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Abstract

The cold-start problem has become a significant
challenge in recommender systems. To solve this
problem, most approaches use various user-side data
and combine them with item-side information in their
systems design. However, when such user data is not
available, those methods become unfeasible. We provide
a novel recommender system design approach which
is based on two-stage decision heuristics. By utilizing
only the item-side characteristics we first identify the
structure of the final choice set and then generate it
using stochastic and deterministic approaches.

1. Introduction

With the rise of the Internet, interaction with
recommender systems has become a common part of
human activity. When there are many options to choose
from, recommender systems save consumers time and
effort by matching them with items [1]. Making
successful recommendations requires knowledge of
demand-side factors, such as consumer taste, historical
interactions, purchasing power, and socio-demographic
characteristics, along with supply-side factors, such as
item characteristics.

Because recommender systems are online services
implemented by the providers, supply-side information
is generally available at all times. However, this is not
always the case with demand-side information. On most
occasions users are not identified, either because it is
not feasible, or because interaction with the system does
not require them to identify themselves. This lack of
information is referred to as the cold-start problem [2].
Some services, for example Netflix, solve this problem
by providing general suggestions until they can gather
enough information about the user. Others, such as
Goodreads, explicitly survey the new user to solicit such
information.

With the current regulations and users’ awareness of
security and privacy on the internet [3], systems face

continuous cold-start problems [4]. In such cases, using
supply-side contextual information becomes crucial [2].
One way of utilizing such information is using random
utility models. However, such models rely on the notion
of perfectly rational consumers having well-defined
preferences [5]. Hence, they are not able to account
for context-dependent preferences [6]. Under such
circumstances, clustering-based approaches can be used
to enrich the context in recommender systems. Previous
research [5] has demonstrated that such an approach is
flexible enough to be extended over imperfectly rational,
or context-dependent consumer behavior.

In this paper, we incorporate insights from the
decision literature into recommender system design
using the dataset of European flight choices [7]. We
argue that the choice process occurs in two sequential
stages: consumers first identify the small subset of
the choices that they would “consider” and then make
a choice from that subset. Combining findings in
marketing, management and consumer behavior, and
using clustering to quantify the contextual information
of the choice set, we propose a user-side, two-step
“consider-then-choose” [8, 9] approach to recommender
system design to tackle the continuous cold-start
problem.

2. Theoretical background

2.1. Choice heuristics

Previous literature in psychology and economics
has suggested that individuals tend to use various
decision heuristics to reduce the cognitive load during
the decision-making process [10, 11, 12]. Because
consumers tend to behave as satisficers rather than
maximizers, they do not perform an evaluation of all the
alternatives available to them but stop as soon as they
find an option which has overall better attributes and
satisfies their needs [13]. For simplicity, let’s consider
the case of buying flight tickets. There are N tickets,
and they each have k attributes, which can include
price, duration, time of the day of the flight, number
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of connections, and so on. A consumer has a single
objective function

O = O(T1, T2, . . . , TN ), (1)

where T is the linear transformation of the flights’
attributes Zk with some random parameters θ. We can
rewrite equation (1) as

O = O

(∑
k

θkZ
k
1 , . . . ,

∑
k

θkZ
k
j , . . . ,

∑
k

θkZ
k
N

)
,

(2)
which would allow a consumer to explicitly compare
the marginal contribution of each attribute to to
the maximization of the the objective function [14].
However, most of the time, choice attributes do not
require or allow for such trade-off calculations, as some
of them are too valuable, or there are too many attributes
to consider. For example, a consumer flying for business
purposes may value the flight duration more than a
budget traveler, who would value price above everything
else. In such cases, even when consumers are perfectly
rational and are well-informed, when they face options
that simultaneously differ across many attributes, or it
is difficult to calculate such trade-offs, they use various
heuristic approaches [15].

Heuristics are mathematical formulas describing
different rule-based decision steps taken by individuals
to reduce their potential decision effort [16]. One can
distinguish several types of heuristics-based approaches:
lexicographic rule [10], conjunctive/disjunctive [17],
elimination by aspects [18], and so on.

