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Abstract

Wearable biosensors can be used to monitor opioid
use, a problem of dire societal consequence given the
current opioid epidemic in the US. Such surveillance can
prompt interventions that promote behavioral change.
Prior work has focused on the use of wearable
biosensor data to detect opioid use. In this work, we
present a method that uses machine learning to identify
opioid withdrawal using data collected with a wearable
biosensor. Our method involves developing a set of
machine-learning classifiers, and then evaluating those
classifiers using unseen test data. An analysis of the
best performing model (based on the Random Forest
algorithm) produced a receiver operating characteristic
(ROC) area under the curve (AUC) of 0.9997 using
completely unseen test data. Further, the model is able
to detect withdrawal with just one minute of biosensor
data. These results show the viability of using machine
learning for opioid withdrawal detection. To our
knowledge, the proposed method for identifying opioid
withdrawal in OUD patients is the first of its kind.

1. Introduction

The Center For Disease Control (CDC) has reported
that of the 70,000 people who died from a drug
overdose in the United States during 2017, 68% of
those deaths involved opioids [1]. The treatment
process for individuals with opioid use disorder
(OUD) involves detoxification (aka detox), often with
medication assisted treatment (MAT) using drugs such
as methadone or buprenorphine [2]. During the
detoxification period, OUD subjects can experience
opioid withdrawal symptoms for up to 7 days after their
last drug use. Symptoms of opioid withdrawal include

nausea, vomiting, diarrhea, and severe diffuse body pain
[3]. These symptoms are often so severe that they have
been found to increase the risk of relapse and overdose
death [3]. Some studies have even shown that up to
70% of OUD subjects relapse after completing opioid
detoxification due to the withdrawal they experience.
[4]. The process of opioid detoxification is complicated
and difficult for both healthcare practitioners and
patients.

Up until the past few decades, the evaluation of
patient health and wellbeing was limited to when a
patient visited their healthcare provider [5]. More
recently, the improvements in commercially available
wearable biosensors have given healthcare providers
the capability to monitor various aspects of the
physiological state of their patients health remotely [5].
These analytical devices can be worn at all times by
patients, and can collect and transmit key indicators of
patient physiology in real time. Wearable biosensors
have already been shown to have potential for detecting
and managing opioid use in real-time [6] [7] [8].
Undergoing the detoxification process, and experiencing
opioid withdrawal can be difficult for OUD patients.
Improving the clinician’s ability to monitor patients
during withdrawal (e.g. while in a detoxification
program) would help clinicians personalize treatment
options for relapse prevention. Personalized treatment
for opioid withdrawal has the potential to improve
treatment success and ultimately save lives.

In this work, we present a method that uses
machine learning to identify opioid withdrawal using
data collected with a wearable biosensor. To
develop and evaluate our approach for detecting opioid
withdrawal using biosensors, we rely on using biosensor
data collected from overdosing patients in a hospital
emergency department (ED). We used an Empatica E4
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wrist-mounted biosensor (Empatica, Milan, Italy) for
our data collection. Data was collected from 16 subjects
who presented to a single ED for medical care following
an opioid overdose. The subjects were in various
states of recovery subsequent to an administration of
naloxone 1. Our subjects were real medical patients
suffering from OUD, and all data was gathered in a way
that prioritized patient care and wellness over research
goals with approval from our Institutional Review Board
(IRB).

In order to detect withdrawal, we use standard
machine learning techniques to develop classifiers
that capture the uniqueness of the physiological
measurements collected by the Empatica E4 during
withdrawal. The physiological measurements collected
are blood volume pulse, electrodermal activity, skin
temperature, and movement (accelerometry). During
their stay in the ED, the subjects were evaluated by
clinicians every 30 minutes to an hour. At each of these
evaluations the subjects were assessed to be in one of
three states – withdrawal, intoxicated, or neutral. We
decided to use a 20 minute interval surrounding the
time when the physician assessed the physiological state
of the subjects for training and testing our models, as
we had confidence in the ground-truth of the patient’s
state during that time. The classifiers developed were
general models essentially able to distinguish between
the withdrawal state from all other states.

