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Abstract 
Dimension reduction is considered as a necessary 

technique in Electronic Healthcare Records (EHR) 

data processing.  However, no existing work addresses 

both of the two points: 1) generating low-dimensional 

representations for each patient visit; and 2) taking 

advantage of the well-organized medical concept 

structure as the domain knowledge. Hence, we 

propose a new framework to generate low-

dimensional representations for medical data records 

by combining the concept-structure based distance 

with manifold learning. To demonstrate the efficacy, 

we generated low-dimensional representations for 

hospital visits of heart failure patients, which was 

further used for a 30-day readmission prediction. The 

experiments showed a  great potential of the proposed 

representations (AUC = 60.7%) that has comparative  

predictive power of the state-of-the-art methods, 

including one hot encoding representations (AUC = 

60.1%) and PCA representations (AUC = 58.3%), 

with much less training time (improved by 99%). The 

proposed framework can also be generalized to 

various healthcare-related prediction tasks, such as 

mortality prediction. 

 

1. Introduction 

Electronic Healthcare Records (EHR) data, an 

electronic version of patients’ medical history, has 

been widely used to improve healthcare quality in a 

variety of ways. There are a large number of unique 

medical concepts in EHR systems, such as 17,000 

International Classification of Diseases (ICD) -9 

codes [1] and 360,000 National Drug Codes (NDC). 

These unique medical concepts are one of the 

fundamental causes of high dimensionality in EHR 

data. In each visit of a patient in the EHR data, there 

could be one or more ICD codes that represent the 

health condition of the patients. For visit-wise 

machine learning tasks, such as the prediction of 

mortality and readmission for each patient visit, 

processing these ICD-9 codes in each visit as 

categorical data with One Hot encoding leads to the 

dimensionality of 17,000. The high dimensionality 

could bring the problem of overfitting, and higher 

cost of training time and storage. Therefore, it is 

necessary to generate low-dimensional 

representations for patient visits that contain medical 

concepts, which is the first goal of this study. 

In addition, the well-organized hierarchical structure 

is the nonnegligible characteristic of the medical 

concepts in the EHR data. Many medical concepts 

like ICD codes were arranged in a hierarchical 

structure based on their relationship with each other, 

which was determined by the experts of healthcare. 

For example, heart disease is one of the circulatory 

system diseases, and thus the ICD-9 code of heart 

disease (‘420-429’) belongs to the circulatory system 

disease (‘390-459’). The patient visits that contain 

ICD codes with close relationships in the concept 

hierarchy reflect similar health conditions of the 

patients, the low-dimensional representations of 

which should also be close. Taking the hierarchy as 

domain knowledge into consideration, the generated 

low-dimensional representations align well with the 

medical knowledge and have a great potential to help 

machine learning models achieve better performance. 

Therefore, the second goal of the study is to 

incorporate the established domain knowledge into 

the low-dimensional representations of patient visits. 

Although the representation of a single medical 

concept is widely studied [2], a informative 

representation for each set of medical concepts 

remains unknown. A straightforward solution is to 

implement dimension reduction techniques, such as 

Singular Value Decomposition (SVD), on the One 

Hot encoded sets of concepts. However, it does not 

take advantage of the well-defined concept hierarchy 

as mentioned above. In light of these limitations, we 

propose a new framework, Medical-Distance-

Manifold (MD-Manifold), to utilize the domain 

knowledge in the hierarchical structure of medical 

concepts and generate low dimensional 

representations for the sets of concepts in a patient 

visit. We first calculate the distance between medical 

concepts based on their hierarchical structure, with 

which we generate the distance between sets of 

concepts (visits). With the obtained set-level distance 

as the distance between visits, we implement 
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manifold learning models to produce low-

dimensional representations for patient visits.  

To evaluate the proposed framework, MD-Manifold, 

we use heart failure patients’ readmission prediction 

as a research case. Readmission is defined as an 

event when a patient is admitted again within a 

specific time interval after the last hospitalization. 

The readmission prediction for heart failure patients 

has a significant meaning in practice. In the US, heart 

failure is one of the main causes of medical 

institution admissions [3]. Within 30 days after the 

hospital discharge, approximately 24% heart failure 

patients would experience all-cause readmission, 

which costs around $17 billion every year [3]. The 

readmission is an indicator of disease progression and 

a source of the economic burden to the medical 

system [3]. Therefore, the early identification of 

patients at risk of readmission is a crucial step for 

enhancing disease management and patient control. 

The contributions of this study are significant. 

Theoretically, the proposed framework takes 

advantage of the domain knowledge in the concept 

hierarchy for the low-dimensional representations. 

We examine two concept-level distance metrics, four 

set-level distance metrics, and two manifold learning 

models, including Laplacian Eigenmap (LE) [6], and 

Uniform Manifold Approximation and Projection 

(UMAP) [7]. One of the two concept-level metrics 

developed by us outperforms the state-of-the-art 

distance metric of [4] in predicting readmission of 

heart failure patients. Our experiments show the great 

potential of the proposed low-dimensional 

representations in the medical machine learning field. 