The lexicographic rule is the simplest deterministic
rule in the heuristic approach. Here, individuals choose
the alternative which has the highest value of the feature
they desire. If there are several options with equal
values, individuals compare those options based on
the second most valued feature. This loop continues
until there is one option remaining. For example, an
individual searching for flight tickets from Paris to New
York will have different options varying in time, price,
number of connections, baggage allowance, transfer
time, and so on. Attributes of the choices are first ranked
based on their importance to the consumer: cheaper than
600 Euros, checked and carry-on baggage included, one
layover, maximum transfer time of four hours. Then,
a filtering stage occurs. After filtering on the price, if
there are multiple options remaining, the consumer will
switch to baggage allowance, connections and transfer
time. As soon as the choice set contains only one option,
the search stops.

The conjunctive and disjunctive heuristic approaches

are related [17]. In the conjunctive rule, consumers
first establish the list of features they consider relevant
to the choice problem. Then, they establish various
thresholds on those features. If an alternative passes
all of those thresholds, it is chosen. In contrast, in the
disjunctive approach, an option which exceeds threshold
on at least one of the features is chosen [17]. The results
of the lexicographic approach and conjunctive approach
appear to be similar. The only difference is that, instead
of evaluating options based on the first aspect, then the
second and so on, in conjunctive approach the consumer
evaluates options based on all aspects simultaneously.
In some cases consumers might be willing to use a
subset-conjunctive approach which generalizes both the
conjunctive and disjunctive approaches [19]. It allows
some variation in the desired aspects. For example, if the
consumer valued 4 aspects as mentioned in the example
above, he or she might be willing to accept an option
which satisfies 3 of those 4 aspects. This approach is
particularly useful when there are time constraints or a
fully conjunctive rule would result in no choice [20].

Elimination by aspects is another heuristic approach
which has been proposed in the literature [18]. The
basic setup of this approach is that an individual chooses
one attribute, and eliminates options based on this
attribute and repeats this procedure for other attributes
if necessary until the remaining options do not share
common attributes anymore. Then, as a last step, the
final option is chosen according to Luce’s choice axiom
[21] which states that the probability of selecting one
option over the others in a choice set is not affected
by presence or absence of other options. Most of
the results on this topic [22, 23, 24, 25] indicate that
the use of multi-phase heuristic processes can increase
the accuracy of the estimation and result in improved
interpretability of the models. Elimination by aspects
is considered a heuristic method with stochastic rules
because of the nature of the comparisons an individual
makes, and because the selection process is not based on
the relative importance of the features [26]. Such models
are also hard to apply successfully because they require
tremendous numbers of parameters to be estimated [22].
Although these models can theoretically capture the
essence of the two-stage choice process, they are not
able to identify the results of separate stages [9].

2.2. Two-stage choice

During the choice process consumers usually face
a large number of options [27]. Evaluating that many
options drastically increases cognitive load during the
decision process and so, to reduce this load, consumers
first select a small subset during an initial consideration

Page 4271



stage [28] and then make their choice from that subset in
the final stage [11, 23, 28]. Firstly, this allows users to
remove unrealistic options from thorough consideration.
Secondly, because the choice set is much smaller in
the final stage, users are able to invest more cognitive
effort to analyse individual options more carefully [23].
Also, the decision strategies used in the two stages differ
considerably and are therefore not interchangeable. The
main reason for that is the cognitive costs of the decision
rules should not outweigh their potential benefits during
each stage [29].

In the information processing literature the small
subsets that consumers make their final decisions
from are called consideration sets. There are several
definitions of a consideration set. [30] defines a
consideration set as a “set of alternatives that are
goal-satisfying and accessible to a consumer on a
particular occasion”. [15] refers to it as a “set of options
that receive a significant amount of consideration
during the decision making process”. In marketing,
however, scholars generalize these definitions and
refer to consideration sets as a “subset of alternatives
surviving the initial screening phase” [31].

Despite the fact that consumers may not always use
such a two-stage process to screen products [20], the use
of consideration sets is justified because they represent
the choice process more realistically and they explain
consumer behavior better [32]. Potentially up to 80% of
the decision process uncertainty can be resolved if we
determine the consideration set correctly [33].