In total, our dataset had data collected from 16
different OUD subjects. Six of the 16 subjects had
data in the withdrawal state. Two of these six subjects
had neutral state data as well, the other four had
data exclusively in the withdrawal state (based on the
clinician’s assessment). The remaining 10 other OUD
subjects used in this study had data assessed in either
the neutral or the intoxicated states or both. This means
our dataset has many more examples in the neutral
and intoxicated state compared to the withdrawal state.
This class imbalance had to be addressed during the
development of our models.

An analysis demonstrates the viability of our
method. Upon training our models, and compensating
for the class imbalance, we were able to achieve almost
perfect results using our test data. The best performing
model (Random Forest) during testing had a receiver
operating characteristic (ROC) area under the curve
(AUC) of 0.9997. Our test data was completely unseen
data (by our models during training) involving both
withdrawal and non-withdrawal states. Further, the
model is able to detect withdrawal with just one minute

1Naloxone is an antidote that is given to someone who is
overdosing on opioids. It immediately reverses the effect of opioids
by competitively binding to the opioid receptors in the body

of biosensor data. To the best of our knowledge, this
is the first work related to using machine learning to
identify opioid withdrawal of any kind.

2. Related Work

As previously mentioned, we do not know of any
work that has been done related to using wearable
biosensors to detect opioid withdrawal. The majority
of research involving identifying opioid withdrawal
is related to the development of clinical tools whose
purpose is to assess a patient for withdrawal symptoms.
The common form these clinical tools come in are
surveys or scales [3]. One commonly used assessment
tool is the the Clinical Opiate Withdrawal Scale
(COWS). This scale considers a number of different
physiological symptoms to help medical staff identify to
what extent a patient is experiencing opioid withdrawal
[9]. These opioid withdrawal scales have limitations
since signs and symptoms may go unrecorded when
clinicians are not observing a patient, and they require
patients to self report certain symptoms [3]. There has
also been previous pharmacological research that relates
the physiological symptoms of opioid withdrawal to
stress [10].

There are many studies that have used machine
learning to identify stress. Personalized stress models
built with data collected from a wearable biosensor have
been show to be successful in preliminary studies [11].
At the same time, using data collected from wearable
biosensors has also been successfully used to build
general models for detecting stress [12]. Limited work
has been done related to stress detection in Substance
Use Disorder (SUD) patients [13], but no such work has
been done related to OUD patients. However, since it
has been shown that opioid withdrawal symptoms can be
conceptualized as being similar to those of stress [10],
we will leverage some of the features of stress detection
in this work.

Wearable biosensors have been used in opioid
research for automatic detection of opioid intake [6]
[14], and detecting recurrent opioid toxicity in patients
after being administered naloxone [15]. Wearable
sensor adherence was modeled recently using data from
patients with opioid use disorder [8]. None of these
previous studies looked to use wearable biosensors to
identify opioid withdrawal.

3. Problem Statement

The goal of this paper is to explore the use of
machine learning for identifying opioid withdrawal. The
idea is to build a model that learns to differentiate
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physiological data (collected from wearable biosensors)
assessed to be in the withdrawal state, from data
assessed in either the neutral or intoxicated state (i.e.,
non-withdrawal state). Once developed, this model will
be able to assess whether or not a never before seen
snippet of data has come from an OUD patient in the
withdrawal state. As shown in Figure 1, we aim to build
a binary classifier that can distinguish between biosensor
data emanating from a person in withdrawal versus a
person not in withdrawal.

Figure 1. Overview of problem statement for

developing a classifier to detect opioid withdrawal.

4. Dataset, Features, Training and Testing
Process

In this section we describe our dataset, the features
we extract from it and the general process of our
classifier training and testing. In subsequent sections,
we delve into the training and testing outcomes.