From the perspective of readmission prediction, the 

proposed framework can improve the patient control 

and decrease the healthcare cost by identifying heart 

failure patients with high risk of readmission. Other 

visit-wise machine learning studies, such as mortality 

prediction, can also benefit from our work by 

embedding the low-dimension representations into 

their models. 

2. Related work 

In this section, we present the existing related studies 

of dimension reduction, manifold learning, distance 

metrics, and readmission prediction and introduce the 

idea-forming process.  

Dimension reduction in EHR: By regarding medical 

concepts in each EHR record as words in a sentence, 

many researchers learned low dimensional 

representations (embeddings) for each medical 

concept [2] with techniques in natural language 

processing. Furthermore, [5] considered the 

hierarchical structure of ICD codes as the domain 

knowledge when generating the low dimensional 

embeddings. However, the representation for each 

individual medical concept could be inappropriate for 

visit-wise classical machine learning models, when 

each patient visit contains multiple concepts in the 

EHR data. Classical machine learning models require 

input samples of the same dimensionality, while 

various numbers of medical concepts in each visit lead 

to the unfixed dimensions for visits. Therefore, it is the 

representation of each visit (set of medical concepts), 

instead of each individual concept, that is in need for 

visit-wise machine learning tasks. Nevertheless, the 

representations for visits are still not sufficiently 

understood.  

Manifold learning: We find manifold learning, which 

is an approach of non-linear dimensionality reduction, 

a great tool to fill the abovementioned gap. With the 

distances between data points as the inputs, the 

manifold learning generates low-dimensional 

representations that keep the geometry of the original 

data points. If we set up a distance metric between sets 

of concepts based on the hierarchical structure of the 

medical concepts, then the generated representations 

from manifold learning can incorporate the domain 

knowledge naturally. Therefore, the manifold learning 

can tackle these types of problems as long as we set up 

a meaningful distance between visits. There are 

various manifold learning algorithms, including 

Isomap, Locally Linear Embedding, tSNE, LE [6], and 

UMAP [7].  We adapt LE (classical method) and the 

UMAP (state-of-the-art method) in this study. Notice 

tSNE has been widely used in the dimension reduction 

before the invention of UMAP. We do not adopt it 

because tSNE takes much more time to generate the 

representations compared with UMAP [7]. 

Distance metrics: To construct the distance between 

visits that include multiple medical concepts, there are 

two steps, concept-level distance and set-level 

distance [8]. The concept-level distance measures the 

distance between medical concepts, based on which 

the set-level distance measures the distance between 

visits. As summarized by [8], the most appropriate 

concept-level distance was proposed by [4]. On the 

other hand, there are four set-level distance metrics 

that are equally good at separating visits [8]. We 

introduce them in detail in Section 3.  
Readmission prediction: Readmission prediction is 

a critical research area in improving patient care. 

LACE index was first developed to evaluate the 

likelihood of patient readmission [9]. Then, machine 

learning models were widely implemented for higher 

accuracy [10]. With the recent boost of deep learning 

algorithms, historical visits of patients were used in 

readmission prediction with sequential models [3]. 

However, most of the experiments showed that 
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sequential deep learning models barely outperformed 

classical machine learning models, which also 

indicated the necessity of the abovementioned 

representations of patient visits for classical machine 

learning models.  

3. Research design and the proposed 

framework: MD-Manifold 

As shown in Figure 1, the proposed framework, 

Medical-Distance-Manifold (MD-Manifold), 

including three steps: concept-level distance 

calculation, set-level distance calculation, and 

manifold learning. The fundamental idea is to melt 

the medical-concept-hierarchy as domain knowledge 

into the distance between patient visits, and extract 

the representation of each visit from the defined 

distance with manifold learning. In the first step, we 

measure the distance between medical concepts 

based on the concepts’ relationships in the hierarchy, 

which is the key step to take advantage of the 

medical knowledge outside of the dataset.  In the 

second step, based on concept-level distances, we 

develop the set-level distances to measure the 

distances between patient visits. In the third step, we 

generate the low-dimensional representations for 

patient visits by extracting information from the 

measured distances between patient visits with 

manifold learning. 

The patient visits in the dataset are represented by 

𝑉 = {𝑉𝑖}𝑖=1,2,…,𝑟, where r is the number of visits in 

the dataset. Each visit contains a set of concepts as 

the indicator of the patient’s health condition, which 

are denoted as a, b, and c, etc., for example, 𝑉1 =
{𝑎, 𝑏}, 𝑉2 = {𝑎, 𝑐}. Other features of the patients, such 

as age and gender, are not considered in this study. 

We assume the concepts in the data have a 

hierarchical structure in the form of a parent-child 

relationship as shown in Figure 2, for example, the 

ICD codes in EHR data.  

3.1 Step 1: concept-level distance (CD) 

calculation 

Concept-level distance is the crucial step where we 

take advantages of the well-organized medical 

concept hierarchy. The concept-level distance of two 

medical concepts, 𝑎 and 𝑏, are measured by their 

positions in the concept hierarchy. We introduce a 

widely used distance metric, 𝐶𝐷𝑊𝑃 , and our new 

distance metric, 𝐶𝐷𝑛𝑒𝑤. 

