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Abstract

The increasing amount of data generated by earth observation missions like Copernicus, NASA
Earth Data, and climate stations is overwhelming. Every day, terabytes of data are collected
from these resources for different environment applications. Thus, this massive amount of data
should be effectively managed and processed to support decision-makers. In this paper, we
propose an information system-based on a low latency spatio-temporal data warehouse which
aims to improve drought monitoring analytics and to support the decision-making process. The
proposed framework consists of 4 main modules: (1) data collection, (2) data preprocessing,
(3) data loading and storage, and (4) the visualization and interpretation module. The used
data are multi-source and heterogeneous collected from various sources like remote sensing
sensors, biophysical sensors, and climate sensors. Hence, this allows us to study drought in
different dimensions. Experiments were carried out on a real case of drought monitoring in
China between 2000 and 2020.

Keywords: Big data analytics, Data warehouse, Storage, Spatio-temporal, Hive, Disaster man-
agement, Drought

1. Introduction
Earth data are rich. They preserve several facets of the data such as temporal and spatial fea-
tures. These data are generally managed by Geographic Information System (GIS). A GIS
is mainly defined as a computer system for collecting, storing, querying, analyzing, and dis-
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playing geospatial data [3]. GIS was impacted by the rapid and ongoing growth of big earth
data. Big Earth data are based around Earth Sciences and primarily include remote sensing
data, weather data, biophysical data, atmospheric data, human-derived activities, and many oth-
ers [10]. Big Earth data is characterized as being massive, noisy, multi-source, heterogeneous,
multi-temporal, multi-scalar, highly dimensional, highly complex, non-stationary, and a mixture
of structured and unstructured. It consists of all data related to the Earth, including the Earth’s
interior, surface, atmosphere, and near-space environment. Big Earth data are characterized by
4 Vs.: the volume refers to the amount of collected data more than 50, 000 TeraBytes (TB) in
2015 and will reach 350.000 TB by 2030 [14], the velocity refers to the rate at which new data
are generated or the rate at which data is processed, the variety refers to the Earth big data, and
the veracity refers to the overall quality of the available data. The quality of data can be im-
pacted by noise or abnormalities in the original data gathering process [14, 1]. Hence, designing
and implementing an efficient and sustainable data warehouse (DW) for disaster management
is a critical issue. It defines a standardized data representation through its schema model and
stores the multiple datasets so that they can be analyzed to extract relevant knowledge. There
are three possible models to organize the data stored in a Data Warehouse: star, snowflake, and
constellation modeling. These models are mainly composed of facts and dimensions. The fact
table helps the user analyze the dimensions of the problem, which helps in making decisions
to improve their results. Moreover, the dimension tables help to bring together the dimensions
with which measurements should be taken [4]. The key difference between the fact table and
dimension table is that the latter contains attributes with which actions are taken in the fact table.
Therefore, star modeling is the simplest model. It consists of one fact table and several dimen-
sion tables [5]. The snowflake schema is a type of star schema that includes the hierarchical
shape of dimensional tables [4]. In this model, there is a fact table made up of different dimen-
sions and sub-dimension tables linked by primary and foreign keys to the fact table. Splitting
helps reduce redundancy and prevents memory loss. A snowflake diagram is easier to manage
but complex to design and understand. The fact constellation schema has multiple fact tables
sharing dimension tables. This model is more complex than the star and snowflake models.
Despite the advantages that the DW gives, there is a lack of reports in the literature that focus
on DW design with the view to enable Disaster management Big Data analytics and mining.
The design of large-scale DWs is challenging, as the earth observation data is spatial, temporal,
complex, heterogeneous, high dimensional, and collected from multi-sources. Hence, the earth
observation data sources are much diversified and have different levels of quality. This paper
addresses some issues in Big Data Warehousing systems for disaster management using massive
heterogeneous earth data such as Spatio-temporal querying of drought data.