Data Collection: The dataset used in this study
was collected from individuals (subjects) admitted to
the emergency department (ED) who received naloxone
after experiencing a potential opioid overdose. Upon
obtaining informed consent, research staff placed
an Empatica E4 wearable biosensor on the subjects
non-dominant wrist in order to collect their biometric
data. The E4 collects four different types of data from
the body (described below).

One of the standard tools used by clinicians to assess
whether a patient has opioid withdrawal symptoms is
the Clinical Opiate Withdrawal Scale (COWS) [9]. The
COWS considers, among other biometrics, a subjects
heart rate, perspiration, and acute movements. Given
that the Empatica E4 collects some of the exact data
types used in the COWS, we used these same biometrics
in our analysis. Specifically, in our work we used
blood volume pulse (BVP) (sampled at 64 Hz) data,
electrodermal activity (EDA) (sampled at 4 Hz) data,

Table 1. Demographics of our dataset

Gender Count Avg. Age (std)
Male 13 34.85 ± 9.89
Female 3 38.33 ± 2.05

skin temperature (sampled at 4 Hz) data, and triaxial
accelerometer (sampled at 32 Hz) data. While the
COWS doesn’t consider a patient’s skin temperature in
its assessment for opioid withdrawal symptoms, there
are several other opiate withdrawal scales that do [3].

Along with the data collected by the E4, the
physiological state of a subject was assessed and
recorded by a board-certified emergency physician and
medical toxicologist in the ED. The physiological state
of a subject was classified as one of three states
based on clinician assessment: neutral, intoxicated,
or withdrawal. The neutral state refers to a subject
not being in opioid intoxication or opioid withdrawal.
The intoxicated state refers to a state with signs and
symptoms consistent with opioid intoxication. The
withdrawal state refers to a state with signs and
symptoms of opioid withdrawal.

The assessment of a subject’s physiological state
took place every 30 minutes to an hour. Subjects
assessed in the intoxicated or withdrawal states
were generally laying on a hospital stretcher due to
incapacity or discomfort, respectively. The neutral
state assessments were often done while the subject
was performing a variety of activities such as walking,
talking, eating, etc. A subject may have been assessed in
variety of different states during their enrollment in the
study. It was not uncommon for subjects to transition
from one state to another during the course of the study:
for example to be neutral on one assessment, then to be
in a withdrawal state on a second assessment 30 minutes
later. The clinician assessment of the state of a subject
provides us with the ground-truth needed to build our
models. Overall, we used data from 16 subjects in this
study. The demographics of the subject population can
be found in Table 1.

Data Cleaning: Given that the E4 is a wrist-worn
biosensor, we found the data it collected contained
motion artifacts. Therefore, it was necessary to clean
the physiological data. Specifically, we used filtering
techniques to clean the EDA and BVP data. In
order to mitigate noise in the EDA data, two low-pass
Butterworth filters were applied to the data. The first
low-pass Butterworth filter had a cutoff of 0.2 Hz, and
the second low-pass Butterworth filter had a cutoff of
0.05 Hz. The use of this technique for the purpose
of noise reduction in EDA data has been shown to be
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successful in previous research [11]. A band-pass filter
was used to limit the impact of noise present in the BVP
data. This band-pass filter had a high-pass cutoff of 0.6
Hz, and a low-pass cut off of 3.33 Hz. These lower
and upper frequencies are used to limit the possible
heart rates that could appear in this data to a range of
40-200 beats per minute (BPM). This heart rate range
accounts for both the upper and low extremes of heart
rates that could occur for an individual [16]. Figure 2
shows an example of how the two-low pass Butterworth
filters applied to the EDA data helped mitigate motion
artifacts.

Figure 2. Example of two low-pass Butterworth

filters being used to clean a subjects EDA data.