Given the concept structure as shown in Figure 2, if 

two concepts are connected, then the concept in the 

upper level is called a parent, and the one in the 

lower level is called a child. For example, in Figure 
2, 𝑐 is the parent of 𝑑 and 𝑑 is the child of 𝑐. 

Intuitively, 𝐶𝐷𝑊𝑃 considers 𝑎 and 𝑏 as distant if their 

least common ancestor (LCA) is much closer to the 

root of the concept tree compared with 𝑎 and 𝑏. 

Specifically, 𝐶𝐷𝑊𝑃(𝑎, 𝑏) = 1 −
2𝐼𝐶(𝑐)

𝐼𝐶(𝑎)+𝐼𝐶(𝑏)
, where c 

is the LCA, and Information Content (IC) is defined 

as the concept level in the concept tree. A concept is 

considered to have more IC if it is farther from the 

root because it is more specific. Particularly, the IC 

of the root (level 1) is defined as 1, the IC of the 

concept that is connected with the root (level 2) is 

 

Figure 1: the MD-Manifold framework. 
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defined as 2, and so on. If IC(c) is much smaller than 

IC(a) and IC(b), this indicates that c is far from a and 

b; consequently, a and b are also distant with a large 

𝐶𝐷𝑊𝑃(𝑎, 𝑏), and vice versa. For example, as shown 

in Figure 2, suppose a is a level-4 concept, b is a 

level-5 concept, and their LCA, c, is a level-3 

concept, then the distance between a and b is 1 −
2×3

4+5
=

1

3
.   

However, the method, 𝐶𝐷𝑊𝑃 has its limitations that 

the distance is fully determined by the concept 

structure regardless of the concept co-occur 

frequency in practice. For example, two distant 

concepts in the structure co-occurring frequently tend 

to relate closely with each other, which is not 

reflected in the concept structure. Moreover, it is also 

likely that a concept occurs more frequently than its 

siblings. Thus, it is possible that the concept might 

have a closer relationship with its parent than its 

siblings. Nevertheless, the distance between a parent 

and each child is equal in 𝐶𝐷𝑊𝑃. For example, in 

Figure 2, 𝐶𝐷𝑊𝑃(𝑏, 𝑑) = 𝐶𝐷𝑊𝑃(𝑒, 𝑑), regardless of 

the frequency of b and e in practice.  

To address the abovementioned limitation, we 

propose a new concept level distance metric, 𝐶𝐷𝑛𝑒𝑤, 

that considers both the structure of the concept 

hierarchy and the frequency of concepts. The 

calculation of the proposed concept level distance, 

𝐶𝐷𝑛𝑒𝑤, consists of three steps. The first step 

considers the hierarchical structure of concepts by 

inserting concept ancestors. In the second and third 

steps, we set up the concept level distance based on 

the co-occurrence of concepts in the dataset. (1) For 

each concept in 𝑉𝑖, we add all the ancestors that the 

concept belongs to into the dataset. (2) We construct 

a co-occurrence matrix, 𝐶, with the number of co-

occurrences of two concepts as its element. 

Specifically, 𝐶 = 𝑂𝑇𝑂, where 𝑂 is the occurrence 

matrix in the first step. (3) We consider each row of 

the co-occurrence matrix as a feature of the 

corresponding concepts and generate a cosine 

distance for each pair of rows as a concept level 

distance. Explicitly, 𝐶𝐷𝑛𝑒𝑤(𝑎, 𝑏) = 1 −
𝐶𝑎⋅𝐶𝑏

√𝐶𝑎⋅𝐶𝑎√𝐶𝑏⋅𝐶𝑏
, 

where 𝐶𝑎 and 𝐶𝑏 correspond to rows of a and b on 𝐶, 

respectively. Suppose we have a dataset, as shown in 

Figure 3 (a), with the concept structure as in Figure 
2. The left column in Figure 3 (a) is the concepts 

that belong to each patient visit, and the right column 

is the corresponding frequency. For example, there 

are 10 patient visits in the dataset that contain both 𝑎 

and 𝑏. Through the first step, we insert the ancestors 

as shown in Figure 3 (b), whose occurrence matrix, 

𝑂, is shown in Figure 3 (c). Afterwards, we can 

generate the co-occurrence matrix in the second step 

as shown in Figure 3 (d). In the end, 𝐶𝐷𝑛𝑒𝑤  of all 

pairs of concepts are measured through cosine 

distance, as shown in Figure 3 (e). Notice that the 

concept 𝑏 occurs more than 𝑒 in Figure 3 (a). After 

the three proposed steps, as we expected, (b, d) has a 

smaller distance than (d, e) with 𝐶𝐷𝑛𝑒𝑤(𝑏, 𝑑) =
0.0125 and 𝐶𝐷𝑛𝑒𝑤(𝑏, 𝑒) = 0.2463. Moreover, due 

to the higher co-occurrence frequency of (𝑎, 𝑏) than 

 

Figure 3: An example of 𝐶𝐷𝑛𝑒𝑤. 