Traditional DW conceptual models can be summarized in two approaches: Inmon and Kim-
ball. Inmon offers an integrated data solution with a unified source whose major improvement
is to overcome data redundancy. However, the complexity of the model increases over time as
more tables are added to the data model. Not to mention that this approach requires experts to
effectively manage a data warehouse. Using the Kimball architecture, the data is not integrated,
which can very quickly cause irregularities between the data updated in the Kimball DW archi-
tecture and its sources. Indeed, in the data warehouse, techniques for denormalizing redundant
data are added to the database tables. In addition, performance problems can occur due to the
addition of columns in the fact table because of their extended dimensions. Inmon and Kimball
data warehouse concepts can be used in a hybrid manner to successfully design data warehouse
data models. In this paper we propose hybrid concepts where the major contributions in this
paper could be resumed around 1) building a low latency spatio-temporal big data warehouse
based on structured and unstructured data; 2) proposing a heterogeneous data loading module
to efficiently load data into Hadoop. This module parallel loads the data to improve quick data
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ingestion; 3) providing statistical analysis through SQL-like queries; 4) providing advanced in-
terpretations for decision-making support. This paper is organized as follows: in Section 2, we
present the state of the art of big data and data warehouses used in several fields. In Section 3,
we present the proposed methodology. In Section 4 we present the experimentation, results, and
discussion. We conclude this work in Section 5.

2. Related work
In the literature, several works used big data and data warehouses in different domains. [12]
proposed a continental level agricultural data warehouse. They used 29 Crop datasets, and eval-
uate the performance of the proposed agricultural data warehouse and present some queries to
extract knowledge about the management of crops. [8] proposed an agricultural data integration
method using a constellation schema that is designed to be flexible enough to incorporate other
datasets and big data models. They extracted knowledge with the view to improve crop yield;
these include finding suitable quantities of soil properties, herbicides, and insecticides for both
increasing crop yield and protecting the environment. [9] proposed a layering DW model, giving
an ETL process for integrating the satellite data and designing two types of the application pro-
gram interface. This study proved that a data warehouse is an effective solution for storing and
mining big data earth observation satellites. In [16], the authors extended the entity-relationship
model and proposed the multi-dimensional entity-relationship model to model operational and
analytical data. They presented new representation elements and provided the extension of an
analytical schema. The proposed model intends to handle cow data (milking, housing, disease,
feeding, etc). [17] aims to present a big data warehousing architecture that can adjust to user
needs and requirements as well as updates in the underlying data sources automatically or semi-
automatically.

Unlike traditional data warehouses, modern data warehousing solutions automate the repet-
itive tasks involved in designing, developing, and deploying a data warehouse design to meet
evolving user’s business requirements. Hadoop eco-system and Oracle still seducing big data
analysts in different fields as they are efficient in managing the voluminous amount of data.
However, earth observation big data are characterized by their high complexity. These data have
a high Spatio-temporal resolution, as they are gathered from different sources and are hetero-
geneous, and their management demands effective solutions. Hence, the present paper aims to
load, store, manage, and interpret data and knowledge derived from the proposed framework and
validate it by experts. Thus, this paper aims to design and deploy a low latency big data ware-
house for drought monitoring. This data warehouse is scalable; it can support the continuously
growing volume of data, data heterogeneity, and the management of environment applications
data.

3. Methodology
This methodology aims to integrate large-scale heterogeneous big data from multiple sources
(e.g. Climate data, remote sensing data, hydrological data) into a big data warehouse to provide
decision support to effectively prevent droughts.
These data are defined by big data dimension (i.e. Volume, Variety, Veracity, and Velocity),
as they are gathered from various resources. The proposed methodology consists of 4 main
modules: The first module is data collection, the second module is data preprocessing, then
comes the data loading and storage and finally we have the visualization and decision-making
module. Fig.1 represents the workflow of the proposed architecture.
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Fig. 1. The proposed architecture