The accelerometer data did not undergo any data
cleaning in order to maintain acute movements that
may be related to opioid withdrawal symptoms. No
data cleaning was performed on the skin temperature
data, however an inspection of the skin temperature
data revealed that some skin temperature readings were
too low to be compatible with life and therefore were
considered erroneous. The sections of data containing
abnormally low skin temperature readings were not
included in our analysis.

Dataset Windowing After cleaning the data, each
subjects data is then broken up into one minute
non-overlapping windows. We decided to use
one minute non-overlapping windows because this
window-size has been used in previous research related
to classifying stress using machine learning [11]. As
previously mentioned, opioid withdrawal symptoms can
be conceptualized as being similar to symptoms of stress
[10].

The one minute segments that were assessed to be
in the withdrawal state are placed into one dataset (the
universal withdrawal set), and the one minute segments
that were assessed to be in the intoxicated or neutral
state were placed into a separate dataset (the universal
non-withdrawal set) (see Figure 3). Once all patient
data was placed into either the universal withdrawal or

universal non-withdrawal dataset, the feature extraction
process was performed.

Figure 3. Example of how subject data is windowed

and placed into either the universal withdrawal

dataset or universal non-withdrawal dataset.

4.1. Feature Extraction

Once the data in the universal withdrawal and
universal non-withdrawal dataset has been broken up
into one minute window, we can then generate feature
vectors from each window. The features extracted
for this analysis are inspired by the work of stress
classification [11] [12].

There are a total of 66 features extracted from each
one minute window during feature extraction. These
66 features form a feature-vector that is then labeled as
belonging to a positive or negative class. The positive
class feature-vectors are derived from data collected in
the withdrawal state and negative class feature-vectors
are derived from data collected in the intoxicated or
neutral states. The positive and negative class points are
detailed further in Section 4.2.

The features extracted from the EDA, BVP,
skin temperature, and triaxial accelerometer data are
described in Table 2.

In total, there are 11 features extracted from the
EDA data, 14 features extracted from the BVP data, 13
different features extracted from each axes (x, y, z) of the
triaxial accelerometer data (39 in total), and 2 features
extracted from the skin temperature data.

4.1.1. Separability of Features Prior to detailing
how we used these features to train our models, we
will provide an intuition for why these features may
help a model to distinguish between the withdrawal and
non-withdrawal states. We do this by plotting a pair of
features for each class point in our analysis: one feature
on the x-axis, and one feature on the y-axis.
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Table 2. Features extracted from each datatype

collected by the Empatica E4
Datatype Features Extracted

EDA

mean, mean derivative, standard
deviation, number of peaks, mean
prominence, mean width between
peaks, dot product of the peak
width and prominence, number
of strong peaks, 20th percentile,
quartile, 80th percentile

BVP

mean inter-beat interval (IBI),
IBI standard deviation, root
mean square, total power of IBI,
low frequency power of IBI,
high frequency power of IBI,
normalized low frequency power
of IBI, normalized high frequency
power of IBI, low frequency
power to high frequency power
ratio of IBI, number of peaks,
mean amplitude, standard
deviation of amplitude, square
average, percent of IBI greater
than 50 milliseconds.

Triaxial Accelerometer (x, y, z)

total power, mean absolute
difference of the norm, mean
derivative, mean, median,
skew, variance, standard
deviation, maximum, minimum,
interquartile range, zero crossing
rate, kurtosis

Skin Temperature mean, mean derivative

In Figure 4, we show a pair of features that highlight
the separability of the positive and negative class points.
Here, we show the mean inter-beat interval feature
plotted against the mean EDA feature for each class
point. The mean EDA is a measurement of the average
conductivity level of the skin [17]. The higher the
conductivity level of the skin or EDA, the more a
person is sweating [17]. The mean inter-beat interval
is the average amount of time, in milliseconds, between
heart beats [18]. Although there is quite a bit of
overlap between withdrawal class and non-withdrawal
class samples at low values of the mean EDA (between 0
and 0.25 microsiemens), the majority of non-withdrawal
points have a lower EDA, and higher inter-beat interval.
This is what one would expect to see. When a person
is not in withdrawal they are less sweaty and their heart
is not beating very fast. The opposite is however true,
generally speaking, when one is in withdrawal.