 

 

Figure 2: An example of concept hierarchy. 
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(𝑎, 𝑒), 𝐶𝐷𝑛𝑒𝑤(𝑎, 𝑏) = 0.0458 is smaller than 

𝐶𝐷𝑛𝑒𝑤(𝑎, 𝑒) = 0.425, in spite of the equal distant 

relationship in the concept hierarchy. 

3.2 Step 2: set-level distance (SD) calculation 

Based on concept-level distances, we are able to 

develop four set-level distance metrics [8] to measure 

the distances between visits, as shown below. Note 

the cardinality of the two sets of concepts, 𝑉𝑖 and 𝑉𝑗, 

was denoted as |𝑉𝑖| and |𝑉𝑗|, respectively. 

(1) The first metric uses the average distance of the 

most similar concept pairs. 𝑆𝐷1(𝑉𝑖 , 𝑉𝑗) =
1

|𝑉𝑖|+|𝑉𝑗|
(∑ min

b∈Vj
𝐶𝐷(𝑎, 𝑏)𝑎∈𝑉𝑖

+ ∑ min
𝑎∈𝑉𝑖

𝐶𝐷(𝑏, 𝑎)𝑏∈𝑉𝑗
).  

(2) The second metric considers the average distance 

of all concept pairs that are not in the union of two 

sets. Specifically,  

𝑆𝐷2(𝑉𝑖 , 𝑉𝑗) =
1

𝑉𝑖⋃𝑉𝑗
(∑

1

|𝑉𝑗|
∑ 𝐶𝐷(𝑎, 𝑏) +𝑏∈𝑉𝑗𝑎∈𝑉𝑖\𝑉𝑗

∑
1

|𝑉𝑖|
∑ 𝐶𝐷(𝑏, 𝑎)𝑎∈𝑉𝑖𝑏∈𝑉𝑗\𝑉𝑖

).  

(3) The third metric takes the average of the distances 

of all concept pairs.  

𝑆𝐷3(𝑉𝑖 , 𝑉𝑗) =
1

|𝑉𝑖|⋅|𝑉𝑗|
∑ 𝐶𝐷(𝑎, 𝑏)𝑎∈𝑉𝑖,𝑏∈𝑉𝑗

.  

(4) The fourth metric regards the two sets of concepts 

𝑉𝑖, 𝑉𝑗 as a bipartite undirected graph 𝐺 = (𝑉𝑖 , 𝑉𝑗) with 

the concept-level distance 𝐶𝐷 as a weighting 

function, where all pairs of concepts of 𝑉𝑖 are 

connected to all concepts of 𝑉𝑗 [8]. However, no 

concepts within a set are connected. The Kuhn-

Munkres algorithm [11] finds the minimum weighted 

bipartite matching (MWBM), which is a subset of 

edges with a minimum sum of weights and at most 

one edge is incident to each node in G. For hospital 

records, MWBM is the most similar ICD pairs from 

patient visit 𝑉𝑖 and 𝑉𝑗. Lastly, the set-level distance 

can be measured by averaging all weights in 

MWBM.  

𝑆𝐷4(𝑉𝑖 , 𝑉𝑗) =
1

|𝑀𝑊𝐵𝑀|
∑ 𝐶𝐷(𝑎, 𝑏)(𝑎,𝑏)∈𝑀𝑊𝐵𝑀 .  

Figure 4 shows the example of the four set-level 

distances when 𝑉𝑖 = {𝑎, 𝑏} and 𝑉𝑗 = {𝑎, 𝑒} with 

Figure 3 (e) as their concept-level distance. Four set-

level distance metrics lead to different distances 

between visits, where 𝑆𝐷1 gives a relatively smaller 

distance and 𝑆𝐷3 generates a larger distance.  

Notice that the concept-level distance measures are 

the groundwork of the set-level distance. Their 

combination will result in various distance measures 

for sets. In total, there are 2 × 4 = 8 combinations. 

We evaluated the efficiency of all combinations in 

the dimension reduction algorithms.  

3.3 Step 3: manifold learning  

As the last step of our proposed framework, we 

extract the information in the defined distance 

between patient visits with manifold learning and 

produce a low-dimensional representation for each 

visit. Considering the computational speed, we adopt 

LE and UMAP in this study.  

Before applying LE and UMAP, we construct a graph 

for the dataset. Regarding each data point (i.e., each 

set of concepts), 𝑉𝑖, as a vertex in the graph, 𝐺(𝑉, 𝐸), 
we connect two vertices as an edge depending upon 

their k-nearest neighbors. Note that If vertex 𝑉𝑖 is a k-

nearest neighbor to 𝑉𝑗, but 𝑉𝑗 is not a k-nearest 

neighbor to𝑉𝑖, the vertices 𝑉𝑖 and 𝑉𝑗 still forms an 

edge. The LE and UMAP would generate a 𝑑-

dimensional representation, 𝑦𝑖 , for each data point 

𝑉𝑖 ∈ 𝑉. 𝑑 is a small number relative to the original 

data dimensionality. 