For an empirical study of consideration set
formation, one can elicit information on consideration
sets in multiple ways [34, 35, 36]. However, for
modeling purposes the literature discusses two main
ways of consideration set formation: deterministic [17]
and stochastic [37, 38]. While stochastic modeling
makes all potential sets possible by attaching non-zero
choice probability to each of them, deterministic
approaches may render some outcomes impossible [26].
Because we can not know which answer is the best and
the decision-maker, or consumer, is the final arbiter of
the “correct” choice [19], the use of either of these two
approaches must consider the choice environment, time
frame, future value (or loss) associated with the correct
and incorrect choice, and so on [39]. For example, let’s
consider the flight booking case again and suppose that
the consumer lives far from the airport and can reach
it only in the afternoon. Consequently, all tickets with
departure time before midday would not be considered
at all. When forming a consideration set in this case, one
must not only consider the characteristics of available
options, but also the characteristics of the consumer
and the choice environment. While using a purely

stochastic approach might yield sets which include some
options that consumer would indeed consider, there will
also be options which will have zero probability for
consideration. In contrast, applying some deterministic
rules derived from this particular choice environment,
such as the departure time, in the consideration set
formation, will exclude those options completely.

When there are not many options to consider, options
have few attributes, or final choice utility is not evenly
distributed among the attributes, the consideration sets
may be modelled via simple deterministic rules, because
there is not much cognitive load and the decision
rules are relatively simple [19, 40] . When forming
consideration sets, it is also important to consider their
size. It is very difficult to decide an optimal size based
on the choice environment and individual processing
capabilities [14].

With the current progress in computer science,
mathematics and behavioral economics, recommender
systems are ideal tools to solve this information overload
problem and provide users with the most relevant
consideration sets [41].

2.3. Recommender systems

Recommender systems (RS) have been an important
part of our daily lives thanks to the rise of the Internet.
RS are software tools and/or algorithms which match
users to items [42]. One example is Netflix, which
recommends a movie similar to the one the user just
watched. The general purpose of any RS is to help users
who do not have sufficient knowledge or experience, or
the capacity to evaluate the item pool fully.

We distinguish between personalized and general
recommender systems. Personalized RS may suggest
different items to different users or user groups. General
RS in turn, are usually directed towards the general
public and might be relevant only to some part of it, for
example, Billboard Hot 100, IMDB Top 250, or the front
page of New York Times [43].

When RS face new users or new items, they may
fail to provide personalized content due to the sparsity
of information [44]. Because such RS mainly utilize
historical interactions of similar users on similar items,
and their ratings, facing a new entity about which it
has no information makes it impossible to generate
recommendations. This problem is referred to in the
literature as the cold-start problem [2] and is considered
a key challenge in RS design [45].

The literature distinguishes three main cold-start
settings [45]: a) recommending existing items for
new users (user-side), b) recommending new items for
existing users (item-side), c) recommending new items
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for new users (user- and item-side). However, when
trying to address this problem scholars have mainly
focused on settings in which the challenge was to
recommend new items to existing users [46].

Recently, some progress was made in solving the
user-side cold-start problem after the introduction of
contextual information into recommender systems. As
a result of this effort, Context Aware Recommender
systems were introduced [47]. In this approach
the context refers to the time of the choice, the
location or socio-demographic characteristics of the
decision-maker etc. Some approaches have been very
successful by combining contextual information with
collaborative filtering [48, 49, 50]. Utilizing baseline
information for new users [51] and using social network
data [52] have also been proven to overcome the
cold-start problem to a certain extent.

In practice however, these cold-start problems often
transform into continuous cold-start problems [53]. This
happens when:

1. The user stays “inactive” for a long period before
the initial interaction

2. The user’s interactions have a significant time
window

3. The user creates a “one-time” account

4. It is not possible or permitted to track users,
or (under GDPR) the user has requested their
personal information to be removed from the
system.

In the case of the continuous cold-start problem, the
solutions suggested in the literature discussed above are
not feasible. The first reason is that users generally do
not need to create an account for interacting with some
services, for example, watching videos on YouTube,
searching for items on Amazon, or looking for airline
tickets. Because of this, systems commonly treat
different sessions by the same user as being by new
users. Secondly, due to rising awareness of internet
security and privacy, people tend to use incognito mode
when they make searches [3] which disables most of the
tracking, and user identification.