Specifically, about 40% of non-withdrawal class
points have an EDA below 0.15 microsiemens,
compared to only 13% of withdrawal class points. At
the same time, over 70% of withdrawal class points have
an inter-beat interval below 35 milliseconds, compared
to only 50% of the non-withdrawal points. A low
inter-beat interval (or faster heart rate), and a higher
average EDA (sweatiness) are exactly what scales like
the COWS expect to find in a patient experiencing

opioid withdrawal [9].

Figure 4. Comparison of the mean inter-beat

interval and EDA mean values for each class point.

4.2. Training and Detection

Once we have the dataset and know which features
to extract, the next step is to build the opioid
withdrawal detection model. Our detection model
uses a machine learning-based classifier to address our
principal question. Our classifier learns the uniqueness
of the EDA, accelerometer, temperature, and BVP data
(collected using the wearable biosensor) for the OUD
subjects withdrawal state. Once the model is built,
any newly received EDA, accelerometer, temperature,
and BVP data snippet which matches the models
understanding of the withdrawal state will be classified
as such. Our detection approach has two phases: the
training phase, and the detection phase.

Training Phase: The goal of the training phase is to
develop a machine-learning model (specifically, a binary
classifier) for identifying opioid withdrawal, where our
model needs to be able to recognize the withdrawal state
from a variety of non-withdrawal states. In order to do
this, we must first label the subject’s data into one of
two different classes. (1) Positive Class: The positive
class consists of all 66-point feature vectors from the six
different subjects whose data were assessed to be in the
withdrawal state. (2) Negative Class: The negative
class consists of all 66-point feature vectors from the 12
different subjects whose data were assessed to be in the
non-withdrawal state. In our study, the non-withdrawal
class refers to subject data assessed in the neutral and
intoxicated states. These two physiological states are
lumped together into the non-withdrawal state because
the primary goal of our analysis is to evaluate how
well a machine-learning classifier can distinguish the
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withdrawal state from other physiological states found
in our subjects population. Two subjects have data in
both the withdrawal and neutral state, and therefore their
appropriate portions of data appears in both positive and
negative class points.

Testing Phase: Once the machine learning model
is trained, it is now able to classify whether a 66-point
feature vector, derived from a never before seen one
minute snippet of EDA, accelerometer, temperature,
and BVP measurements, belongs to the withdrawal or
non-withdrawal state. Since we are performing binary
classification (withdrawal vs. non-withdrawal), our
classifier typically returns a confidence value from 0 to
1, with 1 indicating that the model has full confidence
that the unseen snippet belongs withdrawal state, and
with 0 indicating full confidence that the point belongs
to the non-withdrawal state. We are then able to decide
whether to accept or reject that value depending on
whether or not it meets a chosen threshold between 0
and 1. A diagram of our withdrawal detection approach
is shown in Figure 5. Since we are using a one
minute window, our model requires one minute of data
to be collected by a wearable biosensor before it can
classify whether that person is in the withdrawal or
non-withdrawal state.

5. Evaluation

Given that the subjects in our dataset were examined
by clinicians intermittently (every 30 minutes to an
hour), we do not have the ground-truth about the
subject’s health state at all times. Consequently, we
curate the biosensor data collected from the 16 subjects
by only extracting subject data where we are reasonably
confident of their health state (i.e., neutral, intoxicated or
withdrawal). Only this curated data is used for training
our detection models and evaluating their efficacy. In
this section, we describe our dataset curation process,
the datasets use in training and evaluating withdrawal
detection, and our evaluation metrics.

