the functionality of ARCMEL SCAT that
allows the configuration of metrics defined by equations a fine granularity level (see Fig. 7.b).

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

The metric configuration allows the software engineer to customize equations using
mathematical or logical operators that combine operands as code characteristics, simple
metrics, or complex metrics (see the metaclasses Equation, FunctionIdentifier, Operator,
Measure and Metric Fig. 5). Is important to mention that these customized equations and
metrics can be associated with a type of smell (code, energy) (see Fig. 4) to take design
decisions in terms of technical debt or energy consumption (see Fig. 8).

This flexibility has allowed ARCMEL to support a higher number of complex metrics
than SonarQube, JDepend and STAN such as CWAHF, CAAEC, CWPF, etc. (see Table 1
and Fig. 10). To illustrate this flexibility, we have configured 6 complex metrics for the 10
applications under study and we have defined their positive and negatives values to
evaluate technical debt and green consumption. The results of Table 3 reveal that ARCMEL
SCAT was able to obtain all the results. The table shows different values that depends on
the values and simple metrics used by the equations. For example, the positive and negative
values of the metrics CWAHF and CWPF were configured in a range [0..100], where the
values from 0 to 50 are considered negative and suggest applying refactoring to improve
energy consumption. On the other hand, if the values obtained are upper to 50 are
considered as a positive indicator for technical debt and energy consumption. In the case
of CAAEC the values have been configured in a range [0..50], and in the cases of
Instability, Abstractness and Distance have been configured in a range [0..1].

Table 3. ARCMEL SCAT flexibility adoption to the 10 applications

6. Threats to validity

To improve the Internal validity of the presented results, the selection of applications was
based on the evidence described in the code or documentation from the GitHub repository. On
the other hand, to collect the metrics, we used a local computer with OS Windows 10 to
configure ARCMEL SCAT, SonarQube, STAN, Jdepend, and MySQL to avoid human
intervention. To collect and extract the metrics through the tools, each application was
downloaded from the GitHub repository, built, and executed. As a result, the automatic
information management has avoided personal bias. Construct validity was ensured by
following a systematic process in the conduction of the experimental study, and external
validity was addressed by using 10 different software applications of Java with a wide variety
of features. However, to improve the generality, it is necessary to increase applications
including applications with M, L, and XL SIZES, as well as more variety of architectural styles
and patterns, and other characteristics.

7. Conclusions
In this work, the metamodel ARCMEL is presented as a solution to represent and provide the
required knowledge about software applications and their architectures related to green and
technical debt metrics and smells to support green and TD design-decisions. This metamodel
is supported by a concrete syntax through the ARCMEL SCAT tool, a static analysis tool that
thanks to the fine level of knowledge representation provides high flexibility to configure
equations formed by simple and complex metrics to obtain values customized for the context
and requirements of each application under analysis. The completeness and flexibility of
ARCMEL have been evidenced through the conduction of an experimental study of 10
applications extracting efficiently their required information. In future work, we plan to extend
the experimental results by checking other kinds of applications and analysing the support of
the tool during the design decision-making process. In addition, we are going to analyse the
correlation between quality, complexity, and energy consumption from the metrics stored in
ARCMEL in order to construct green estimation models from the characteristics of applications
without the need of being executed.

ISD2021 SPAIN

Acknowledgements
This work is partially supported by Universidad Técnica Particular de Loja (Computer Science
Department) and the Spanish Ministry of Economy and Competitiveness (MINECO) through
the project CROWDSAVING (TIN2016-79726-C2-1-R).

References
1. Abdullah, R., Abdullah, S., & Tee, M (2014). Web-based knowledge management model

for managing and sharing green knowledge of software development in community of
practice. 8th Malaysian Software Engineering Conf., MySEC, pp. 210–215, 2014.

2. Azanzi, F. J., & Camara, G. (2017, October). Knowledge extraction from source code based
on Hidden Markov Model: application to EPICAM. In 2017 IEEE/ACS 14th International
Conference on Computer Systems and Applications (AICCSA) (pp. 1478-1485). IEEE.

3. Becker, C., Chitchyan, R., Duboc, L., Easterbrook, S., Penzenstadler, B., Seyff, N., &
Venters, C. C. (2015, May). Sustainability design and software: The karlskrona manifesto.
Proceedings of the 37th Int. Conf. on Software Engineering-Vol. 2, 2015, pp. 467–476.