3.1. Data collection

Data collection consists of generating and gathering data from different resources [1]. Drought
is the interaction of several types of factors such as remote sensing data, climate data, and bio-
physical data [11]. These data are massive and heterogeneous. The collected data are remote
sensing data (.e.g. Normalized Difference Vegetation Index (NDVI), Land Surface Tempera-
ture (LST)), Climate data (.e.g. Standardized Precipitation Evapotranspiration Index (SPEI),
Evapotranspiration (ETP), humidity, precipitation, wind speed, pressure), biophysical data (e.g.
Soil Moisture). These data are a range of structured, semi-structured, or unstructured data they
are also characterized by their multidimensionality (e.g. multi-spectral, multi-resolution, multi-
temporal data). This layer encompasses different data sources relevant to earth observations
and deals with different data format types (i.e: NetCDF, CSV, hdr). Monthly, the data volume
increases considerably. Thus, every day, Gigabytes of data are generated from different sources.
For example, the remote sensing data (.i.e. NDVI, LST) are formatted in .hdr, the TRMM data,
and the biophysical data are formatted in NetCDF and the climate data are formatted in .csv. The
variety of data sources presented in this layer point to the heterogeneity related to their software
applications and the used storage systems. Table 3 describes the data quantity and temporality.

Table 1. Data description

Data Spatial Resolution Temporal Resolution Volume Variety Veracity Velocity
LST 1km 8 days x - x x

NDVI 1-km 16 days x - x x
Precipitation 0.25°x0.25° Daily - - - x
Climate Data - Daily - x x x
Soil Moisture 0.25°x0.25° Monthly - - - x

3.2. Data preprocessing

The collected data are gathered from different sources. Hence, they contain different types of
imperfections. For example, satellite images may have geometric distortion and atmospheric
noises. Climate data can include some erroneous values. Thus, it is important to perform dif-
ferent operations on these data to improve their quality by applying several operations such as
mosaicking, data correction, and raw data retrieving [1]. The mosaicking operation is applied to
the remote sensing data. The collected images are a massive amount of tiles covering the study
area. The purpose of this operation is to reconstruct one satellite image composed of many
strips. The data correction operation consists of three different types of correction. The geo-
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metric correction consists of avoiding geometric distortions from a distorted image, and is done
by establishing the relationship between the image coordinate system and the geographic coor-
dinate system using calibration data of the sensor, the atmospheric correction is to retrieve the
surface reflection that characterizes the surface properties from remote sensing data by remov-
ing the atmospheric effects and the value correction which consists of correcting the erroneous
values or identifying the missing values. Finally, the raw data retrieving consists of extracting
valuable information from different sources of information such as calculating the NDVI, the
LST, the SPEI, and ETP.

3.3. Data Loading and data Storage

Data loading

Data loading consists of transferring data into the Hadoop system. Drought data are gathered
from different sources, therefore, they may be structured, semi-structured, and unstructured
data. These data are loaded from different sources; and will be ingested by flume into HDFS.
Data loading is performed using the Map-Only algorithm. The data is stripped into splits of
uniform size. This method is called Block size-oriented storage. This ingestion method consid-
ers fault tolerance constraint as it performs several replicas of the chunks of data. For real-time
data ingestion, Apache flume is used. This tool ingests online streaming semi-structured and
unstructured data in HDFS. The flume agent is composed of 3 main components:
The source accepts the data from an incoming stream source, the channel is local temporary
storage between the source and the HDFS and the sink collects data from the channel and com-
mits it to the HDFS. In this work, we propose a distributed loading task using the Flume agent.
The mapping job in Flume is performed on the channels. Each channel contains a strip of the
data.