Our approach addresses the user-side continuous
cold-start problem, which has not been thoroughly
researched before. By utilizing only characteristics
at item and search level we propose a novel RS
design which is able to tackle the information sparsity.
First, we use clustering [54] to quantify the contextual
information both on the individual and the search level
and we cluster empirically similar items together. Then,
we use a hypergeometric sampling technique to generate

Variable mean st.dev min max
Price 647.12 1105.12 59.55 16997
Duration (in minutes) 518.98 555.04 70 2715
# of flights 2.94 0.95 2 6
# of airlines 1.25 0.45 1 5
Days before departure 32.36 38.03 0 340
Domestic travel 0.49 0.49 0 1
Intercontinental travel 0.06 0.23 0 1

Table 1. Summary statistics of main variables

the structure of the final choice set, meaning how many
options from each cluster should be in the final choice
set. Because our goal is to provide the design of the RS,
the final stage of the choice set generation will consist of
applying both stochastic [37, 38] and deterministic rules
[19, 40, 17].

3. Methodology

3.1. Data

We used a combined dataset of airline booking
details matched with real-time queries. Because users
do not have to create an account for searching and
buying tickets, there is no user-side data available
to the system. It makes this dataset ideal for our
purposes. Booking details were extracted from the
MIDT (Marketing Information Data Types) database
and were dated between December 2013 – June 2014
[55]. It had information on booking details including
but not limited to, price, duration, time, days before
departure, booking office ID. By matching this data with
the real time queries run by users on Amadeus S.A.S
on office ID, passenger details, search timestamps,
origin-destination pairs and other query data, we were
able to detect options delivered to users and which
options were chosen. It was not possible to know if a
specific option was seen by the user. Yet, considering
that the average time spent on finding a suitable flight
option is around 3.5 hours [56], we assumed that most
of these options were seen by users.

For some menus 1 we did not have a complete menu
because the system had truncated very large choice sets.
Also, some of the queries appeared to have incomplete
information regarding one or more query attributes. We
solved these issues by simply deleting those parts of the
data from our analysis. As a result, our dataset consisted
of 7,163 choice sessions with 368,735 options. Table 1
gives descriptive information about our main variables.

1Previous literature [7, 55] refers to choice sets as menus.
Hereafter, these terms will be used interchangeably.
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3.2. Clustering

Clustering is used to divide data into different
groups where empirically similar elements belong to
the same group and dissimilar ones are assigned to
different groups [54]. By using clustering, we aimed
to identify options which were similar in their context.
We used two mainstream clustering algorithms: Affinity
propagation (AP) and KMeans (KM).

AP identifies elements as nodes within a network
and finds ones that are exemplars (“cluster centers”) via
recursively passing messages between all data points
[57]. A big advantage of the algorithm is that the
modeler does not need to set the optimal number or size
of the clusters. This comes at a price of the complexity
of O(N2) where N is the number of elements in the set.

The KM clustering algorithm is more popular than
AP because of its low complexity [58]. Despite being
computationally simple, it requires the optimal number
of clusters (K) to be pre-set by the modeler. As in our
setting the optimal number of clusters is not known ex
ante, this requirement adds a layer of complexity to the
calculations. We used the silhouette score [59] which
enabled us to find an optimal K mathematically while
minimizing the complexity added to the algorithm.
The silhouette score is calculated by comparing every
element to its neighbours within the same cluster and
also to those elements outside of its cluster and has
values between -1 and +1. A higher score means each
object is well-matched to its cluster. A number of
distance metrics can be used to calculate this score; we
used Euclidean distance.

To quantify the context and clusters we created two
variables that captured the characteristics of clusters:
relative cluster size and relative cluster dispersion. The
first accounts for the normalized number of options
within that cluster. The second is derived using∑m

i=1 (xi − µk)
2∑N

i=1 (xi − µM )
2
,

where N is the number of options within the menu, m
is the number of options within the cluster, µk is the
centroid of cluster k to which xi belongs and µM is the
mass center of the menu. [5] discusses the clustering
more thoroughly.

Before applying clustering we eliminated the
possible scale effects of some dependent variables by
using z-score normalization.