5.1. Data Curation

In total, we used data from 16 different subjects
in this study. Each subject had their physiological
data collected anywhere from 30 minutes up to several
hours. Of these 16 different subjects, only 6 had
withdrawal symptoms assessed by clinicians. One of
the 6 subjects that had data in the withdrawal state, one
also had usable data assessed in the neutral state. The
remaining 10 subjects had data assessed in the neutral
state, intoxicated state, or both.

A total of 20 minutes were extracted from the
wearable biosensor data surrounding the time when the

clinicians assessed the subject’s state. The 20 minutes
of data is comprised of the 10 minutes before and the
10 minutes after the evaluation happened. We used
these 20 minutes of data because, being in the controlled
environment of the hospital, it is unlikely a subject’s
physiological state would change drastically during this
time period.

To be able to train the classifier to detect withdrawal,
we have to compensate for the idiosyncrasies in our
curated dataset that originated from our data collection
protocol. In order to train our classifier, we first generate
the positive and negative class points (as described in
Section 4.2) and then shuffle them. We then use the
first 80% of the feature points for training. This allowed
us to train our classifier and still have some (previously
unseen by the model during training) data leftover (20%)
to test its performance.

Figure 5. Overview of training and testing approach

for developing a machine-learning model to identify

opioid withdrawal.

5.2. Metrics

Before we go into the details of training and testing
the ML models, we give a short overview of the metrics
we use to evaluate the efficacy of our models. As
our model will classify each input example as either
withdrawal (positive class) or non-withdrawal (negative
class), the result from inference will fall into one of four
categories. (1) True Positive (TP): A correct prediction
of the positive class. (2) False Negative (FN): An
incorrect prediction of the positive class. (3) True
Negative (TN): A correct prediction of the negative
class. (4) False Positive (FP): An incorrect prediction
of the negative class. After performing inference on all
input examples, we will use the number of examples in
each of these four categories to calculate our models true
positive rate (TPR), and false positive rate (FPR).

TPR is the ratio of how many positive class points
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Figure 6. Average ROC curves and AUC obtained

during cross validation for SMOTE using all

features.

Figure 7. Average ROC curves and AUC obtained

during cross validation for SMOTE using the

pruned features.

were predicted correctly compared to the total number
of positive class points [19]. FPR, on the other hand,
is the ratio of how many negative class points were
predicted incorrectly compared to the total number of
negative class points [19]. The TPR and FPR for a
model can be used to plot a receiver operating curve
(ROC). The ROC curve demonstrates how well a model
classifies positive points, compared to how poor it is at
classifying negative points [19]. From the ROC curve,
the area under the curve (AUC) can be calculated to
allow us to compare one machine learning model to
another. The ROC AUC is the metric that we use
to measure how accurately our models can identify
the withdrawal class samples. The ideal ROC curve
should have an AUC value that is close to 1 (perfect
classification of both positive and negative class points).
The ROC AUC will be the metric we will attempt to
maximize during the training and testing processes.

5.3. Model Training

Once the dataset has been cleaned, the features
extracted, and the training and test sets created, we can
begin developing models to identify opioid withdrawal.
We trained four different machine-learning classifiers
to identify opioid withdrawal. The classifiers use all
66 features extracted from the wearable biosensor data
to learn what distinguishes the withdrawal state from
the non-withdrawal (neutral or intoxicated) state. The
four machine-learning (ML) algorithms developed in
this training phase are: Random Forest, Decision Tree,
Logistic Regression, Support Vector Machine.

In order to handle the class imbalance in the
data, two separate approaches were taken. These

two approaches are Synthetic Minority Oversampling
Technique (SMOTE) and Exactly Balanced Bagging
(EBBag). The SMOTE technique samples a point p
from the minority class, and randomly creates a new
point that is between p and its r closest neighbors [19].
This is done until the positive class and negative class
have an equal amount of examples. This technique
has been found to be very effective for handling class
imbalances [19]. EBBag is an ensemble training
method that involves training more than one instance
of a classifier on randomly under-sampled sets (without
replacement) of the majority class that match the
number of samples in the minority class [20]. In our
ensemble model, a given feature vector is classified as
the positive class if the average confidence value of the
two models is 50% or greater, and the negative class if
otherwise.