Data storage

The data warehouse is based on a simple and effective design for big earth observation data anal-
ysis as a multidimensional model. In this paper, a snowflake schema is proposed. The snowflake
schema presents more details about the data than the star schema. It provides the ability to use
more complex queries that means that it supports powerful analytics and many-to-many rela-
tionships. Fig.2 is composed of one Fact table and 13 dimension tables D=(Product_Dimension,
Sensor_Dimension, Image_Dimension, SatelliteFeature_Dimension, Drought_Index_Dimension,
ClimateStation_Dimension, Date_Dimension, ClimateFeature_Dimension,
BiophysicalFeature_Dimension, BiophysicalStation_Dimension, Location_Dimension, Coun-
try, Province).
The DW is presented by: (F, D{}, HDi{}) where:
-F: the Fact table
-D: {D1, ..., Dn}: refers to the dimensions defined below, with n is the number of dimension
tables
- HDi{}: refers to the hierarchies for each dimension Di defined by HDi={h1, ..., hk} with k
is the number of hierarchies for each dimension.
The fact table: Each fact is defined by F: (NameF, M{}) where:
- NameF: is the name of the fact
-M{} = (m1, ..., mn) refers to the measures
The dimension table:
A dimension is defined by D: (NameD, A{}, H{}, TypeD) where:
- NameD: name of dimension
- A{}=(a1, ..., al) is a set of attributes
- H{}=(h1, ..., hz) is a set of hierarchies
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- TypeD ⊂ [T, S]: a dimension could be temporal or spatial dimension.
The measure:
A measure M is defined by M:(NameM, TypeM, FuncM) where:
- NameM: name of the measure
- TypeM: the type of the measure
- FuncM: set of aggregation functions compatible with summarization property of the measure
where FuncM ⊂ {SUM,AV G,MAX,MIN...}.
In our case, the fact table is named OperationFact, Sensor_Dimension is an example of the di-
mension tables and the measure is for example AVG_TEMP(). To mine the data stored in the
proposed DWH, HiveQL and ElasticSearch are used. They provide an SQL-type environment
to deal with tables, databases, and queries.

3.4. Visualization and interpretation

Decision-makers and scientists need to understand drought phenomena. Thus, they need to
use big data to further develop the traditional decision-making process. Therefore, this module
aims to present the final results in form of representations that help them to understand and
deduce potential insights. To dialog, the data stored in the previous module, users, and decision-
makers need to interrogate the DWH to extract valuable information for decision making. Using
Apache Hive, various queries are provided such as data modeling by the creation of dimensions
and facts, ETL functionalities like Extraction, Transformation, and loading data, and a faster-
querying tool using Hadoop. Several representations are used for visualization such as charts,
maps, and textual reports. The purpose of these representations is to show and discuss the trends,
the Spatio-temporal variability, and the intensity of drought in a given region.

4. Experimentation and validation
To validate our methodology, the study area is presented in this section, and the implementation
of the big data warehouse architecture is described and finally, some results are interpreted and
discussed.

4.1. Study Area

China is situated on the east side of ASIA, and it has quite a lot of topography conditions.
China’s numerous land-forms and geographical positions produce major climatic disparities
across different regions of the world and generate different drought distributions throughout the
country. Fig. 3 represents the spatial distribution of climate stations over China.

4.2. Data description

To validate our methodology, different types of data were used.
Remote sensing data: The LST dataset was extracted from MOD11A2, 8 days with 1 km spatial
resolution and were gathered from NASA-EOSDIS between 2000 and 2020 [18] the NDVI data
were collected from MYD13A2 16-days with 1km spatial resolution from 2000 to 2020 [6] and
TRMM precipitation data are collected from the daily product 3B42 of TRMM dataset with
0.25°x 0.25° spatial resolution[7].
Biophysical data: Soil moisture data are based on 0.25° x 0.25° monthly GLDAS-NOAH025-
M.2.1 dataset from 2000 to 2020 [2, 13]
Climate data: SPEI is based on climate data. The SPEI is used to determine the duration of
drought and allows comparison of drought severity through time and space [? ]. The collected
SPEI data have four different spatial resolutions (.i.e. 1, 3, 6, 12 months), the ETP data are daily
gathered. This feature may be calculated using many formulas, in our case we used the Penman-
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Fig. 2. Multidimensional conceptual schema for drought big data warehouse

Monteith formula, and finally, stations climate data (.i.e. Temperature, Humidity, Pressure,
Sunshine duration, Wind speed) were collected from 511 stations over China.