3.3. Two-stage choice

Our modeling process consisted of two stages. In
the first stage, we modelled the structure of the final

choice set and determined how many elements of each
cluster should present in the consideration set. Next, we
used stochastic and simple deterministic rules to select
options following the structure obtained during the first
stage.

First, the attractiveness measure of clusters within
the menu was calculated. We defined the attractiveness
measure as the probability of the given cluster to
contain an actual choice and calculated it using the
traditional multivariate logistic model [60]. Utilizing
both descriptive information of options within clusters
and the aforementioned cluster level characteristics as
our covariates, we estimated those probabilities for
every cluster in the menu according to

ak = Pr(Y = 1|Xk) =
exp(βXk)

1 + exp(βXk)
, (3)

where ak is the attractiveness measure, Xk is the feature
vector of the cluster k and β is a vector of coefficients.

Using cluster level characteristics allowed us to
embed the contextual information of options within a
cluster into our model. Then, using this metric we
determined the structure of the final choice set via
hypergeometric sampling.

Let N be the number of options within the menu
which belong to k unique clusters and mi ∈ M be
the number of options that belong to cluster i, so that∑k

i=1mi = N . If we sample n random options
from that menu without replacement we get a set J =
{j1, j2, j3, . . . , jk} which follows the hypergeometric
distribution and the probability of getting such vector
J is determined by

P (j1, j2, . . . , jk) = P (J) =

(
m1

j1

)(
m2

j2

)
. . .
(
mk

jk

)(
N
n

) , (4)

where jk is the number of elements belonging to
cluster k in our sample.

However, using M and N does not allow us to
quantify the menu context in terms of its clusters, which
was our goal. One way of avoiding this limitation is
to use the attractiveness measure instead of M in our
sampling. Yet, because the attractiveness measures are
in the range of zero to one, it was impossible to use
them directly in our sampling. So, we defined the
attractiveness score of a cluster as sk = ak ∗ 1e6,
where ak is the attractiveness measure of a cluster
k. The constant 1e6 was chosen to account for the
smallest differences between two almost identical ak.
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Accordingly, we replaced N with D =
∑k

i=1 si. So
equation (4) becomes

P (j1, j2, . . . , jk) = P (J) =

(
s1
j1

)(
s2
j2

)
. . .
(
sk
jk

)(
D
n

) . (5)

To save computational time and overcome the
sparsity of the vector J , during sampling we used only
attractiveness scores of the top nmost probable clusters.
Because our n was assumed to be relatively small, we
were able define beforehand all the possible J vectors
such that j1 ≥ j2 ≥ j3 . . . ≥ jk; k ∈ n using integer
partitioning.

In order to make sampling results also dependent on
M we used M as a constraint for J , so that

∀j ∈ J,m ∈M : ji ≤ mi.

If this condition could not be satisfied for some i then we
did the assignment ji ← mi and the remainder ji −mi

was added to the leftmost possible element of J . Yet,
for 108 menus, it was still the case that there was not a
valid J complying with these rules. We simply removed
those menus from our analysis.

To better understand the approach, let J be
[4, 3, 2, 1, . . . , 0] and M be [8, 2, 4, 1, . . . , 6]. Then,
j2 ≥ m2, which violates the constraint above. So, the
assignment j2 ← 2 is made and the remainder 1 is added
to leftmost possible element of J . Our result becomes
[5,2,2,1,. . . ,0].

Finally, by randomly sampling according to equation
5 one hundred thousand times we picked our most likely
J by finding the most repeated sample. Then, we
selected the top j1, j2, . . . , jk options from the top n
most probable clusters based on the attractiveness score
of options obtained using equation 3.

After identifying the clusters and the number of
elements to select from, we applied two methods
to generate the final choice set. The first method
was stochastic and consisted of randomly selecting
elements according to vector J . The second method
was deterministic and used the price of the option as
a determinant. The cheapest options were selected
according to J . As a baseline, we used the same
two approaches, but selection was done disregarding
J . Therefore, the baseline of the first method was the
random selection of one option from every cluster. The
baseline of the second method was the selection of the
cheapest option from every cluster. Recall that we used
two different clustering methods, AP and KM. Hence,
we calculate four models per clustering method:

Model1. Random selection following J

Model1b. Random selection (baseline of model
one)

Model2. Selection of the cheapest options
following J

Model2b. Selection of the cheapest options
(baseline of model two)

3.4. Performance metrics

To evaluate each model’s performance we used
accuracy at top-N, which is a commonly used metric not
only in classification tasks but also in RS design studies,
especially for context-based recommendations [43]. In
classification, it measures whether the actual class is in
the top N predicted classes of the model. Similarly, in
RS design it measures if the chosen option is among the
top N suggestions of the system. We conformed with
the existing literature and selected accuracy at top-5 and
top-10 as our evaluation metrics [61].