Laplacian Eigenmap (LE): Laplacian Eigenmap is a 

classical manifold learning technique that preserves 

local geometrical information in datasets. Simply, the 

generated low-dimensional representations will be 

similar if data points are close in the original dataset. 

We incorporate the defined distance as the domain 

knowledge into LE’s weighting function. Given a 

connected graph, G(V, E), LE assigns a weight, 𝑊𝑖𝑗, 

to the edge using the distance between two connected 

vertices, 𝑉𝑖 and 𝑉𝑗. Specifically, 𝑊𝑖𝑗 =

𝑒
−
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2(𝑉𝑖,𝑉𝑗)

2𝜎2  if 𝑉𝑖 , 𝑉𝑗 are connected, otherwise 

𝑊𝑖𝑗 = 0, where 𝑉𝑖 , 𝑉𝑗 ∈ 𝑉 and 𝜎 is a heat kernel 

parameter. Usually, the distance metric can be 

 

Figure 4: An example of four set-level distances. 
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Euclidean distance or Mahalanobis distance, etc. in 

many applications [12]. Here, we induce the above-

defined set-level distance as the domain knowledge, 

which results in 𝑊𝑖𝑗 = 𝑒
−
𝑆𝐷2(𝑉𝑖,𝑉𝑗)

2𝜎2 .  

The LE generates low dimensional representation by 

minimizing the loss function, 𝑙𝑜𝑠𝑠𝐿𝐸 = ∑ 𝑊𝑖𝑗 ⋅𝑖𝑗

||𝑦𝑖 − 𝑦𝑗||
2 , where 𝑦𝑖 , 𝑦𝑗 are 𝑑-dimensional 

representations of vertices 𝑉𝑖 , 𝑉𝑗. 

Uniform Manifold Approximation and Projection 

(UMAP): Similar to LE, the UMAP optimizes the 

low dimensional graph to be as geometrically similar 

as possible to the high dimensional graph, G, which 

was constructed from the original dataset. If vertex 

𝑉𝑖 , 𝑉𝑗 are connected, the weight of their edge will be 

𝑊𝑖𝑗 = 𝑊𝑗|𝑖 +𝑊𝑖|𝑗 −𝑊𝑗|𝑖𝑊𝑖|𝑗, where 𝑊𝑗|𝑖 =

𝑒(−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖,𝑉𝑗)−𝜌𝑖)/𝜎𝑖 and 𝜌𝑖 is the distance to the 

nearest neighbor of 𝑉𝑖. 𝜎𝑖 is the normalizing factor, 

which is chosen by 

∑ exp(
−max(0,𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑉𝑖,𝑉𝑗)−𝜌𝑖)

𝜎𝑖
)𝑘

𝑗=1 = log2 𝑘. 

Similar to LE, Euclidean distance and Mahalanobis 

distance can also be used in the weighting function of 

UMAP [7]. To take advantage of the domain 

knowledge, we apply the distance between sets of 

concepts. As a result, a new weighting function for 

each edge would be built from our set-level distance. 

Using stochastic gradient descent as the optimization 

process, the UMAP minimizes its loss 

function:𝑙𝑜𝑠𝑠𝑈𝑀𝐴𝑃 = ∑ 𝑊𝑖𝑗 log
𝑊𝑖𝑗

(1+𝑎‖𝑦𝑖−𝑦𝑗‖2
2𝑏
)
−1 +𝑖≠𝑗

(1 −𝑊𝑖𝑗) log
1−𝑊𝑖𝑗

1−(1+𝑎‖𝑦𝑖−𝑦𝑗‖2
2𝑏
)
−1, where a and b are 

positive values, and 𝑦𝑖 and 𝑦𝑗 are the d-dimensional 

representations for 𝑉𝑖 and 𝑉𝑗, respectively.  

To summarize, the proposed framework, MD-

Manifold, takes advantage of the well-organized 

medical concept hierarchy so that the generated low-

dimensional representations align well with the 

medical knowledge outside of the patients’ hospital-

visits dataset. The representations can be further 

implemented in the visit-wise machine learning tasks, 

including readmission prediction, as shown in the 

experiments.  

4. Experiments 

To show the supremacy of the proposed framework, 

we took the readmission prediction for heart failure 

patients as a research case. Due to the huge amount 

of readmission cases of heart failure patients and 

their significant amount of cost, developing a 

predictive model for heart failure readmission is of 

increasing interest [13]. We generated the low-

dimensional representations for each visit under the 

proposed framework, MD-Manifold. Then the 

generated low-dimensional representations will be 

used to predict readmission for heart failure patients.  

4.1 Data description 

We extracted the dataset of patients with heart failure 

in 2014 from the Healthcare Cost and Utilization 

Project (HCUP), Nationwide Readmission Database 

(NRD), issued by the Agency for Healthcare 

Research and Quality (AHRQ) [14]. Each patient 

may have multiple visits in the record. To maintain 

the consistency and the quality of the dataset, we 

extracted the records from the large, private, non-

profit, and teaching hospitals in a single large 

metropolitan area, stratified by the NRD 

(NRD_STRATUM = 109). We labeled the visit as a 

readmission visit if the patient was readmitted within 

30 days of the discharge from the last hospitalization. 

