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Abstract 

Our modern world is dependent on cyber-physical artefacts (e.g., smart grids, cars, mobile 
phones). Those artefacts are being attacked by cyber-criminals entailing substantial harm to 

individuals, organizations, and governments. Those artefacts need to be designed properly 

to prevent and recover from inevitable cyberattacks. We offer a solution based on a Real-

Time Simulator (RTS). Our solution is meta-principles for using RTS when designing 

simulations in Cyber-Physical artefacts. Our solution considers both social and technical 

layers of cyber-physical artefacts. 
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1. Introduction 

We are living in a digital world. This results in rapidly digitalizing and changing traditional  

successful business models [6], and the energy sector is changing at a rapid pace due to the 

disruptive changes of digital technologies [5]. For example, there is an increasing ratio of 
renewable and decentral energy generation around the world [27]. This leads to growing 

trends in integration of Information and Communication Technologies (ICT) into electrical 

power systems, especially in smart grid systems. This trend also brings cybersecurity 
threats to energy systems and cyber-attacks could lead to physical consequences as if an 

attack happens in the energy systems, the damage is very costly. For example, cyber-attacks 

brought down a power grid in Ukraine or physically destroyed Iran's nuclear centrifuges 
[25]. To minimize the consequences of cyber-attacks, several solutions are proposed, such 

as legislations/standards [20], cooperation [8] or testbeds [26].  

Testing in a real physical system in the energy sector is very difficult or very 

challenging when we put a real physical system in a hazard mode. In that sense, a Real-
Time Simulator (RTS), which refers to the computer model runs at the same rate as the 

actual physical system, would help to reduce development costs and time. It also would 

help simulate different scenarios of cyber-attacks in a physical system and propose scripts 
to respond with those scenarios. RTS thus has been widely used in the energy sector [28]. 

However, the majority of RTS literature are focused on either regulations or standards [17], 

or power systems themselves [1] or cyber security issues related to the energy discipline in 

a technical perspectives, but not, for example, principles for designing cybersecurity 
simulations of cyber-physical artefacts in real-time simulation. Our research thus fills this 

gap, we propose principles for designing simulations of cyber-physical artefact (RSC).  

We use design science as our research approach [9]. Our proposed principles are 
designed, demonstrated, refined, evaluated, and facilitated in the context of a smart grid. 

The Cyber Physical Security (CPS) lab is used to assist our research. Here a cyber physical 

system is understood as integrations of computation, communication, and control that meet 
requirements of  physical processes [11]. The principles are our contribution to literature, 

principles also help practitioners in several ways, such as improving in the performance of 

the simulations being designed for assessing cyber-physical artefacts, recommend solutions 

for addressing the unforeseen cyber threats of the emerging artefacts, and guidance for 
cybersecurity assessment.  
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2. Literature Review 

2.1. Information Systems in Energy Systems 

The time of energy as a commodity are increasingly replaced by decentral energy 
generation or distributed energy which is defined as compromising of a range of smaller‐

scale and modular devices to provide energy in locations close to consumers [13]. One 

example of distributed energy is renewable energy, which accounted for 40% of Finland’s 

total consumption in 2020, this number is higher than consumption of fossil fuels and peat 
for the first time in history [24]. It is argued that information systems (IS) play a central 

role in the transition of the energy sector [13], [27]. For example, there is growing ICT 

dependence in the European grid [20]. IS acts as integrating and enabling technologies to 
energy sector [4], IS impacts on reducing carbon emissions [16], IS improves the efficient 

of energy generation and distribution [16], or change customers behaviors providing 

personalized feedback about their energy consumption in real time via IS devices (e.g., 
smart meters) [22], [23]. 

2.2. Cyber Security in Smart Grids 

Cyber security has been paid attention in the energy sector. This is particularly more 

important when IS/ICT is being introduced to the energy sector. It brings new and serious 

threats to the secure operation of the field, especially in a smart grid. For example, there 

were more than 45 cyber attacks in the energy sector in 2015 [19] and the actual number of 
cyber attacks is higher than those reported [7]. Cyber security is thus identified as one of 

the challenges for safety operations of Smart Grids [15], [20], transactive energy systems 

[14], and power grids [26]. Main vulnerabilities factors and potential threats in smart grids 
can be summarized in Table 1 as follows (adopted from [26]). 

Table 1. Vulnerability factors of cyber attacks in smart grids. 