Accordingly, n = 5 and n = 10 were chosen. So, all
possible J values were found via integer partitioning of
five and ten, which gave us 7 and 42 possible variations
accordingly.

4. Results

4.1. Clustering results

The results of clustering methods are clearly
different. While AP tended to create fewer but larger
clusters (7.62 on average), KM generally identified more
clusters (10.29 on average) with relatively smaller sizes.
This indicates that both algorithms were able to identify
the contextual information but in different ways.

The runtime of these algorithms also differed
considerably. Because AP did not need an initial number
of clusters, while for KM we had to compute the optimal
cluster count in each menu, for the same menu AP
converged on average 7.2 times faster. This makes AP
more viable for larger choice spaces.

4.2. First stage results

Table 2 gives descriptive information about the
structure of the consideration sets for the different
clustering methods. We notice the similarities between
AP and KM in terms of the average number of clusters
present in the choice sets. Despite the different contexts
identified by those algorithms in the clustering phase,
both algorithms appeared to identify the “important”
clusters. We also see that KM resulted in more variance,
yet generated less diverse consideration sets in general.
On the contrary, AP appeared to be more robust when
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it came to different choice environment setups and
was able to generate consideration sets that were more
distinct.

n = 5 n = 10
AP KM AP KM

Mean 2.74 2.59 3.62 3.41
Standard deviation 0.84 1.16 0.98 1.61
Minimum 1 1 1 1
Maximum 5 5 7 10

Table 2. Consideration set structure in terms of

unique clusters across clustering methods

4.3. Second stage results

We see that both clustering methods were also robust
to the selection methods used in the second stage.
This indicates that item-side contextual information
helps capture the choice environment better and it
also provides meaningful insights into the consumer
behavior.

Both of our models outperformed their baseline
counterparts considerably. Stochastic models performed
in general better in KM than AP which is not surprising.
The main reason for this is that KM identified smaller
clusters and so the chance of randomly selecting a
correct option was therefore higher. This difference
decreased in cases where the selection was made based
on deterministic rules.

The performance of our models using a deterministic
rule to make the selections may indicate that consumers
use multiple determinants as criteria during the
decision-making process, which also complies with
previous findings [11, 40]. Table 3 summarizes our
second stage results.

5. Conclusion and discussion

We have proposed a novel approach to tackling
the user-side continuous cold-start problem in RS
design. By using the contextual information of the
menu we were able to generate relevant choice sets
using a two-step choice modeling approach. Our

n = 5 n = 10
AP KM AP KM

Model 1 0.39 0.40 0.56 0.55
Model 1b 0.21 0.23 0.21 0.25
Model 2 0.49 0.48 0.63 0.62
Model 2b 0.32 0.32 0.32 0.34

Table 3. Top-5 and top-10 accuracy scores across

clustering methods

structural approach to choice set generation proved to
be robust not only to selection criteria, be it stochastic
or deterministic, but also to the clustering method used.
Because in an online environment the calculation time is
critically important, using AP as the clustering method
appears to be advantageous.

The findings of this work can be implemented
by various systems which face continuous cold-start
problems. They also help to understand the
decision-making process of consumers and hence
reduce their search cost by introducing the most relevant
alternatives. This also benefits the supply-side via the
reduction of the overall time spent by users on the
platform.

This work has some limitations. RS design using
one-stage simple MNL probabilities would result in
52% and 65% in top-5 and top-10 accuracy, respectively.
Such random utility models violate Luce’s choice axiom
[21], which states that the choice probabilities of options
in the choice set must be equally affected by the
introduction or removal of a new option. However,
one possible way to improve our approach could be the
integration those probabilities into our models. Another
possible avenue for future research could be using more
complex characteristics derived from the choice set
along with clustering.
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