The visits in December were removed due to the lack 

of data in the next year. Finally, the dataset of the 

experiments consisted of 26,358 visits from adult 

patients (age >= 18) whose primary disease were the 

heart failure, among which there were 6,553 (25%) 

readmission cases. 

The experiments were conducted on the patient 

diagnosis in each visit, which is a set of International 

Classification of Disease, Version 9, Clinical 

Modification (ICD-9-CM) codes [1], including a 

primary code. There are 17,000 ICD codes in total, 

which leads to a high dimension of 17,000 for each 

visit with one-hot encoding. As shown in Figure 5, 

the ICD codes have a tree structure with specific 

diseases in the low level and ambiguous concept in 

the upper level. For example, the ICD ‘428’ (Heart 

failure) is the child of ‘420-429’ (Other Forms of 

Heart Disease), which belongs to ‘390-459’ (Diseases 

of The Circulatory System). On the other hand, the 

ICD ‘428’ further has some more specific diseases in 

 

Figure 5: Part of the structure of the ICD-9-CM. 
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the lower level as its descendants, such as ‘4282’ 

(Systolic heart failure) and ‘42823’ (Acute on chronic 

systolic heart failure).  

4.2 Results of the concept-level distance and 

set-level distance calculation 

Concept-level distance. As displayed in Figure 6, 

the distributions of all generated distances of 𝐶𝐷𝑊𝑃  

and 𝐶𝐷𝑛𝑒𝑤 in the first step of MD-Manifold, show 

different shapes. Most of the 𝐶𝐷𝑊𝑃  distances are 

greater than 0.8, while 𝐶𝐷𝑛𝑒𝑤 gather around 0.2 −
0.6. Also, as mentioned in the methodology section, 

the 𝐶𝐷𝑊𝑃  distance was fixed regardless of the data 

we were using, and 𝐶𝐷𝑛𝑒𝑤 incorporated information 

from both data and the domain knowledge (i.e., ICD 

hierarchy). For example, the ICD codes ‘5856’ and 

‘40391’ existed in 1,834 and 1,600 records, 

respectively, among which 1,469 records included 

both ‘5856’ and ‘40391’. Due to their high co-

occurrence frequency, it was reasonable to believe 

they had a close relationship. In 𝐶𝐷𝑛𝑒𝑤 , ‘5856’ and 

‘40391’ were the nearest neighbors with each other 

with a distance of 0.0026. However, in 𝐶𝐷𝑊𝑃, their 

distance is 1 −
2

5+6
= 0.8182, which was almost the 

longest distance among all ICD pairs. Besides, under 

𝐶𝐷𝑛𝑒𝑤 the parents and children concepts were still 

close. For example, 𝐶𝐷𝑛𝑒𝑤(‘5856’,
′ 585′) = 0.0676 

and 𝐶𝐷𝑛𝑒𝑤(′40391
′,′ 4039′) = 0.0699, where 

‘4039’ and ‘585’ were the concept parents of ‘40391’ 

and ‘5856’, respectively.  

  
Figure 6: Distribution of 𝐶𝐷𝑊𝑃 (left) and 𝐶𝐷𝑛𝑒𝑤 (right). 

Set-level distance. We calculated the Pearson 

Correlation Coefficients (PCC) for each pair of the 8 

distances between patient visits, as shown in Figure 
7. Large PCC values indicate the high correlation or 

similarity between the two distance metrics. The PCC 

varies from 0.43 to 0.99, as shown in Figure 7. The 

larger circle with a darker color indicates a higher 

correlation. The set-level distances, 𝑆𝐷1−4, with our 

new concept-level distance, 𝐶𝐷𝑛𝑒𝑤, were highly 

correlated with each other. Their PCCs were all 

above 0.69, half of which were greater than 0.9. On 

the other hand, the set-level distances with 𝐶𝐷𝑊𝑃 

displayed more discrepancy with PCCs, the highest 

one being 0.80. Also, the PCCs of the combinations 

across 𝐶𝐷𝑊𝑃  and 𝐶𝐷𝑛𝑒𝑤 were all below 0.77, which 

reflects the large difference between two concept-

level distances.  

 

Figure 7: PCC of the distances between patient visits. 

4.3 Dimension reduction and readmission 

prediction 

With the obtained distances between sets of ICD 

codes in the patient visits, we generated low-

dimensional representations for the visits with LE 

and UMAP. With One Hot encoding, the ICD codes 

in the diagnosis of each visit would need a vector of 

17,000 dimensions to represent. In our experiments, 

we reduced the dimension to 8, 16, 32, 64, 128, 256, 

and 512, consecutively. In the end, we evaluated the 

low dimensional representations with a readmission 

prediction task, which is a critical problem in 

practice. We examined the information being 

preserved by the area under the receiver operating 

characteristics curve (AUC) scores in the five-fold 

cross-validation [15]. The more information 

preserved in the representations, the higher the AUC 

score is in the readmission prediction task. Also, the 

training time of the classifier was recorded to show 

the computational cost saved during the training 

process.  