4.3. DW Implementation

Table 2 compares 3 different big data storage tools; Hive, MongoDB, and Cassandra basing on
several technical features. Hive handles almost all the features needed for the construction of the
proposed methodology. Consequently, Apache Hive was implemented for DW building in this
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Fig. 3. Spatial distribution of climate station over China

paper. It is reported to several points. First of all, Hive is built with Apache Hadoop which is
the most powerful cloud computing platform for Big Data. Besides, Hive supports high storage
capacity, business intelligence, and data science. Also, Hive provides APIs for external data
query management, thus, here we used HiveQL and ElasticSearch for data and query manage-
ment. To test the proposed architecture some queries were illustrated. The main objective of

Table 2. Comparison between Hive, MongoDB and Cassandra

Features Hive MongoDB Cassandra
Governance Yes (using Hadoop) Yes Yes
Monitoring Yes Yes Yes
Replication Yes Yes Yes

Data Schema Yes No-schema Flexible Schema
Ad-hoc Yes Yes No

Data lifecycle management Yes (Via hadoop) Yes Yes
ETL Yes No Limited

Structure Master-slave Master-slave Peer-to-Peer
High Storage capacity Yes Yes Yes

Data Ingestion Yes Yes No
Business Intelligence Very Good Limited Good

High performance Non-real time Real-time Real-Time

these queries is to provide information about drought duration and drought severity. Table 3
represents an example of queries. Several tests were performed on an Ubuntu 16.04.4 LTS x64-
based computer with Intel(R) Core(TM) i7-7700HQ processor, 2.80GHz CPU, 16 GB of RAM
with Java version 1.8. Data loading was performed using Apache Flume 1.9 and Apache Hive
2.3 built on Hadoop 2.7. Apache Flume provides Hive Sink for Hive tables management. These
sink streams events containing data directly into a Hive partition.

4.4. Results and Interpretation

To perform the data loading module 3 different ways were tested. The first one is the default
configuration of Apache Flume with three replicas, the second one is the customization of the
data block size with 1GB for one block and the last one is our proposition 1GB in a parallel
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Table 3. Queries examples

Query description Queries examples
Fist Query example: The

average of drought index
SPEI-1 in 2000 SELECT AVG(ID.IndexValue)

FROM OperationFact OF,
Date_Dimension D, Index_Dimension ID
WHERE D.ID_Date=OF.ID\_Date
and OF.ID_Index= ID.ID_Index
and D.Year=”2000”
and ID.IndexName=”SPEI-1”;

Second Query example:
The annual precipitation
average between 2000 and
2019. For the humidity
and temperature.The
CFD.FeatureName must
be changed to the right
feature name.

SELECT AVG(CFD.FeatureValue)
FROM OperationFact OF,Date_Dimension D,
Climate_Feature_Dimension CFD
WHERE D.ID_Date=OF.ID_Date
and OF.ID_Index= CFD.ID_Index
and CFD.FeatureName=”Precipitation”
GROUP BY D.Year;

Third Query example:
The province having the
minimum SPEI-3 value in
2019

SELECT PR.name
FROM Province PR, Location_Dimension LD,
Drought_Index_Dimension DID,
OperationFact OF, Date D
WHERE PR.ID_Province=LD.ID_Province
and LD.ID_Location=OF.ID\_Location
and DID.ID_Index=OF.ID_Index
and OF.ID_Data=D.ID_Date
and D.Year=2019 and
DID.IndexValue=(SELECT MIN (IndexValue)
FROM Drought_Index_Dimension
WHERE IndexName=”SPEI-3”);

Fourth Query Exam-
ple: Provinces having
NDVI value less than 0 in
ascending order

SELECT PR.ID_PROVINCE, PR.Name
FROM SatelliteFeature_Dimension SFD,
Province PR, OperationFact OF,
Location_Dimension LD
WHERE OF.ID_SatFeature=SFD.ID_SatFeature
AND PR.ID_Province=LD.ID_Province
AND LD.ID_Location=OF.ID_Location
AND SFD.FeatureName=’NDVI’
Group By PR.Name
Having SFD.FeatureValue <0
ORDER BY PR.Name ;

way. Fig. 4 shows the results which revealed that the proposed architecture gave the best
performance. The time consumed in the proposed architecture is less than the time consumed
for default configuration with x2.5 and x4 for the manual block size configuration.