Vulnerability Description Example and references 

Cyber infrastructures Attackers unauthorize access to infrastructures Attack via network packets 

Vulnerability assessment 
Attackers exploit vulnerability between the 
cyber system and physical system. 

Stuxnet attacked the SCADA 
network 

Standard and regulations 
Attackers exploit systems that does not 
complement with regulations and standards 

IEC 60870-6, IEEE C37 series, 
ANSI C12 series 

To minimize vulnerabilities of cyber security, several approaches have been introduced 

or suggested, such as legislations/standards [20], cooperation [8] or testbeds [26]. In 
particular, real-time cyber physical system testbeds are designed to study the interactions 

between cyber and physical systems [26]. Testbeds are used because if we test a cyber 

attack on a real-world physical system, it may cause great damage to the system. Testbeds 

generally comprise three parts, including power systems simulation tools, communication 
system simulation/emulation tools, and connection between the previous two.  

Although those testbeds have their own strengths and advantages, there is a lack of 

literature on designing a proper test. One of the reasons is the multiple disciplinary nature 
of this field, including computer science, electricity engineering, and information systems. 

It is argued that good guidance can provide a good proposal that helps organizations having 

a good plan in response to the risks of cyber attacks into their systems. This motivated us 

to study designing principles for using RTS when designing simulations of cyber-physical 
artefacts with respect to smart grids.  

3. Research Methods 

For the purposes of this study, Design Science Research Methodology (DSRM) Process  

Model [10] was adopted to develop a nascent design theory for designing the use of a real-

time simulator for development of cybersecurity of a cyber-physical system. We followed 

DSRM phases, including (a) identifying problems and motivation, (b) defining objectives 
of a solution, iii) designing and development, (c) demonstration, (d) evaluation, and (e) 

communication. After problems are identified, the final phase is a solution. In this paper 

we will report the first proposal for design principles and we will also show how we 
continue development of principles (design and development). Evaluation is based on case 
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study with our partners’ companies. Case study has been used as an approach to evaluate 

artefacts in IS [9], [21]. Data will be collected via workshops and interviews. In addition, 
Cyber physical Security Lab’s results will be used (e.g., output of scenarios). 

4. Principles for Designing Cybersecurity Simulations (PDCS) for Cyber-

Physical Artefacts 

Principles in this study are designed based on IS design theory [12] and design science 

research methodology [9]. Cyber security in smart grids is challenging because existing 
security mechanisms may not be applied to the smart grid environment [18]. Design a 

simulation in a cyber-physical artefact should cover potential threats, which are 

documented through standards, existing body of knowledge, prior cyber events, and tacit 

knowledge of the experts.  For example, each system/subsystem or devices need  to follow 
a certain standard(s) as seen in Table 1, such as the IEC 60870-6 standard is used for the 

SCADA system that applies for monitoring and controlling over a WAN or the ANSI C12 

series standard is used for AMI systems that define communication protocol for metering 
applications [2], [26]. If we fail to follow those established standards (e.g., IEC, ANSI, 

NIST, and IEEE), the system’s reliability is in question. In that sense, those sources of 

knowledge  incorporated in the principles that are being suggested would help to prevent 
severely damaging the systems. As a result, we propose the following preliminary principle 

1:  

Principle 1. Principle of covering the scenarios. PDCS should cover the scenarios of cyber-

physical attacks, those scenarios include the legislation, standards, guidelines, testbeds, and 
existing body of knowledge, in which  the sources of knowledge come from prior cyber events 

and tacit knowledge of the experts. 

Following the first principle is important for achieving a preparedness for a cyber attack. 
However, although most of the existing testbeds, legislations and standards have tried to 

address all the possible scenarios and potential threats, we are observing an increasing 

number of unforeseen attacks. Prediction and prevention of those attacks rely on the 
expertise of the testers and developers, otherwise they are highly unpredictable. Further, 

those unforeseen attacks can be also developed with practitioners (e.g., companies) for their 

emerging needs. As a result, we propose the following preliminary principle 2: 

Principle 2. Principle of predicting and preventing unforeseen attacks. PDCS should have 
capability to predict and prevent unforeseen attacks and provide an improvement in the 

performance of the simulations being designed for assessing cyber-physical artefacts.  