In the readmission prediction task, we selected a 

linear classifier, Logistic Regression with 𝑙1 penalty 

(LR) as the discriminative model. The LR had been 

proven to have an equivalent performance with many 

advanced Recurrent Neural Network models in the 

readmission prediction of the 2013 HCUP dataset [3]. 

We set the 𝑙1 penalty to 0.1 based on the cross-

validation, which was consistent with [3]. 

Besides the low dimensional representations from the 

proposed method, we generated representations using 

One Hot encoding and Principal Component Analysis 

(PCA) on the One Hot encoding as two baselines. We 

implemented PCA on the One Hot encoded 

representations and decreased the dimension to 8, 16, 

32, 64, 128, 256, and 512.   
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The AUC scores of the prediction task of all 

representations through LE are shown in Figure 8. 

The results are separated according to the four set-

level distance metrics, as shown in Figure 8 (a)-(d). 

The x-axis represents the dimension of the 

representations, the y-axis represents the AUC 

scores, and the colors indicate different dimension 

reduction methods. The green dotted horizontal line 

indicates One Hot encoding, the blue dotted line 

indicates PCA, and the black solid and red dash line 

indicate LE with 𝐶𝐷𝑛𝑒𝑤 and 𝐶𝐷𝑊𝑃 , respectively. As 

dimension increases, the AUC scores also increase, 

which reflects the higher information content in the 

representations. The higher AUC scores indicate that 

the representations through LE are more informative 

than PCA representations in this readmission 

prediction. Notice the AUC score of One Hot 

encoded representations, whose dimensionality is 

17,000, is 0.601. Most importantly, the 

representations from the combinations of 𝐶𝐷𝑛𝑒𝑤 and 

𝑆𝐷2 exceed One Hot encoded representations in 

terms of AUC when their dimensionality increases to 

64, which means our representations can be more 

informative in the machine learning tasks than the 

original data. Also, the highest AUC, 0.607, of the 

proposed representations were reached by LE with 

𝐶𝐷𝑛𝑒𝑤 and 𝑆𝐷2 at dimension 256, which exceeded 

the maximal AUC of PCA, 0.583. The 

outperformance comes from the domain knowledge 

in the hierarchy of the ICD codes when we construct 

the distance metrics for the manifold learning. 

Besides, the new concept level distance 𝐶𝐷𝑛𝑒𝑤 

usually achieves the higher AUC scores than 𝐶𝐷𝑊𝑃 , 

which means 𝐶𝐷𝑛𝑒𝑤 defined more proper distance 

between ICD codes for the prediction task. Among 

the four set-level distance metrics, 𝑆𝐷2 performed 

best because the AUC scores of LE (black and red 

lines) in Figure 8 (b) are higher than that in Figure 8 

(a), (c), (d).  

 

(a
) 

 

(b
) 

 

(c
) 

 

(d
) 

Figure 8: The AUC scores of the prediction task of 

representations through LE. The results of 
representations using 𝑆𝐷1, 𝑆𝐷2, 𝑆𝐷3, and 𝑆𝐷4 are 

separated to (a), (b), (c), and (d).  

Surprisingly, the representations through UMAP did 

not perform as well as LE in the experiments, as 

shown in Figure 9. First, none of the representations 

by UMAP outperform the two baselines. The AUC 

score of One Hot encoding (0.601) is above all 

UMAP representations. PCA behave similarly to the 

UMAP with the first and second set-level distance, 

𝑆𝐷1 and 𝑆𝐷2, while PCA outperform the UMAP with 

𝑆𝐷3 and 𝑆𝐷4. Second, unlike LE, the AUC scores of 

UMAP are stable across the dimensions. When the 

dimension of representations increases from 8 to 512, 

the AUC scores of UMAP vary within 0.01. Third, in 

the UMAP, the proposed concept-level distance, 

𝐶𝐷𝑛𝑒𝑤, outperforms the 𝐶𝐷𝑊𝑃  when combined with 

the set-level distance, 𝑆𝐷3, as shown in Figure 9 (c). 

The possible reasons for the unsatisfying 

performance of UMAP could be that the UMAP did 

not capture enough global structure between visits in 

our experiments, as mentioned in [7]. Also, most 

applications of the UMAP are supervised tasks, such 

as visualization [7]. The UMAP may not be the best 

choice for supervised tasks like our experiments.  

 

(a
) 

 

(𝑏
) 
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Figure 9: The AUC scores of the prediction task of 

representations through UMAP. The results of 
representations using 𝑆𝐷1, 𝑆𝐷2, 𝑆𝐷3, and 𝑆𝐷4 are 

separated to (a), (b), (c), and (d). 