4. Beydeda, S., & Book, M. (2005). Model-driven software development (Vol. 15). V. Gruhn
(Ed.). Heidelberg: Springer.

5. Bourdon, A., Noureddine, A., Rouvoy, R., & Seinturier, L. (2013). Powerapi: A software
library to monitor the energy consumed at the process-level. ERCIM News, 2013(92).

6. Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in
practice. Synthesis lectures on software engineering, 3(1), 1-207.

7. Calero, C., & Piattini, M. (2017). Puzzling out software sustainability. Sustainable
Computing: Informatics and Systems, 16, 117-124.

8. Capilla, R., Jansen, A., Tang, A., Avgeriou, P., & Babar, M. A. (2016). 10 years of software
architecture knowledge management: Practice and future. Journal of Systems and
Software, 116, 191-205.

9. Carrillo, C., Capilla, R., Zimmermann, O., & Zdun, U. (2015, September). Guidelines and
metrics for configurable and sustainable architectural knowledge modelling. ACM
International Conference Proceeding Series, vol. 07-11-Sept, 2015.

10. Chatzigeorgiou, A., & Stephanides, G. (2002). Energy metric for software
systems. Software Quality Journal, 10(4), 355-371.

11. Couto, M., Maia, D., Saraiva, J., & Pereira, R. (2020, June). On energy debt: managing
consumption on evolving software. In Proceedings of the 3rd International Conference on
Technical Debt (pp. 62-66).

12. David, H., Gorbatov, E., Hanebutte, U. R., Khanna, R., & Le, C. (2010, August). RAPL:
Memory power estimation and capping. In 2010 ACM/IEEE International Symposium on
Low-Power Electronics and Design (ISLPED) (pp. 189-194). IEEE.

13. Ergasheva, S., Khomyakov, I., Kruglov, A., & Succil, G. (2020, February). Metrics of
energy consumption in software systems: a systematic literature review. In IOP Conference
Series: Earth and Environmental Science (Vol. 431, No. 1, p. 012051). IOP Publishing.

14. Fonseca, A., Kazman, R., & Lago, P. (2019). A manifesto for energy-aware software. IEEE
Software, 36(6), 79-82.

15. Fontana, F. A., Ferme, V., Zanoni, M., & Roveda, R. (2015, October). Towards a
prioritization of code debt: A code smell intensity index. In 2015 IEEE 7th International
Workshop on Managing Technical Debt (MTD) (pp. 16-24). IEEE.

16. Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

17. Guamán, D., Pérez, J., & Correa, R. (2020). Herramienta para la personalización y cálculo
de métricas de código utilizando análisis estático: SCAT. Revista Ibérica de Sistemas e
Tecnologias de Informação, (E28), 693-710.

18. Guamán, D., Pérez, J., Garbajosa, J., & Rodríguez, G. (2020, November). A Systematic-
Oriented Process for Tool Selection: The Case of Green and Technical Debt Tools in
Architecture Reconstruction. In International Conference on Product-Focused Software
Process Improvement (pp. 237-253). Springer, Cham.

19. Harnessin Green, I. T. (2012). Principles and practices. San Murugesan.

D. GUAMÁN AND J. PÉREZ SUPPORTING SUSTAINABILITY AND TECHNICAL DEBT-DRIVEN DESIGN…

20. JDepend https://github.com/clarkware/jdepend, (April 2021)
21. Joulemeter, https://www.microsoft.com/en-us/research/project/joulemeter-computational-

energy-measurement-and-optimization/ (April, 2020)
22. Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical debt: From metaphor to theory

and practice. Ieee software, 29(6), 18-21.
23. Lago, P., Gu, Q., & Bozzelli, P. (2014). A systematic literature review of green software

metrics.
24. Li, H. (2012, April). Dynamic analysis of object-oriented software complexity. Int. Conf.

on Consumer Electronics, Communications and Networks, CECNet, pp. 1791–1794, 2012.
25. Li, Z., Liang, P., & Avgeriou, P. (2015, May). Architectural technical debt identification

based on architecture decisions and change scenarios. In 2015 12th Working IEEE/IFIP
Conference on Software Architecture (pp. 65-74). IEEE.