Further, in order to improve our models we pruned
the feature set. The purpose of doing this is to find a
minimal feature set which maximizes a models ability
to identify the withdrawal state. The feature pruning
process is done by starting with an empty set of features
for a particular model, and at each stage adding the
feature to its feature set which maximizes its ability
to accurately identify withdrawal class samples during
cross-validation. If all of the 66 extracted features
are in the models feature set, or there are no features
left which improve the models ability to accurately
identify the withdrawal class samples, then the process
ends. A minimal feature set is identified for each model
using both of the techniques for handling the class
imbalance (SMOTE, EBBag). Tables 3 and 4 show the
reduced/pruned features list using SMOTE and EBBag
to balance the classes, respectively.
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The results of the training phase will help determine
which model (and its associated pruned feature set) for
each class imbalance technique had the highest ROC
AUC during training. The best model for each class
imbalance technique will then be evaluated in the testing
phase.

Training using SMOTE: Here, we use all 66
features to build our models using our four chosen ML
algorithms using SMOTE to compensate for the class
imbalance. Figure 6 shows the results when all features
are used. We find that the Random Forest (RF) performs
the best with a near perfect classification accuracy (AUC
= 0.9887). The other algorithms do not perform as
well. Next, we used the feature pruning algorithm to
find the minimal feature set which maximizes classifier
accuracy. Using these pruned feature sets, we find that
the performance of the all of the algorithms except for
the Decision Tree algorithms remain more or less the
same. The Decision Tree algorithm saw improvements
from an AUC of 0.8920 using all features, to an AUC of
0.9425 using the pruned feature set (see Figure 7).

Table 3. Feature pruning results using SMOTE
Model Pruned Feature Set

Random Forest

mean skin temperature, EDA
mean, x-axis median, y-axis
interquartile range, z-axis
interquartile range

Decision Tree
mean skin temperature, EDA 20th
percentile, EDA mean, z-axis
median

Logistic Regression

mean skin temperature, EDA
peaks, EDA mean, x-axis total
power, y-axis interquartile range,
y-axis zero crossing rate, y-axis
minimum, y-axis skew

Support Vector Machine
mean skin temperature, EDA 20th
percentile, y-axis median, z-axis
mean

Training using EBBag: Here, we use all the 66
features to build our models using our four chosen ML
algorithms with EBBag being used to compensate for
the class imbalance. Figure 8 shows the results when
all features are used. We find that the Random Forest
(RF) performs the best (AUC = 0.9666). Though the
Random Forest algorithm performed well using EBBag,
compared to SMOTE, the AUC for all algorithms was
worse than when using SMOTE. Next, we used the
feature pruning algorithm to find the minimal feature set
which maximizes classifier accuracy. Unlike SMOTE,
using these pruned feature sets noticeably improves the
performance of the four algorithms. After using the
feature pruning algorithm, the Random Forest (RF) and
Decision Tree (DT) algorithms performed similarly to
the results obtained using SMOTE (see Figure 9).

In both these example we found that RF was the best
performing algorithms. Since the RF algorithm was the
top performer using both class imbalance techniques, we
chose to use these two models in the testing phase.

Table 4. Feature Pruning Results Using EBBag
Model Pruned Feature Set

Random Forest

mean skin temperature, mean
EDA, BVP Root Mean Square,
x-axis median, y-axis minimum,
BVP mean IBI

Decision Tree
mean skin temperature, mean
EDA, x-axis median, z-axis
maximum, EDA 20th percentile

Logistic Regression

mean skin temperature, mean
EDA, number of EDA peaks,
y-axis median, x-axis mean
average derivative, x-axis total
power, number of BVP peaks,
z-axis zero-crossing rate, y-axis
variance

Support Vector Machine

mean skin temperature, EDA
number of peaks, EDA 20th
percentile, y-axis maximum,
z-axis median, BVP root mean
square

5.4. Model testing

Now that we have our RF-based withdrawal
detection model, we can evaluate it using the test set that
consists of 20% of unseen data from the entire dataset.
The results from evaluating the RF-based withdrawal
detection models using the test set demonstrates how
well the models can generalize to unseen data.