The low dimensional representations save much time 

on model training. Figure 10 shows the total training 

time used in the five-fold cross-validation of LR on 

the representations from baselines and LE, where the 

green dotted horizontal line indicates One Hot 

encoding, the blue dotted line indicates PCA, and the 

black solid and red dash line indicate LE with 𝐶𝐷𝑛𝑒𝑤 

and 𝐶𝐷𝑊𝑃, respectively. Intuitively, as the 

dimensionality of the manifold representations 

increases, the training time goes up. More 

importantly, most of the representations end training 

in 500 seconds, while it takes 4,075 seconds to train 

the 17,000 dimensional One Hot encoded 

representations. At dimension 64, where our 

representations achieve higher AUC than One Hot 

encoding, our representations (30𝑠) spend 99% less 

time on training than One Hot encoding. Notice that 

the blue lines (PCA) are always above the solid black 

lines (LE with 𝐶𝐷𝑛𝑒𝑤) and the red dash lines (LE 

with 𝐶𝐷𝑊𝑃) in Figure 10 (a)-(d), which means the 

LR is relatively easier to converge on our 

representations compared with PCA. This reflects the 

better quality of our representations than the PCA 

from another point of view. Due to the unsatisfying 

AUC of UMAP, we do not present the training time 

of UMAP.  

 

(a
) 

 

(b
) 

 

(c
) 

 

(d
) 

Figure 10: The training time of the LR on 

representations through LE. The results of 
representations using 𝑆𝐷1, 𝑆𝐷2, 𝑆𝐷3, and 𝑆𝐷4 are 

separated to (a), (b), (c), and (d). 

To conclude, by incorporating the domain 

knowledge, the proposed low dimensional 

representations through LE preserved more 

information than PCA, which even exceeded the high 

dimensional One Hot encoding. Through LE, the new 

concept-level distance, 𝐶𝐷𝑛𝑒𝑤, outperforms the 

previous metric, 𝐶𝐷𝑊𝑃. Combined with either of the 

two concept-level distances, 𝑆𝐷2 produced the most 

informative representations among the four set-level 

distance metrics. The representations through UMAP 

did not perform well in the task of readmission 

prediction in terms of AUC. Furthermore, the 

generated low-dimensional representations saved 

much time for model training. Due to the promising 

performance of our representations in low 

dimensions, our framework showed its great potential 

in medical and machine learning fields.  

5. Discussion and Conclusion 

One advantage of the proposed method is that the 

generated low-dimension representations are robust 

to low-quality data where similar but inaccurate 

concepts are documented (e.g., health providers may 

record the parent or siblings of the accurate disease 

code). Since the proposed method is based on the 

concept hierarchical structure, substituting a concept 

with a similar concept in the data records does not 

affect the measured distance between concepts 

significantly. Thus the generated representations still 

Page 4877



retain accurate information. On the other hand, One 

Hot encoding and PCA do not take the medical 

concept hierarchy into consideration, and thus two 

similar concepts are regarded as completely different. 

Therefore, One Hot encoding and PCA are sensitive 

to the quality of data.  

In the experiments section, we only include features 

of patient diagnosis in the LR to ensure the fair 

evaluation of the produced representations. There 

might be multicollinearity between the 

representations of diagnosis and other features, such 

as demography information. In that case, AUC scores 

of LR that is trained on the mixed features do not 

reflect the true information content in the 

representations. On the other hand, [3] conducted a 

readmission prediction study for heart failure patients 

on the NRD 2013 dataset (ours is NRD 2014). 

Although used almost all features in the database and 

many complex deep learning models, the best AUC 

in the study of [3] is 0.643, only 0.035 higher than 

ours, which reflects the effectiveness of the low-

dimension representation generated by our 

framework in the readmission prediction.  

Considering the computational efficiency, we 

selected LE and UMAP in the third step of the 

proposed framework, which is not thorough. We plan 

to explore more manifold learning algorithms in the 

future, such as Isomap and Locally Linear 

Embedding. Moreover, different machine learning 

tasks, such as mortality prediction, are in need in the 

coming work for the comprehensive evaluation of the 

representations. Surprisingly, we also found that as a 

state-of-art manifold learning algorithm, Uniform 

Manifold Approximation and Projection (UMAP) did 

not perform as well as Laplacian Eigenmap (LE) in 

our experiments. Therefore, we also plan to conduct 

more experiments to investigate the insights of the 

unexpected and unsatisfying performance of UMAP.  

To sum up, in this study, we proposed a new 

framework to generate low-dimensional 

representations for patient hospital visits by 

combining the medical concept-structure based 

distance and manifold learning. By considering the 

well-organized hierarchy of the medical concepts 

when constructing the distance metrics between 

visits, we incorporated medical domain knowledge 

into the representations. In the experiments of 

readmission prediction for heart failure patients, we 

showed the great potential of the proposed 

framework-the generated representations can be more 

informative than the original data. Not only exceed 

PCA, our representations also reached higher AUC in 

the low dimensionality than the high-dimensional 

One Hot encoding. Moreover, our proposed concept-

level distance metric, which is the first step in our 

framework, outperforms the existing metric in the 

experiments. From the perspective of applications, 

our framework could boost the readmission study, as 

shown in the experiments, and improve other 

machine learning studies in the research area of 

healthcare, such as mortality prediction.  
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