26. OMG, “Meta object facility (MOF),” 2016. http://www.omg.org/spec/MOF/2.5.1/.
27. Paige, R. F., Drivalos, et al. (2011). Rigorous identification and encoding of trace-links in

model-driven engineering. Software & Systems Modeling, 10(4), 469-487.
28. Pérez-Castillo, R., & Piattini, M. (2014). Analyzing the harmful effect of god class

refactoring on power consumption. IEEE software, 31(3), 48-54.
29. Rocheteau, J. (2015). Energy Wasting Rate as a Metrics for Green Computing and Static

Analysis.
30. Singh, S., & Kahlon, K. S. (2011). Effectiveness of encapsulation and object-oriented

metrics to refactor code and identify error prone classes using bad smells. ACM SIGSOFT
Software Engineering Notes, 36(5), 1-10.

31. SonarQube https://www.sonarqube.org/, (April 2021)
32. Srivastav, V. S. P., & Prakash, P. (2013, December). Green metrics for OO codes: CAAEC

metric. In 2013 International Conference on Green Computing, Communication and
Conservation of Energy (ICGCE) (pp. 296-298). IEEE.

33. STAN, http://stan4j.com/, (April 2021)
34. Stevanetic, S., Plakidas, K., Ionescu, T. B., Schall, D., & Zdun, U. (2016, November).

Supporting quality-driven architectural design decisions in software ecosystems.
In Proccedings of the 10th European Conf. on Software Architecture Workshops (pp. 1-4).

35. Systems and software engineering — Architecture description ISO/IEC/IEEE 42010, 2011.
[Online]. Available: http://www.iso-architecture.org/42010/index.html.

36. Tang, A., Avgeriou, P., Jansen, A., Capilla, R., & Babar, M. A. (2010). A comparative
study of architecture knowledge management tools. Journal of Systems and
Software, 83(3), 352-370.

37. Tang, A., Jin, Y., & Han, J. (2007). A rationale-based architecture model for design
traceability and reasoning. Journal of Systems and Software, 80(6), 918-934.

38. Thamburaj, T. F., & Aloysius, A. (2017, February). Models for Maintenance Effort
Prediction with Object-Oriented Cognitive Complexity Metrics. In 2017 World Congress
on Computing and Communication Technologies (WCCCT) (pp. 191-194). IEEE.

39. Tom, E., Aurum, A., & Vidgen, R. (2013). An exploration of technical debt. Journal of
Systems and Software, 86(6), 1498-1516.

40. Venters, C. C., Capilla, R., Betz, S., Penzenstadler, B., Crick, T., Crouch, S. & Carrillo, C.
(2018). Software sustainability: Research and practice from a software architecture
viewpoint. Journal of Systems and Software, 138, 174-188.

41. Venters, C., et al. (2014). The blind men and the elephant: Towards an empirical evaluation
framework for software sustainability. Journal of Open Research Software, 2(1).

42. Vetro, A., Ardito, L., & Morisio, M. (2013). Definition, implementation and validation of
energy code smells: an exploratory study on an embedded system.

43. Villa, L., Cabezas, I., Lopez, M., & Casas, O. (2016, July). Towards a sustainable
architectural design by an adaptation of the architectural driven design method. In Int. Conf.
on Computational Science and Its Applications (pp. 71-86). Springer, Cham.

44. Welter, M., Benitti, F. B. V., & Thiry, M. (2014, September). Green metrics to software
development organizations: A systematic mapping. In 2014 XL Latin American Computing
Conference (CLEI) (pp. 1-7). IEEE.

https://github.com/clarkware/jdepend
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.sonarqube.org/
http://stan4j.com/

	1. Introduction
	2. Related Work
	3. ARCMEL Metamodel: Abstract syntax
	3.1. Package Architecture Model
	3.2. Package Class Model
	3.3. Package Smell Model
	3.4. Package Metric Model

	4. ARCMEL SCAT (Source Code Analysis Tool): Concrete syntax
	5. Validation
	5.1. Research objectives and questions
	5.2. Data Collection
	5.3. Results

	6. Threats to validity
	7. Conclusions
	Acknowledgements
	This work is partially supported by Universidad Técnica Particular de Loja (Computer Science Department) and the Spanish Ministry of Economy and Competitiveness (MINECO) through the project CROWDSAVING (TIN2016-79726-C2-1-R).
	References