The following testing results were obtained using
both the EBBag and SMOTE class imbalance methods.
Figure 10 shows the ROC curve and ROC AUC obtained
with the RF-based withdrawal detection model during
testing using the SMOTE and EBBag methods.

The RF-based withdrawal detection model using
EBBag obtain an AUC of 0.9997, while the model
using SMOTE obtain a slightly lower AUC of 0.9873.
We believe the Random Forest model (for both class
imbalance techniques) leverages the difference between
the positive and negative class points for the features in
its pruned feature set (as demonstrated in 4.1.1).

Although the results obtained in testing are very
good, they need to be understood in context. Given that
this is a new area of research and the general dearth
of datasets for this work, we have had to work with a
small dataset. We have thus demonstrated through our
training and testing process that using ML classifiers
for detecting opioid withdrawal (in near real-time; one
minute) from wearable biosensor data is viable. Given
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Figure 8. Average ROC curves and AUC obtained

during cross validation for EBBag using all

features.

Figure 9. Average ROC curves and AUC obtained

during cross validation for EBBag using the pruned

features.

Figure 10. ROC curves and AUC obtained during

testing phase (using 20% of unseen data from our

dataset) with Random Forest using SMOTE and

EBBag.

that this the first work in this area, we believe this is
an important contribution. That being said, we do not
claim to have produced generalizable classifiers for this
particular task.

6. Limitations

The results of this study show that there is promise in
using wearable biosensors to identify opioid withdrawal.
However, there are two major limitations in our work
that need to be addressed in future work.

The first major limitation of this study is the small
amount of opioid withdrawal state data that we had
access to. This is in large part due to that fact that

collecting this type of data is subject to if and when an
OUD patient experiences opioid withdrawal symptoms.
For the data that was able to be collected from OUD
patients experiencing withdrawal in this study, there
were issues with noise in the data that may have
rendered portions of it to be unusable in this analysis.

The second limitation of this study is that we
only collected data in a hospital setting that represents
naloxone induced opioid withdrawal. The symptoms
of a precipitated withdrawal onset by naloxone will be
abrupt, shorter, and possibly more extreme than the
spontaneous withdrawal that occurs when opioid use is
reduced or stopped altogether [21]. Therefore, these
results may not generalize well to detecting spontaneous
opioid withdrawal.

7. Conclusions and Future Work

In this study, we proposed a method for developing
a set of machine learning models to identify opioid
withdrawal using data collected from a wearable
biosensor. We found through our training and testing
procedures that the Random Forest model produced
the best results. The test accuracy using this model
was nearly perfect (ROC AUC=0.9997). Further, the
model is able to detect withdrawal with just one minute
of biosensor data. However, these results have to be
understood in context. We have only demonstrated the
viability of our methodology and have not produced a
generalizable classifier for this particular task.

In the future, we plan to improve upon this work in
two different ways. (1) We plan to collect additional
data from OUD patients experiencing naloxone induced
withdrawal symptoms. The increase in data will
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help to address the issue of model generalizability.
(2) Similarly, data will also be collected inside and
outside of the hospital setting from OUD patients
experiencing spontaneous withdrawal symptoms onset
from discontinuing or limiting their opioid use. This
data would allow us to understand how well a model
built to detect naloxone induced withdrawal symptoms
can generalize to spontaneous withdrawal symptoms.
It would also enable us to study building a model
to identify spontaneous withdrawal symptoms, or both
precipitated and spontaneous withdrawal symptoms.
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