Table 3 illustrates different queries used for testing our proposed approach. In every query,
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Fig. 4. Comparison between time consumed in the data loading module using the default Apache
flume configuration, the manual configuration and the proposed parallel architecture.

several commands were used such as WHERE, GROUP BY, HAVING, LEFT (RIGHT) JOIN,
ORDER BY, and UNION. The combination of these commands could affect the runtime of the
queries. Table 4 represents the number of parameters used in every query. Fig. 5 illustrates
the runtime in seconds of each query. The results revealed that when the number of the used

Table 4. Number of parameters used in each query

Queries Number of commands Number of tables
Q1 3 3
Q2 3 3
Q3 2 5
Q4 5 4

Fig. 5. Comparison between the queries runtime.

command increase, the runtime increase. Besides, the number of the used tables in a query
affects the runtime speed. In fact, in Q3 and Q4, 5 and 4 tables and 2, 5 commands were used
(respectively) but the results showed that the runtime of Q3 was higher than Q4.
These results are the same even when ElasticSearch was used for querying. Besides, the use of
ElasticSearch for SQL queries gave better results than HiveQL in terms of time response. Thus,
we conclude that both are suitable for the drought data analysis as they can handle all types of
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data (i.e. textual and numerical data, geospatial data, and structured and unstructured data). For
the visualization, several forms are used. Maps are used to show the Spatio-temporal variation
of drought intensity over China. Fig. 6 illustrates drought mapping in China in 2000 and 2019.

Fig. 6. Visualization of the SPEI-1 Average in 2000 and 2019

The results of the first application in 2000 and 2019 show that the average of SPEI-1 varies
between 0.69 and -0.7 in 2000 and 1.5 and -1.5 in 2019. Fig. 6 shows that some provinces
moved from WET (regions in dark blue) to dry (regions in red) basing on the SPEI values. For
example, Southwest China is in a wetter condition in 2000 but in 2019 and Northeast China is
in a drier condition in 2000 and a wetter condition in 2019.

5. Conclusion
Due to the increase of environmental disasters, efficient use of Earth observation data is needed
for monitoring, forecasting, and prevention. The volume of these data continues increasing,
thereby, scientists and decision-makers faced many challenges in collecting, pre-processing,
storing, and processing this huge amount of heterogeneous data. These data are used for disas-
ter management. In this paper, we propose an architecture for spatio-temporal data management.
The architecture is composed of four modules: data collection, data preprocessing, data storage
and interpretation, and decision making. The proposed architecture is based on spatio-temporal
big data warehouse for drought data management. To load the data into the Hadoop systems,
Apache Flume was adopted in a parallel way to accelerate the data ingestion and improve the
efficiency of the overall system. A snowflake schema was adopted for the integration of spatio-
temporal data in the data warehouse. The schema is scalable and compatible with Big Data mod-
eling for other natural hazard prevention. Based on this scheme, we extracted, migrated, and
loaded information from different datasets into a single representation of the drought dataset.
This dataset was requested using various SQL-like queries through HiveQL and ElasticSearch.
The parallel loading with a customized block size revealed better performance than the manual
loading and the default loading (non-parallel) with almost x4 and x2.5 (respectively) improve-
ment in the time consumed during the ingestion module. For future works, we aim to develop
a new web service-based tool to provide real-time information in Spatio-temporal scales, with a
user interface that could help the decision-makers to interrogate and extract different knowledge
from the proposed system.
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