Designing a test in a cyber-physical security system should be able to be implemented 
in a real-world system. It means that the mitigation recommendations should be doable, 

clear and feasible with a minimum intervention to a physical system (e.g., automation 

functions cannot be turned off). Moreover, it would help improve the performance of the 

simulations being designed for assessing cyber-physical artefacts, as well as  recommend 
solutions for addressing the unforeseen cyber threats of the emerging artefacts. Finally, 

testing of the scenarios are automated meaning that we could be able to automatically test 

with different parameters and results can be presented in various types of reports. As a 
result, we propose the following preliminary principle 3:  

Principle 3. Principle of implementable. PDCS should provide a guide that organizations 

can be able to implement to a real-world system. PDCS should also provide solutions for 
addressing the unforeseen cyber threats of the emerging artefacts. 

5. Demonstration and Evaluation of the Designed Principles  

We demonstrate how our proposed principles apply to a PDCS prototype in the context of 
a smart grid. We also illustrate an evaluation, a validation and a facilitation of the principles.  

5.1. Demonstration and Evaluation Environment 

The proposed principles will be demonstrated and evaluated with the following 

environments: Cooperation partners and CPS Lab. The partners include Wärtsilä, ABB, 

Arcteq, Wapice, Vaasan Sähkö, VASEK. CPS Lab is a part of the EU-funded project at the 
University of Vaasa (e.g., Cyber Physical Security and Resilience for Digital Energy 

https://www.sciencedirect.com/topics/computer-science/smart-grid-environment
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Systems Project). The architecture of the lab consists of two main parts: simulator and 

emulator. Simulator is OP5700 Real-Time Simulator with HYPERSIM modeling software, 
while Emulator is scalable EXata communication simulation/emulation software. 

5.2. Demonstration and Evaluation of the Designed Principles 

We follow the guide for the demonstration and evaluation in design science [21], we 

demonstrate the ability of our proposed artefacts to solve research problems and we then 

validate the proposed artefacts [21]. First, the workshop about cybersecurity and resilience 
of digital energy systems was organized in December 2020. It was based on a questionnaire 

with 23 questions designed and sent to energy companies (e.g., 170 institutions, including 

partners, energy companies in Finland, and International partners). The input of the 

workshop helped us understand the practitioners’ experiences, their cyber security 
management and standards, their needs including communication protocols and testing. 

They also have been initially used for designing principles. Second, CPS Lab is also used 

during the designing process. After those steps, design principles will be refined and/or 
revised. For example, to demonstrate the first principle, several scenarios are designed, and 

run with CPS Lab. For example, Figure 1 shows the man-in-the-middle attack scenario 

against the system. This scenario is designed in response to the vulnerability of cyber 
infrastructures (Table 1). This is one of several scenarios that are being designed to evaluate 

and demonstrate the first principle. In this scenario, we assume that the data is manipulated 

in the middle of its way to the microgrid controller (MGC). It means that the MGC may 

take incorrect actions as it perceives the message is true. As a result, it causes oscillations 
on microgrids nominal operation parameters such as frequency, voltages, etc. To 

implement, we use C language and Wireshark to see what's happening on the network. 

  
(a) The LabVIEW under normal operation (b) The LabVIEW GUI under a delay attack 

   Fig. 1. The LabVIEW of the man-in-the-middle scenario. 

In a similar vein, scenarios will cover vulnerabilities from cyber infrastructures, 

vulnerability assessment, and standard and regulations. Third, Lab results will be discussed 

with practitioners. Secondary data and interviews are used for the designing principles 
process. Proposed principles will be discussed with practitioners for the appropriateness. 

The lesson-learned will be drawn from the demonstration to identify weaknesses and areas 

of improvement [3], [29]. Through those steps and its process, principles may be also 
refined, revised or added. The results of the process are the final set of design principles for 

designing cybersecurity simulations of cyber-physical artefacts in real-time simulation. 

6. Conclusion 

Three preliminary principles are designed in this research-in-progress paper. The final set 

of design principles will be finalized through the process of demonstration and evaluation 

artefacts in IS [9], [21] in the future. These principles cover not only existing guidelines, 
principles, and prior cyber-attacks events, but also including tacit knowledge of the experts  

in the field and to be applied to a PDCS prototype. These principles help improve the 

performance of the simulations being designed for assessing cyber-physical artefacts. 
Finally, a recommendation for addressing the unforeseen cyber threats of the emerging 

artefacts are introduced based on these principles.  
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